• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    植物ACCase基因的結(jié)構(gòu)功能及表達(dá)調(diào)控研究

    2021-02-07 02:51:51王保明顏士華譚曉風(fēng)
    安徽農(nóng)學(xué)通報(bào) 2021年1期
    關(guān)鍵詞:植物基因

    王保明 顏士華 譚曉風(fēng)

    摘 要:乙酰輔酶A羧化酶(Acetyl-CoA carboxylase,ACCase)是催化脂肪酸合成的關(guān)鍵和限速步驟。該文介紹了ACCase的分類及結(jié)構(gòu)特征,闡述了其在脂肪合成代謝中的作用和在除草劑中的應(yīng)用,分析了它的表達(dá)調(diào)控及反饋機(jī)理,揭示了ACCase基因的克隆及表達(dá)鑒定,并展望了ACCase在植物育種中的應(yīng)用前景。

    關(guān)鍵詞:植物;ACCase;基因;結(jié)構(gòu)功能;表達(dá)調(diào)控

    中圖分類號(hào) S364.3 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 1007-7731(2021)01-0017-08

    Study of the Structural Function and Expressing Regulation of ACCase Genes

    WANG Baoming1,2,3 et al.

    (1College of Agriculture & forestry Science and Technology, Hunan Applied Technology University, Changde? 415000, China; 2College of Modern Agriculture, Linyi University of Science and Technology, Linyi? 276000,China; 3“2011”Cooperative Innovation Center of Cultivation and Utilization for Non-Wood Forest Trees of Hunan Province (Central South University of Forestry and Technology),Changsha 410004, China)

    Abstract: ACCase is the critical step and rate limiting step in fat synthesis. In this paper, its classification and structural features were introduced, and its roles in lipid metabolism and application in herbicides were elaborated. Moreover, its mechanism of expressing regulation and feedback were also analyzed, and the cloning and expression patterns of ACCase genes were revealed. Finally, its application and prospect in plant breeding were prospected.

    Key words: Plant; ACCase; Gene; Structural function; Expressing regulation

    1 乙酰輔酶A羧化酶的結(jié)構(gòu)、分類和功能

    乙酰輔酶A(Acetyl coenzyme A,Acetyl-CoA)是碳進(jìn)入油脂合成代謝途徑的關(guān)鍵底物,而乙酰輔酶A羧化酶(Acetyl-CoA carboxylase,ACCase)能夠催化Acetyl-CoA轉(zhuǎn)化為丙二酰輔酶A(Malonyl CoA)而進(jìn)入脂肪酸合成和油脂代謝途徑。ACCase屬于生物素Ⅰ酶,Malonyl CoA是脂肪酸合成和脂酰鏈延伸系統(tǒng)代謝的底物[1-2]。它在脂肪酸合成中作為C2單位供體,作為線粒體穿梭系統(tǒng)的調(diào)節(jié)因子,是脂肪酸氧化中一個(gè)代謝底物和蛋白活性的調(diào)控代謝物[3-5]。ACCase的催化反應(yīng)不僅是關(guān)鍵步驟,也是限速步驟[4,6]。生物體內(nèi)的ACCase包括異質(zhì)型和同質(zhì)型,其中,同質(zhì)型ACCase含有生物素羧化酶(biotin carboxylase,BC)、生物素羧基載體蛋白(biotin carboxylase carrier protein,BCCP)和羧基轉(zhuǎn)移酶(carboxyl transferase,CT)3個(gè)功能域[7]。異質(zhì)型ACCase是植物從頭合成脂肪酸的限速酶和關(guān)鍵酶,由BC、BCCP、α-CT和β-CT4個(gè)亞基組成[6,8-9]。其中,BC、BCCP和α-CT為核基因accC、accB以及accA編碼,β-CT為質(zhì)體基因accD編碼。BC是糖異生、脂肪合成、氨基酸代謝和能量轉(zhuǎn)換的關(guān)鍵酶。生物素共因子從碳酸鹽捕獲CO2,催化轉(zhuǎn)運(yùn)羧酸鹽形成細(xì)胞代謝產(chǎn)物,它以共價(jià)鍵連接在BC亞基上,在ACCase羧化Acetyl-CoA的過程中作為羧基的中間載體,BC和CT各催化2個(gè)獨(dú)立的半反應(yīng)[9-17]:

    第1個(gè)半反應(yīng):

    E-biotin(BCCP)+[HCO-3]+Mg2+-ATP[]E-biotin-[CO-2]+Mg2+-ADP + Pi:biotin carboxylase;

    第2個(gè)半反應(yīng):

    E-biotin-CO2-(BCCP-CO2)+acetyl-CoA[]E-biotin(BCCP)+malonyl-CoA: carboxyltransferase。

    BCCP作為活化羧基供體,在BC和CT之間擺動(dòng)以傳遞羧基。其中,BC催化生物素羧化反應(yīng),含有ATP、Mg2+ 和CO2的結(jié)合點(diǎn)以及生物素輔基(共價(jià)鍵結(jié)合的生物素分子)和82個(gè)殘基(包括Lys殘基),在乙酰COA羧化反應(yīng)中扮演中心角色。BCCP在BC催化下,CO2結(jié)合到生物素分子或羧基生物素;而它在CT的催化下,轉(zhuǎn)移到乙酰CoA上成為Malonyl CoA。

    1.1 植物中ACCase的結(jié)構(gòu)和分布 同質(zhì)型ACCase即ACCase Ⅰ,也稱多功能或真核型ACCase,分子量為220~280kDa,主要存在于酵母[18-19]、藻類[20]、動(dòng)物[21-22]以及植物胞質(zhì)溶膠中[23-25]。其基因序列與異質(zhì)型ACCase的BC、BCCP、β-CT和α-CT組分相對(duì)應(yīng),形成多肽鏈上的3個(gè)功能域,活性狀態(tài)下以同型二聚體形式出現(xiàn),結(jié)構(gòu)穩(wěn)定難以解離。其結(jié)構(gòu)形式為NH2-BC-BCCP-CT-COOH(見圖2)[9]。1972年,研究者在菠菜葉綠體中發(fā)現(xiàn)了類似于大腸桿菌ACCase酶,直到1993年,才從豌豆的葉綠體中鑒定異質(zhì)型ACCase[9,26]。異質(zhì)型ACCase,又名原核類型ACCase,是BC、BCCP、α-CT和β-CT 4個(gè)亞基復(fù)合體。非活性條件下,這些亞基以單體形式存在;活性條件下,前2個(gè)亞基呈現(xiàn)同型二聚體,后2個(gè)是異型二聚體,兩者以共價(jià)鍵相連構(gòu)成CT催化域[27]。這類ACCase多存在于細(xì)菌、雙子葉植物、禾本科單子葉植物的質(zhì)體中[7,13]。異質(zhì)型ACCase不穩(wěn)定,易解離,它是由BC亞基同聚體與BCCP同聚體裝配在一起,然后與α-CT和β-CT的異聚體松散連接[7,28]。其分子形式目前還不清楚,可能類似于細(xì)菌ACCase的(BCCP)4(BC)2(α-CT)2(β-CT)2 (見圖2)[9,29]。

