王婭潔,吳爽爽,儲(chǔ)江,孔祥陽(yáng)
肺部微生物組通過(guò)炎癥反應(yīng)介導(dǎo)慢性阻塞性肺疾病轉(zhuǎn)化為肺癌的研究進(jìn)展
王婭潔,吳爽爽,儲(chǔ)江,孔祥陽(yáng)
昆明理工大學(xué)醫(yī)學(xué)院疾病與藥物遺傳實(shí)驗(yàn)室,昆明 650500
肺部微生物組存在于呼吸道和實(shí)質(zhì)組織中,通過(guò)菌群紊亂、代謝產(chǎn)物、炎癥反應(yīng)、免疫反應(yīng)、基因毒性等方面介導(dǎo)肺部損傷。隨著肺部微生物組的深入研究,發(fā)現(xiàn)肺