    ACCase分布與植物器官、生長(zhǎng)狀態(tài)有關(guān),小麥質(zhì)體ACCase在中間部位較高,在根、葉片較低;而胞質(zhì)溶膠ACCase在鞘科植物內(nèi)含量較高[30]。在禾本科單子葉植物質(zhì)體中,同質(zhì)型ACCase與胞質(zhì)溶膠中的不同。例如,小麥質(zhì)體和胞質(zhì)溶膠的同質(zhì)型ACCase氨基酸序列同源性僅為67%,而其與玉米質(zhì)體ACCase的同源性更高[31-32]。雖然玉米和小麥都是單子葉植物,但小麥胞質(zhì)溶膠ACCase與雙子葉植物胞質(zhì)溶膠ACCase的同源性比與玉米質(zhì)體ACCase的同源性高;油菜葉綠體中也存在同質(zhì)型和異質(zhì)型2種ACCase,即ACCase I 220kDa(存在于雙子葉植物)和類似于大腸桿菌和擬南芥的多亞基異質(zhì)型ACCase II復(fù)合體[33-34];其中ACCase II復(fù)合體中BCCP在氨基酸水平上與擬南芥有61%的一致性和79%的相似性[34]。

    1.2 其他生物ACCase的結(jié)構(gòu)、分布及特點(diǎn) 黏液球菌(Myxococcus xanthus)處于原核向真核生物演化期,其ACCase基因含有538氨基酸(aa)(ACCA)和573aa(ACCB)2個(gè)開放閱讀框架(ORF),分別編碼58.1kDa和61.5kDa2個(gè)BC亞基,前者與乙酰輔酶A羧化酶、丙酰輔酶A羧化酶以及丙酮酸羧化酶的BC亞基相似,含有ATP結(jié)合、固定CO2以及生物素結(jié)合模塊。后者位于前者上游,與乙酰輔酶A羧化酶、丙酰輔酶A羧化酶、丙酮酸羧化酶的轉(zhuǎn)羧酶和甲基丙二酰輔酶A脫羧酶高度相似,含有保守的羥基生物素結(jié)合位域和?;o酶結(jié)合域的CT亞基。它們形成1個(gè)兩基因的操縱子[35]。在動(dòng)物體內(nèi)包括α和β 2種ACCase,其中,α-ACCase由ACACA基因編碼,主要在肝臟、脂肪組織和乳腺中表達(dá)[4]。酵母、小鼠、雞、人的α-ACCase的氨基酸序列約有90%相似性[36-37]。在轉(zhuǎn)錄過程中PⅠ、PⅡ啟動(dòng)子作用于α-ACCase基因[38]。β-ACCase由ACACB編碼,在骨骼肌和心臟中表達(dá),在肝臟和HepG2細(xì)胞中也有表達(dá),有PⅠ、PⅡ2個(gè)啟動(dòng)子,它們的轉(zhuǎn)錄作用不同。人體中β-ACCase mRNA具有不同5′端的非翻譯區(qū)[4]。人和大鼠的ACCase有2種同工酶,一個(gè)為265kDa,位于17號(hào)染色體上;另一個(gè)為275~280kDa,位于12號(hào)染色體的長(zhǎng)臂上。在哺乳動(dòng)物和人類中ACCase是一個(gè)多基因家族[37,39]。

    1.3 ACCase的功能

    1.3.1 在脂肪合成途徑中的作用 脂肪酸合成起始于ACCase催化乙酰輔酶A產(chǎn)生Malonyl CoA,Malonyl CoA是脂肪酸合成的重要調(diào)控因素,它通過提高ACCase活性促進(jìn)脂肪酸合成[40-41]。不同ACCase在脂肪酸合成中的作用不同。由異質(zhì)型ACCase催化產(chǎn)生的Malonyl CoA用于脂肪酸從頭生物合成,而由同質(zhì)型ACCase催化產(chǎn)生的用于脂肪酸鏈延伸及類黃酮次生代謝產(chǎn)物合成。從頭合成脂肪酸主要發(fā)生在質(zhì)體,脂肪酸經(jīng)過質(zhì)膜在胞質(zhì)溶膠和質(zhì)體發(fā)揮作用[9]。動(dòng)物體內(nèi)α-ACCase在長(zhǎng)鏈脂肪酸合成中催化限速反應(yīng)并調(diào)節(jié)脂肪酸合成。在脂肪生成活躍組織中,Malonyl CoA的主要功能是作為長(zhǎng)鏈脂肪酸從頭合成碳鏈延長(zhǎng)的C2供體從而合成三酰甘油和磷脂,并代替不同的脂肪乙酰輔酶A延長(zhǎng)酶[42]。α-ACCase對(duì)胚胎早期發(fā)育具有重要作用[36]。β-ACCase主要調(diào)節(jié)脂肪酸氧化,其催化產(chǎn)物抑制脂肪酸氧化[43]。

    1.3.2 反饋調(diào)節(jié)作用 擬南芥同質(zhì)型ACCase基因在油菜質(zhì)粒中過量表達(dá),這種過量表達(dá)抑制了其他脂肪酸合成基因的表達(dá)而增加Malonyl CoA在前體中的積累[44]。14C標(biāo)記的酰-酰載體蛋白加入外源脂肪酸后,在反饋抑制過程中酰-酰載體蛋白變化抑制Malonyl CoA的功能而導(dǎo)致脂肪酸合成降低。這暗示ACCase在脂肪酸合成的反饋調(diào)節(jié)中處于樞紐地位,是脂肪酸合成反饋調(diào)節(jié)的作用位點(diǎn)[45]。

    1.3.3 在化學(xué)除草劑中的應(yīng)用 ACCase是化學(xué)除草劑的重要靶標(biāo),其抑制劑是以ACCase為作用靶標(biāo)的除草劑,能夠抑制禾本科植物體內(nèi)的脂肪酸合成。這類除草劑通過抑制真核型ACCase生成Malonyl CoA的羧化反應(yīng),進(jìn)而抑制植物脂肪酸合成,有選擇性地防除禾本科雜草[46-48]。例如,在菵草(Beckmannia syzigachne)中Trp1999Leu突變后對(duì)不同ACCase抑制除草劑的抗性產(chǎn)生差異,以此為依據(jù)選擇合適的化學(xué)除草劑達(dá)到有效防治雜草的目的[49]。

    2 ACCase的表達(dá)調(diào)控機(jī)理

    由于異質(zhì)型ACCase的BC、BCCP和α-CT在氨基端含有轉(zhuǎn)移肽,它們的前體蛋白輸送至葉綠體剪除轉(zhuǎn)移肽后,組裝成復(fù)合體才具有ACCase的催化活性[50]。植物器官中ACCase活性由復(fù)雜的機(jī)制調(diào)控,其基因表達(dá)調(diào)控主要包括轉(zhuǎn)錄調(diào)節(jié)、mRNA編輯和轉(zhuǎn)錄后調(diào)控[51]。

    2.1 轉(zhuǎn)錄調(diào)節(jié) 轉(zhuǎn)錄調(diào)控主要通過發(fā)育誘導(dǎo)異質(zhì)型ACCase的量與性質(zhì)實(shí)現(xiàn),細(xì)胞中脂肪酸合成達(dá)到活躍狀態(tài)時(shí)或在之前,編碼BC、BCCP、α-CT和β-CT的mRNA累積達(dá)到最大,隨著脂肪酸合成減少,mRNA積累下降。mRNA最高積累發(fā)生在細(xì)胞快速分裂、生長(zhǎng)和大量油脂積累中,與細(xì)胞生長(zhǎng)有直接關(guān)系,并控制ACCase表達(dá)[51-52]。accA、accB、accC與質(zhì)體中的accD互通信息并相互影響[52]。目前這3種核基因與質(zhì)體基因的協(xié)調(diào)機(jī)制、增強(qiáng)子、轉(zhuǎn)移因子還不清楚。質(zhì)體在RNA轉(zhuǎn)錄至少包括質(zhì)體編碼聚合酶(Plastid-encoded polymerase,PEP)和核編碼聚合酶(nucleus-encoded polymerase,NEP)2種聚合酶。PEP屬于多亞基細(xì)菌型酶,含有大腸桿菌σ7啟動(dòng)子35(TTGaca)/–10(TAtaaT)元件;NEP含有T3/T7以及線粒體酶,多數(shù)NEP啟動(dòng)子由類似于植物線粒體的核心序列YRTA(type-Ia)控制,其中一些NEP啟動(dòng)子在YRTA模塊上游含有GAA-box模塊(type-Ib)。在質(zhì)體中,光合基因具有PEP啟動(dòng)子(I類),非光合作用基因具有RNA聚合酶(II類),少數(shù)基因只由NEP轉(zhuǎn)錄(III類)[53-55]。PEP主要作用于葉綠體,在其周圍含有大量的調(diào)控蛋白。如,在煙草質(zhì)體基因組中,accD與psaI、ycf4、cemA、petA形成操縱子,在NEP型啟動(dòng)子控制下以多順反子形式轉(zhuǎn)錄[56-59]。accD的表達(dá)決定因子是其5′UTR長(zhǎng)度,5′UTR長(zhǎng)度可能是NEP在質(zhì)粒中轉(zhuǎn)錄效率的貢獻(xiàn)因子[60]。

    2.2 RNA編輯 葉綠體中RNA編輯對(duì)ACCD以及ACCase活性具有重要作用[61]。編輯后的酶具有活力,未編輯的則無活力。RNA編輯產(chǎn)生啟始和終止密碼,并改變編碼序列。通常的變化是在三聯(lián)體的第2個(gè)核苷酸位置上胞嘧啶(UCG)轉(zhuǎn)變?yōu)槟蜞奏ぃ║UG)[62]。一些植物的accD在相應(yīng)位點(diǎn)沒有亮氨酸密碼子,而編輯后產(chǎn)生了亮氨酸密碼子[61]。

    2.3 轉(zhuǎn)錄后調(diào)節(jié) ACCase亞基合成受轉(zhuǎn)錄后調(diào)控[53]。如,在煙草中以質(zhì)體rRNA操縱子替代accD的操縱子,ACCase亞基的表達(dá)量和酶量增加[63],但是除了accD,其他基因的轉(zhuǎn)錄量均未增加。在野生型質(zhì)體中,由于缺少accD亞基表達(dá),其他3個(gè)亞基可能迅速降解,而在大量表達(dá)accD的植株中,這些過量表達(dá)能夠裝配進(jìn)入ACCase[9]。ACCase表達(dá)量受基因轉(zhuǎn)錄控制,在裝配中受蛋白質(zhì)降解控制[8]。BC或BCCP同工酶2正向和反向表達(dá)都未改變ACCase亞基積累,這表明ACCase各亞基沒有協(xié)調(diào)表達(dá)[9,53,64]。

    3 ACCase的基因克隆及表達(dá)研究

    3.1 ACCase的基因克隆

    3.1.1 同質(zhì)型ACCase基因的克隆 目前,已經(jīng)從油菜[25]、苜蓿、小麥[32]、野生燕麥、黑麥草、擬南芥[65]和玉米中獲得同質(zhì)型ACCase基因的全長(zhǎng)序列,它們長(zhǎng)度均在10Kb以上,ORF為6700~7000bp,含有大量?jī)?nèi)含子。其中,油菜同質(zhì)型ACCase至少由5個(gè)家族基因編碼。硅藻基因組中含有2個(gè)ORF,較大的ORF長(zhǎng)4.1Kb,位于較小ORF(2.2kb)的下游,中間含有73bp的內(nèi)含子[66]。植物同質(zhì)型ACCase的肽鏈上依次排列著BC、BCCP、α-CT功能域,它們由單一核基因編碼。一些植物的種內(nèi)外ACCase同源性存在差異。小麥質(zhì)體ACCase的氨基酸序列與胞質(zhì)ACCase的氨基酸序列同源性為67%,而它與玉米質(zhì)體的高達(dá)80%[31]。植物ACCase最保守區(qū)域位于BC和BCCP中生物素羧化位點(diǎn)和生物素?;稽c(diǎn)周圍。其中,生物素結(jié)合位點(diǎn)保守序列E(V/A)MK(M/L)為所有植物ACCase所共有[33]。在谷子中,2個(gè)編碼2321個(gè)氨基酸ACCase cDNAs的亮氨酸/異亮氨酸位點(diǎn)可能是APPs和CHDs2類除草劑作用的關(guān)鍵位點(diǎn)[3]。1.8Kb長(zhǎng)的BC功能域是ACCase最保守區(qū)域,也是生物素羧化位點(diǎn)、ATP結(jié)合位點(diǎn)[67]。

    3.1.2 異質(zhì)型ACCase亞基基因的克隆及結(jié)構(gòu)分析 截至目前,已經(jīng)克隆了大腸桿菌[12]、酵母菌[18]、豌豆[26]、小麥[30]、擬南芥[65]、煙草、馬鈴薯[68]、玉米[69]等生物,以及大豆[50]、油菜[33,70-71]、花生[72]、棉花[73]、蓖麻、棕櫚[74]、麻瘋樹[75]等油料植物的異質(zhì)型ACCase亞基基因。其中,大腸桿菌、擬南芥、大豆、花生和油菜[71]的已全部克隆,并且獲得了BCCP和BC的晶狀結(jié)構(gòu)。大腸桿菌的BCCP和BC亞基基因共轉(zhuǎn)錄,其序列與老鼠丙酰輔酶羧化酶α-CT高度相似。生物素羧化酶活性和生物素(酰)化區(qū)域位于α-CT,而β-CT與老鼠丙酰輔酶羧化酶β-CT高度相似,并含有鋅指模塊CX2CX13-15CX2C催化羧基轉(zhuǎn)移酶反應(yīng)[8]。CT含有乙酰輔酶A結(jié)合域,其保守區(qū)域可能是CoA結(jié)合位點(diǎn)[10,13],在植物異質(zhì)型ACCase中,葉綠體編碼基因accD與大腸桿菌的同源,在禾本科植物中,accD基因或被截短,僅存一個(gè)短的C端區(qū)域,如水稻,或完全缺失,如小麥。其他核編碼基因在胞質(zhì)溶膠中轉(zhuǎn)錄翻譯成前體蛋白,然后被轉(zhuǎn)運(yùn)到葉綠體中除去轉(zhuǎn)移肽,與葉綠體中的β-CT加工組裝成高分子量ACCase復(fù)合體[41,66]。

    以探針篩選cDNA文庫從酵母菌獲得6個(gè)β-CT亞基,其中2個(gè)為全長(zhǎng)cDNA[18]。擬南芥基因組異質(zhì)型ACCase有2個(gè)基因編碼的BCCP亞基,分別有1個(gè)基因編碼BC、α-CT、β-CT亞基。馬鈴薯accD 5′末端包括典型的原核生物啟動(dòng)子類-35和-10序列TTGACA和TATCAA,ORF中包括乙酰輔酶A和羧基生物素結(jié)合位點(diǎn)、羧基轉(zhuǎn)移酶催化位點(diǎn)[68]。在Brassica napus、Bassica rapa和Bassica oleracea中含有8個(gè)α-CT基因,這些基因含有9個(gè)外顯子,其中,7個(gè)長(zhǎng)度幾乎相同,差異僅在第1個(gè)和最后1個(gè)外顯子,最大差異出現(xiàn)在第2個(gè)內(nèi)含子[70]。通過構(gòu)建cDNA文庫、EST測(cè)序、5′-RACE和3′-RACE分離出花生異質(zhì)型ACCase accB1、accB2、accC、accA、accD和同質(zhì)型ACCase基因。accD基因存在兩處核苷酸編輯位點(diǎn),初級(jí)結(jié)構(gòu)高度保守[71]。油棕櫚accD的氨基酸序列與其他植物的在N端差別大,含有CX2CX15CX2C鋅指結(jié)構(gòu)和(G/A)SMG(S/C)(V/A)VG、(V/L)(I/L)(I/M/L)V(C/S)(A/S)SGGARMQE、QM(A/G)KI(S/A)(S/A)(A/V)(L/S)、PT(T/A)GGVTAS(F/L)(G/A)(M/T)LGDIII(A/T)EP、FAGKR(V/I)IE(Q/E)(T/L)L5個(gè)保守模塊[73]。

    通過構(gòu)建麻瘋樹cDNA文庫和BAC文庫,獲得了α-CT、BCCP、BC、β-CT基因,它們的基因序列與其他植物的一致性較高。其中,α-CT、BCCP、BC是單拷貝核基因[75]。運(yùn)用RT-PCR、RACE、基因組步移克隆出油菜ACCase的α-CT全長(zhǎng)cDNA[73]。以簡(jiǎn)并引物獲得序列為探針,從地中海擬無枝菌酸菌U32中獲得的ORF為1797bp的accA基因[77]。從中棉35中克隆了5個(gè)編碼異質(zhì)型ACCase基因,其中,1個(gè)編碼BC,1個(gè)編碼BCCP,1個(gè)編碼β-CT,2個(gè)編碼α-CT,每個(gè)基因都是多拷貝[71]。從花生野生近緣種中克隆出accB1和accB2,它們的基因序列高度保守[78]。在陸地棉花中克隆出GhBCCP1、GhBC1、GhCTα2、GhCTβ,它們分別含有7、16、10、1個(gè)外顯子[79]。在結(jié)構(gòu)方面,異質(zhì)型ACCase accA和accB的翻譯產(chǎn)物在N端富含羥基化氨基酸Ser和Thr,疏水氨基酸Ala和Val,極性氨基酸Arg和Lys。這是轉(zhuǎn)運(yùn)肽的特點(diǎn),在N端含有特征序列Met-Ala[33]。植物ACCase最保守區(qū)域是生物素羧化位點(diǎn)和生物素酰化位點(diǎn)周圍,分別位于BC和BCCP,AMKLMN是保守的生物素位點(diǎn),其中E(V/A)MK(M/L)是所有植物ACCase共有[33]。生物素(酰)化模塊(C/G/M)-I-(V/I/L)-G-A-M-K-(M/L)-(M/E)-(N/I)在所有BCCP中高度保守[50]。如,擬南芥AtBCCP2和AtBCCP1的cDNA碳端生物素(酰)化模塊(biotinylation)217EAMKLMNEIE226周圍序列高度相似[9]。另外,BCCP中部區(qū)域的一個(gè)關(guān)鍵特征是高脯氨酸含量[50]。在accD 5端上游rbcL-accD基因間隔的核苷酸序列存在位點(diǎn)變化[80]。在???屬10個(gè)物種的rbcL-accD基因間隔發(fā)現(xiàn)了220處變化位點(diǎn)和16處插入或刪除位點(diǎn),但桑屬rbcL-accD的序列卻高度保守[81]。此外,利用數(shù)量位點(diǎn)(quantitative trait loci,QTL)研究發(fā)現(xiàn):ACCase基因與控制脂肪酸和油脂QTL位點(diǎn)連鎖影響玉米、燕麥種子中脂肪酸和油量變化[82-84]。在油桐中ACCase活性與種仁含油率具有正相關(guān)性[85]。

    3.1.3 cDNA文庫、轉(zhuǎn)錄組和基因組測(cè)序的應(yīng)用 利用構(gòu)建的油茶cDNA文庫,克隆鑒定了油茶ACCase的accA、accB、accC和accD基因,分析它們的結(jié)構(gòu)特點(diǎn)和表達(dá)模式[86-87]。利用油桐轉(zhuǎn)錄組克隆了ACCase亞基基因的cDNA序列[88]。利用基因組測(cè)序在Gossypium raimondii、G.arboreum、G.hirsutum、G.barbadense Gossypium中鑒定了4~8種ACCase BCCP基因的同源物[89]?;诶酌傻率厦?、亞洲棉二倍體、陸地棉、海島棉四倍體的基因組測(cè)序鑒定出棉花異質(zhì)型ACCase核基因組編碼的基因家族:24個(gè)BCCP基因、12個(gè)BC基因、11個(gè)α-CT基因,從而大大提高了ACCase基因的克隆效率[90]。

    3.2 ACCase基因的表達(dá)及表達(dá)模式研究

    3.2.1 表達(dá)研究 基因表達(dá)是在酶和調(diào)控序列的作用下基因轉(zhuǎn)錄成mRNA,經(jīng)加工在核糖體協(xié)助下翻譯出相應(yīng)蛋白,在受體細(xì)胞經(jīng)修飾而發(fā)揮特定生物學(xué)功能。表達(dá)產(chǎn)物主要包括RNA(tRNA、mRNA、rRNA、MicroRNA)、蛋白質(zhì)、多肽等。基因表達(dá)產(chǎn)物可以揭示出基因表達(dá)生物學(xué)活性和生物學(xué)功能。通過構(gòu)建共表達(dá)載體pHisAD,在大腸桿菌中表達(dá)豌豆質(zhì)體CT,獲得α-CT和β-CT多聚體的激活酶。該重組酶與來自豌豆葉綠體的大小相似,其催化活性與天然豌豆質(zhì)體的相似[91]。將大豆異質(zhì)型ACCase BC、BCCP、α-CT亞基基因cDNAs的轉(zhuǎn)錄產(chǎn)物輸入到葉綠體中成為完整的ACCase,在大腸桿菌中產(chǎn)生特定抗體,利用抗體形成800kDa的BC/BCCP和600kDa的α-CT/β-CT復(fù)合體。將2個(gè)復(fù)合體一定比率混合,可以恢復(fù)ACCase活性,當(dāng)把大豆(BC/BCCP)與豌豆(α-CT/β-CT)的復(fù)合體混合,可產(chǎn)生較高的ACCase活性[50]。ACCase BCCP和β-CT的mRNA和蛋白質(zhì)表達(dá)分析暗示發(fā)育葉片和種子是脂肪酸高效合成器官[33]。Arabidopsis中的AtBCCP1和AtBCCP2異構(gòu)體,其中,前者在葉、根、花、長(zhǎng)角果表達(dá),而后者主要在花、種子等生殖器官中大量表達(dá)?;ê烷L(zhǎng)角果中的mRNA積累反映了在授粉和貯存積累油脂的需要。前者可能為看家基因,出現(xiàn)在所有器官,后者主要表現(xiàn)在生殖器官[28]。馬鈴薯accD在葉片、莖、根、塊莖的轉(zhuǎn)錄表達(dá),表明它是一個(gè)看家基因[68]。異質(zhì)型ACCase是所有組織中的關(guān)鍵蛋白。但是在花后40d種子中的轉(zhuǎn)錄比在花、真葉、纖維中轉(zhuǎn)錄水平要低,可能是因?yàn)檫@個(gè)時(shí)期脂肪酸合成速度降低的緣故[72-73]。

    3.2.3 表達(dá)模式研究 基因表達(dá)具有時(shí)間特異性和空間特異性,前者多與細(xì)胞或個(gè)體的特定分化、發(fā)育階段相適應(yīng),為階段特異性;后者由細(xì)胞在組織器官的分布差異決定,為細(xì)胞特異性或組織特異性。在花生中,異質(zhì)型ACCase和同質(zhì)型ACCse基因在所有組織表達(dá),它們的RNA表達(dá)差別很大。種子發(fā)育中accC、accA、accD的mRNA在花后60d大量表達(dá),其中accC和accA表達(dá)模式相似,在葉片和種子大量表達(dá),而accD在葉片中的表達(dá)比其他組織中多;同質(zhì)型ACCase在莖和花中表達(dá)較多。accB2在花后50~70d大量表達(dá),種子中表達(dá)量最多,而accB1在花后80d以前表達(dá)量變化較大,在葉片中表達(dá)多[73]。半定量和實(shí)時(shí)定量PCR發(fā)現(xiàn)油棕櫚accD和accC協(xié)調(diào)表達(dá),它的表達(dá)對(duì)異質(zhì)型ACCase水平、種子油產(chǎn)量至關(guān)重要[74]。在麻瘋樹葉片中accD的表達(dá)比其他3個(gè)基因約高6倍,這可能是葉片富含葉綠體的緣故。在受粉后42d胚中的表達(dá)最大,暗示油脂合成達(dá)到高峰[75]。番茄果實(shí)顏色由綠色、變色、淺紅、成熟紅變化,轉(zhuǎn)錄和翻譯中accD基因轉(zhuǎn)錄豐度增加,成熟達(dá)到最大,暗示在果實(shí)成熟中大量需求油脂,并貯存基質(zhì)滿足果實(shí)成熟大量合成類胡蘿卜素的需求[92]。陸地棉花的中GhBCCP1、GhBC1、GhCTα2、GhCTβ在各組織中表達(dá),與油脂積累具有正相關(guān)性并增加油含量[79]。

    4 ACCase在植物育種中的應(yīng)用及前景

    植物油脂合成主要受質(zhì)體ACCase控制。通過農(nóng)桿菌轉(zhuǎn)化系統(tǒng)過量表達(dá)同質(zhì)型ACCase和葉綠體轉(zhuǎn)化系統(tǒng)過量表達(dá)異質(zhì)型ACCase,實(shí)現(xiàn)了數(shù)量調(diào)控脂肪酸的合成。在細(xì)菌(Escherichia coil)中通過提高乙酰輔酶A羧化酶活性促進(jìn)脂肪酸合成[41]。通過構(gòu)建細(xì)菌多順反子,使脂肪酸含量大幅增加[41,93]。在大腸桿菌中過量表達(dá)ACCase,不但大幅地提高了丙二酰輔酶A的表達(dá)量,而且顯示出協(xié)同效應(yīng),增加乙酰輔酶A的利用性,有助于脂肪酸合成[94]。

    4.1 同質(zhì)型ACCase的應(yīng)用 同質(zhì)型ACCase主要位于胞質(zhì)溶膠,是一個(gè)大于200kDa的二聚體,催化產(chǎn)生的丙二酰CoA用于超長(zhǎng)脂肪酸延伸。將油菜種子貯藏蛋白特異表達(dá)啟動(dòng)子與擬南芥同質(zhì)型ACCase基因ACC1融合,在大豆Rubisco SSU轉(zhuǎn)移肽作用下,定向?qū)|(zhì)溶膠ACCase導(dǎo)入于油菜葉綠體,大幅度提高了成熟種子的ACCase活性,并增加了種子含油量并改變了脂肪酸組成。將同質(zhì)ACCase定位質(zhì)體,既保護(hù)免于細(xì)胞質(zhì)蛋白質(zhì)代謝影響,也不受控制質(zhì)體活性的調(diào)節(jié)抑制,這是轉(zhuǎn)基因植物產(chǎn)油率高的原因[44,95]。將ACCase定位于淀粉體并過量表達(dá),不但增加脂肪酸合成,而且大幅增加了三?;视秃縖95]。相反,反義表達(dá)抑制油菜同質(zhì)型ACCase活性顯著降低成熟種子的含油量[96]??梢?,同質(zhì)型ACCase的遺傳操作是一個(gè)合理的應(yīng)用策略。

    4.2 異質(zhì)型ACCase的應(yīng)用 質(zhì)體中NEP和PEP參與轉(zhuǎn)錄,通過同源重組轉(zhuǎn)化煙草質(zhì)體,在煙草中以NEP和PEP啟動(dòng)子替代accD的啟動(dòng)子,能夠提高脂肪酸含量,延長(zhǎng)葉片壽命,提高種子產(chǎn)量[56]。這項(xiàng)技術(shù)已經(jīng)成功地應(yīng)用到油料植物中[63,98]。反之,減少ACCase亞基因的表達(dá)會(huì)影響植物的生長(zhǎng)和發(fā)育。同源重組剔除煙草部分accD基因及上游DNA序列,會(huì)導(dǎo)致煙草植株葉片出現(xiàn)白綠色斑點(diǎn)或葉片數(shù)目減少[99]。利用特異啟動(dòng)子過量表達(dá)ACCase亞基基因能夠增加種子油含量[79]。然而,在煙草中組成型啟動(dòng)子正向和反向表達(dá)煙草的BC亞基,BC的表達(dá)變化沒有影響B(tài)CCP表達(dá)。又如,分別構(gòu)建組成啟動(dòng)子與BCCP2反義表達(dá)、napin種子啟動(dòng)子與BCCP2基因正義表達(dá)載體,在反義表達(dá)擬南芥植株中的轉(zhuǎn)錄量表達(dá)增加,但沒有明顯的表型變化;在正義表達(dá)的擬南芥發(fā)育種子中雖然BCCP2表達(dá)量增加,但是子代種子的脂肪酸含量反而比野生擬南芥種子要低很多。這暗示BC和BCCP亞基不是ACCase積累的限制因子[100]。總之,由于這些調(diào)控、抑制、反饋?zhàn)饔檬沟肁CCase的轉(zhuǎn)基因應(yīng)用是一個(gè)十分復(fù)雜的過程。

    參考文獻(xiàn)

    [1]Konishi T,Shinohara K,Yamada K,et al.Acetyl-coA carboxylase in higher plants:most plants other than Gramineae have both the prokaryotic and the eukaryotic forms of this enzyme[J].Plant Cell Physiol.,1996,37:117-122.

    [2]任波,李毅.大豆種子脂肪酸合成代謝研究進(jìn)展[J].分子植物育種,2005,3(3):301-306.

    [3]趙虎基,王國(guó)英.植物乙酰輔酶A羧化酶的分子生物學(xué)與基因工程[J].中國(guó)生物工程雜志,2003,23(2):12-16.

    [4]韓春春,王繼文,魏守海.乙酰輔酶A羧化酶(ACC)的結(jié)構(gòu)和功能[J].安徽農(nóng)業(yè)科學(xué),2006,34:413-414,416.

    [5]盧善發(fā).植物脂肪酸的生物合成與基因工程[J].植物學(xué)通報(bào),2000,17(6):481-491.

    [6]Thelen J J and Ohlrogge J B.Metabolic engineering of fatty acid biosynthesis in plants[J].Metabolic Engineering,2002,4:12-21.

    [7]Kondo H,Shiratsuch K,and Yoshimoto T,et al.Acetyl-CoA carboxylase from Escherichia coil:gene organization and nucleotide sequence of the biotin carboxylase subunit[J].Proc.Natl.Acad.Sci.USA,1991,88:9730-9733.

    [8]Ohlrogge J,Browse J.Lipid Biosynthesis[J].The plant cell,1995,7:957-970.

    [9]Sasaki Y,Nagano Y.Plant acety-CoA carboxylase:structure,biosynthesis,regulation,and gene manipulation for plant breeding[J].Biosci.Biotechnol.Biochem.,2004,68(6):1175-1184.

    [10]Chapman-Smith A and Cronan J E.Symposium:Nutrition,biochemisty and molecular biology of biotin molecular biology of biotin attachment to proteins[J].J.Nutr.,1999,129:477S–484S.

    [11]Alban C,Jullien J,Job D,et al.,Isolation and characterization of biotin carboxylase from Pea Chloroplasts[J].Plant Physiol.,1995,109:927-935.

    [12]Li Shyr-Jiann,Cronan J E Jr.The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-coA carboxylase[J].The Journal of Biological Chemistry,1992,267(2):855-863.

    [13]Li S J,Cronan J E.The gene encoding the biotin carboxylase subunits of pea acetyl-CoA carboxylase[J].J.Biol.Chem.,1992,267:16841-16847.

    [14]Acetyl-CoA carboxylase.Wikipedia,http://en.wikipedia.org/wiki/Acetyl-CoA carboxylase.

    [15]Alves J,Westling L,Peters EC,et al.Cloning,expression,and enzymatic activity of Acinetobacter baumannii and Klebsiella pneumoniae acetyl-coenzyme A carboxylases[J].Anal.Biochem.,2011,417(1):103-111.

    [16]Wan Minxi,Liu Peng,Xia Jinlan,et al.The effect of mixotrophy on microalgal growth,lipid content,and expression levels of three pathway genes in Chlorella sorokiniana[J].Applied Microbiology and Biotechnology,2011,91(3):835-844.

    [17]Nikolau B J,Ohlrogge J B,Wurtele E S.Plant biotin-containing carboxylase[J].Arch.Biochem.Biophys.,2003,414:211-222.

    [18]Hasslacher M,Tvessa AS,Paltauf F,et al.Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipids metabolism[J].J.Biol.Chem.,1993,268:10946-10952.

    [19]Walid A F,Chirala S S,Wakil S J.Cloning of the yeast FAS3 gene and primary structure of yeast Acetyl-CoA carboxylase [J].Proc.Natl.Acde.Sci.USA,1992,89:4534-4538.

    [20]Roessler P,Ohlrogge J B.Cloning and characterization of the gene that encodes acetyl-coenzyme A carboxylase in the Alga Cyclotella cryptica[J].J.Biol.Chem.,1993,268:19254-19259.

    [21]Lopez-Casillas F,Bai D H,Luo X N,et al.Structure of the coding sequence of acetyl-coenayme A carboxylase[J].Proc.Natl.Acad.Sci.USA,1988,85:5784-5788.

    [22]Takai T,Yokoyama C,Wade K,et al.Primary structure of chichen liver acetyl-CoA carboxylase deduced from cDNA sequence [J].J.Biol.Chem.,1988,263:2651-2657.

    [23]Gornicki P,Podkowinski J,Scappino L A,et al.Wheat acetyl-Coenzyme A carboxylase:cDNA and protein structure [J].Proc.Natl.Sci.USA,1993,91:6860-6864.

    [24]Schulte W,Schell J,Topfer R.A gene encoding acetyl-coenzyme A carboxylase from Brassica napus[J].Plant Physiol.,1994,106:793-794.

    [25]Shorrosh B S,Dixon RA,Ohlrogge J B.Molecular cloning,characterization,and elicitation of acetyl-CoA carboxylase from alfalfa [J].Proc.Natl.Acad.Sci.USA,1994,91:4323-4327.

    [26]Sasaki Y,Hakamada K,Suama Y,et al.Chloroplast-encoded protein as a subunit of acetyl-CoA carboxylase in pea plant [J].J.Biol.Chem.,1993,268(33):25118-25123.

    [27]Kozaki A,Mayumi K,Sasaki Y.Thiol-Disulfide exchange between nuclear encode and chloroplast-encode subunits of pea acetyl-CoA carboxylase[J].The Journal of Biological Chemistry,2001,276(43):39919-3992.

    [28]Thelen J J,Mekhedov S,Ohlrogge J B.Brassicaceae express multiple isoforms of biotin carboxyl carrier protein in a tissue-specific manner[J].Plant Physiol.,2001,125:2016-2028.

    [29]Polakis S E,Guchhait R B,Zwergel E E,et al.Acetyl coenzyme A carboxylase system of Eshcherichia coli,studies on the mechanisms of the biotin carboxylase and carboxyltransferase catalyxed reactions[J].The Journal Biological Chemistry,1974,249(20):6657-6667.

    [30]Podkowinski J,Jelenska J,Sirikhachornkit A,et al.Expression of cytosolic and plastid acetyl-coenzyme A carboxylase genes in young wheat plants[J].Plant Physiology,2003,131:763–772.

    [31]Gornichi P,F(xiàn)aris J,King I,et al.Plastid-localized acetyl-CoA carboxylase of bread wheat isencoded by a single gene on each of the three ancestral chromosome sets[J].Proc.Natl.Acad.Sci.USA,1997,94:14179-14184.

    [32]Podkowinski J,Sroga G E,Haselkorn R,et al.Structure of a gene encoding acytosolic acetyl-CoA carboxylase of hexaploid wheat[J].Proc.Natl.Acad.Sci.USA,1996,93:1870-1874.

    [33]Elborough K M,Winz R,Deka R K,et al.Biotin carboxyl carrier protein and carboxyltransferase subunits of the mutil-subunit from Brassica napus:cloning and analysis of expression during oilseed rape embryogenesis[J].Biochem.J.,1996,315:103-112.

    [34]Schulte W,T?pfer R,Stracke R,et al.Multi-functional acetyl-CoA carboxylase from Brassica napus is encoded by a multi-gene family:indication for plastidic localization of at least oneisoform[J].Proc.Natl.Acad.Sci.USA,1997,94(7):3465-3470.

    [35]Kimura Y,Miyake R,Tokumasu Y,et al.Molecular cloning and characterization of two genes for the biotin carboxylase and carboxyltransferase subunits of acetyl coenzyme A carboxylase in Myxococcus xanthus[J].Journal of Bateriology,2000,182 (19):5462-5469.

    [36]Abu-Elheiga L,Matzuk M M,Kordari P,et al.Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal[J].PNAS,2005,102(34):12011-12016.

    [37]Abu-Elheiga L,Almarza-Ortega D B,Baldini A,et al.Human acetyl-CoA carboxylase 2 molecular cloning,characterization,chromosomal map,and evidence for two isoforms [J].The Journal of Biological Chemistry,1997,272 (16):10669-10677.

    [38]Mao J,Chirala S S,Wakil S J.Human acetyl-CoA carboxylase 1 gene:Presence of three promoters and heterogeneity at the 5'-untranslated mRNA region[J].PNAS,2003,100(13):7515-7520.

    [39]Widmer J,F(xiàn)assihi K S,Schlichter S C,et,al.Identification of a second human acetyl-CoA carboxylase gene[J].Biochem.J.,1996,316:915-922.

    [40]Post-Beittenmiller D,Roughan P G,Ohlrogge J B.In vivo pools of free and acytel acyl carrier proteins in spinach:Evidence for sites of regulation of fatty acid biosynthesis[J].Biol.Chem.,1991,266:1858-1865.

    [41]Roughan P G.Stromal concentrations of coenzyme A and its esters are insufficient to account for substrate channelling within the chloroplast fatty acid synthase[J].Biochem.,1997,327:267-273.

    [42]李亮,程彥偉.乙酰輔酶A羧化酶在治療肥胖中的潛在作用[J].生命的化學(xué),2007,27(2):180-182.

    [43]Tong L.Acetyl-coenzyme a carboxylase:crucial metabolic enzyme and attractive target for drug discovery[J].Cell Mol.Life Sci.,2005,10:1007-1018.

    [44]Roesler K,Shintani D,Savage L,et al.Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rape seeds [J].Plant Physiol.,1997,113:75-81.

    [45]Shintani D K,Ohlergge J B.Feedback inhibition of fatty acid synthesis in tobacco suspension cells[J].The Plant Journal,1995,7(4):577-587.

    [46]姜莉莉,史曉斌.ACCase抑制劑類除草劑的作用機(jī)理[J].農(nóng)藥研究與應(yīng)用,2010,4:14-17.

    [47]衣克寒,付穎,葉非,等.乙酰輔酶A羧化酶抑制劑的構(gòu)效關(guān)系和抗性研究進(jìn)展[J].植物保護(hù),2012,38(1):11-17.

    [48]Deng W,Cai J,Zhang J,et al.Molecular basis of resistance to ACCase-inhibiting herbicide cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees) from China.Pesticide Biochemistry and Physiology,2019,158:143-148.

    [49]Liu B,Ding F,Wang M ,et al.Cross-resistance pattern to ACCase-inhibiting herbicides in a novel Trp1999Leu mutation American sloughgrass (Beckmannia syzigachne) population[J].Pesticide Biochemistry and Physiology,2019,159:80-84.

    [50]Reverdatto S,Beilinson V,Nielsen N C,et al.A multisubunit acetylcoenzyme A carboxylase from soybean[J].Plant Physiology,1999,119:961-978.

    [51]Ke J,Wen T N,Nikolau B J,et al.Coordinate regulation of the nuclear and plastidic genes coding for the cubunits of the heteromeric acetyl-coenzyme A carboxylase[J].Plant Physiology,2000,122:1057-1071.

    [52]Li Shyr-Jiann,Cronan J E.Growth rate regulation of Escherichia coli acetyl coenzyme A carboxylase,which catalyzes the first committed step of lipid biosynthesis[J].Journal of Bacteriology,1993,175(2):332-340.

    [53]Hedtke B,B?rner T,Weihe A.Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis[J].Science,1997,277:809-811.

    [54]Maliga P.Two plastid RNA polymerases of higher plants:an evolving story[J].Trends Plant Sci.,1998,3:4-6.

    [55]Swiatecka-Hagenbruch M,Liere K,Borner T.High diversity of plastidial promoters in Arabidopsis thaliana[J].Mol.Genet.Genomics,2007,277:725-734.

    [56]Madoka Y,Tomizawa K,Mizoi J,et al.Chloroplast transformation with modified accD operon increases acetyl CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco[J].Plant Cell Physiol.,2002,43:1518-1525.

    [57]Shinozaki K,Ohme M,Tanaka M,et al.The complete nucleotide sequence of the tobacco chloroplast genome:its gene organization and expression [J].EMBO J.,1986,5:2043-2049.

    [58]Nagano Y,Matsuno R,Sasaki Y.Sequence and transcription analysis of the gene cluster trnQ-zfpA-psaI-ORF231-petA in pea chloroplasts[J].Curr.Genet.,1991,20:431-436.

    [59]Hajdukiewicz P T J,Allison L A,Maliga P.The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids [J].EMBO J.,199716:4041-4048.

    [60]Hirata N,Yonekura D,Yanagisawa S,et al.Possible involvement of the 5'-flanking region and the 5'UTR of plastid accD gene in NEP-dependent transcription[J].Plant Cell Physiol.,2004,45(2):176-186.

    [61]Sasaki Y,Kozaki A,Ohmori A,et al.Chloroplast RNA editing required for functional acetyl-CoA carboryase in plants [J].The Journal of Biological Chemistry,2001,276(6):3937-3940.

    [62]Sugiura M,Hirose T,Sugita M.Evolution and mechanism of translation in chloroplasts[J].Annu.Rev.Genet.,1998,32:437-459.

    [63]Hou B K,Zhou Y H,Wang L H,et al.Chloroplast transformation in oilseed rape[J].Tansgenic Res.,2003,12:111-114.

    [64]Shintani D,Roesler K,Shorrosh B,et al.Antisense expression and overexpression of biotin carboxylase in tobacco leaves[J].Plant Physiol.,1997,114(3):881-886.

    [65]Roesler K R,Schorrosh B S,Ohlrogge J B.Structure and expression of an Arabidopsis acetyl-coenzyme A carboxylase gene [J].Plant Physiol.,1994,105:611-617.

    [66]Sasaki Y,Konishi T,Nagano Y.The compartmentation of acetyl coenzyme A carboxylase in plants[J].Plant Physiol.,1995,108:445-449.

    [67]楚敏,趙虎基,鄭明剛,等.谷子乙酰輔酶A羧化酶BC功能域的克隆及原核表達(dá)載體的構(gòu)建[J].植物生理學(xué)報(bào),2004,22(5):408-410.

    [68]Lee S S,Jeong W J,Bae J M,et al.Characterization of the plastid-encodeed carboxyltransferase subunit (accD) gene of potato [J].Mol.Cell,2004,17(3):422-429.

    [69]Herbert D,Price L J,Alban C,et al.Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves[J].Biochem.J.,1996,318:997-1006.

    [70]Li Z G,Yin W B,Guo H,et al.Genes encoding the alpha-carboxyltransferase subunit of acetyl-CoA carboxylase from Brassica napus and parental species:cloning,expression patterns,and evolution[J].Genome,2010,53(5):360-370.

    [71]武玉永,譚秀華,馬立新.甘藍(lán)型油菜乙酰輔酶A羧化酶3個(gè)亞基的克隆及其表達(dá)[J].安徽農(nóng)業(yè)科學(xué),2008,36(10):4002-4006.

    [72]Li M,Xia H,Zhao C,et al.Isolation and characterization of putative acetyl-coA carboxylases in Arachis hypogaea L.[J].Plant Mol.Biol.Rep.,2010,28:58-68.

    [73]Qiao Z and Liu J.Cloning and characterization of cotton heteromeric acetyl-CoA carboxylase genes[J].Progress in Natural Science,2007,17(12):1412-1418.

    [74]Nakkaew A, Chotigeat W, Eksomtramage T,et al.Cloning and expression of a plastid-encoded subunit,beta-carboxyltransferase gene(accD) and a nuclear-encoded subunit,biotin carboxylase of acetyl-CoA carboxylase from oil palm (Elaeis guineensis Jacq.) [J].Plant Science,2008,175(4):497-504.

    [75]Gu K,Chiam H,Tian D,et al.Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas[J].Plant Sci.,2011,180 (4):642-649.

    [76]武玉永,馬立新,蔣思婧.甘藍(lán)型油菜羧基轉(zhuǎn)移酶A亞基全長(zhǎng)cDNA的克隆及在大腸桿菌中表達(dá)[J].生物化學(xué)與生物物理進(jìn)展,2004,31(9):847-854.

    [77]盧捷,姚玉峰,姜衛(wèi)紅,等.地中海擬無枝菌酸菌U32中生物素羧基載體蛋白結(jié)構(gòu)基因的克隆、表達(dá)及轉(zhuǎn)錄[J].微生物學(xué)報(bào),2003,43(1):56-64.

    [78]李孟軍,夏晗,王興軍,等.花生野生近緣種生物素羧基載體蛋白基因的克隆與結(jié)構(gòu)分析[J].華北農(nóng)學(xué)報(bào),2009,24(6):6-10.

    [79]Cui Y,Liu Z,Zhao Y,et al..Overexpression of heteromeric GhACCase subunits enhanced oil accumulation in Upland cotton.Plant Mol.Biol.Rep.,2017,35:287-297.

    [80]Atsushi Inamura.Yayoi Ohashi,Etsuko Sato,et al.Intraspecific sequence variation of chloroplast DNA reflecting variety and geographical distribution of Polygonurn cuspidatum(Polygonaceae) in Japan[J].J.Plant Res.,2000,113:419-426.

    [81]Matsuda Yuji,Yoshimura Hitoshi,KanamotoHirosuke,et al.Sequence variation in the rbcL-accD region in the chloroplast genome of Moraceae[J].Plant Biotechnology,2005,22(3):231-233.

    [82]Alrefai R,Berke T G,Rocheford T R.Quantitative trait locus analysis of fatty acid concentrations in maize[J].Genome,1995,38:894-901.

    [83]Kianian S F,Egli M A,Phillips R L,et al.Association of major groat oil content QTL and an acetyl-CoA carboxylase gene in oat[J].Theor.Appl.Genet.,1999,98:884-894.

    [84]Yang X,Guo Y,Yan J,et al.Major and minor QTL and epistasis contribute to fat compositions and oil concentration in high-oil maize[J].Theor.Appl.Genet.,2010,120:665-678.

    [85]陳江林,幸偉年,唐佰平.油桐種仁不同發(fā)育時(shí)期ACCase活性與含油率相關(guān)性分析[J].南方林業(yè)科學(xué),2016,44(5):14-16,34.

    [86]王保明.油茶ACCase基因的克隆及功能研究[D].長(zhǎng)沙:中南林業(yè)科技大學(xué),2012.

    [87]Wang B,Tan X,Jiang J,et al.Molecular cloning and expression of two genes encoding ACCase subunits of Camellia oleifera (Theaceae)[J]. Pak.J.Bot.,2018,50(1):103-110.

    [88]王哲,油桐異質(zhì)型ACCase基因的克隆及功能表達(dá)研究[D].長(zhǎng)沙:中南林業(yè)科技大學(xué),2015.

    [89]Cui Y,Zhao Y,Wang Y,et al.Genome-wide identification and expression analysis of the biotin carboxyl carrier subunits of heteromeric acetyl-CoA carboxylase in Gossypium[J].Front.Plant Sci.,2017,8:624.

    [90]崔宇鵬.棉花異質(zhì)型ACCase基因家族鑒定與功能分析[D].北京:中國(guó)農(nóng)業(yè)大學(xué),2017.

    [91]Kozaki A,Kamado K,Nagano Y,et al.Recombinant carboxyltransferase responsive to redox of pea plastidic acetyl-CoA carboxylase [J].Biol.Chem.,2000,275(14):10702-10708.

    [92]Kahlau Sand Bock R.Plastid transcriptomics and translatomics of tomato fruit development and chloroplast- to-chromoplast differentiation:chromoplast gene expression largely serves the production of a single protein[J].Plant Cell,2008,20:856-874.

    [93]Davias M S,Solbianti J,Cronan J E.Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherich coli[J].Biol.Chem.,2000,275(37):28593-28598.

    [94]Zha W, Rubin-Pitel S B, Shao Z,et al.Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering[J].Metabolic Engineering,2009,11(3):192-198.

    [95]Ohlrogge J B,Roesler K R and Shorrosh B S.Methods of increasing oil content of seeds[P].United States Patent:5925805,1999-7-20.

    [96]Klaus,D,Ohlrogge,J B,Neuhaus H E,et al.Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase[J].Planta,2004,219:389-396.

    [97]Sellwood C,Slabas A R,Raw sthorne S.Effects of manipulating expression of acetyl-CoA carboxylase in Brassica napus L.embryos[J].Biochemical Society,2000,28:598-600.

    [98]Skarjinskaia M,Svab Z,and Maliga P.Plastid transformation in Lesquerella fendleri,an oilseed Brassicacea[J].Transgenic Res.,2003,12:115-122.

    [99]Kode V,Mudd E A,Iamtham S,et al.The tobacco plastid accD gene is essential and is required for leaf development [J].Plant J.,2005,44 (2):237-244.

    [100]Thelen J J and Ohlrogge J B. Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thaliana[J]. Plant. J., 2002, 32:419-431. (責(zé)編:張宏民)

    猜你喜歡
    植物基因
    Frog whisperer
    紅的基因 綠的本色
    中華詩詞(2020年8期)2020-02-06 09:26:54
    修改基因吉兇未卜
    奧秘(2019年8期)2019-08-28 01:47:05
    創(chuàng)新基因讓招行贏在未來
    商周刊(2017年7期)2017-08-22 03:36:21
    植物的防身術(shù)
    把植物做成藥
    哦,不怕,不怕
    將植物穿身上
    基因
    植物罷工啦?
    长顺县| 林西县| 北碚区| 北宁市| 武冈市| 错那县| 通州区| 洞口县| 宝丰县| 荃湾区| 措美县| 皮山县| 沁源县| 庄河市| 克山县| 家居| 桓仁| 新竹县| 北京市| 罗城| 柘荣县| 铜陵市| 扎鲁特旗| 黄平县| 四川省| 社旗县| 筠连县| 垦利县| 彭阳县| 古蔺县| 铜鼓县| 浑源县| 庆阳市| 花垣县| 商城县| 肥东县| 五家渠市| 墨竹工卡县| 资中县| 通海县| 岳普湖县|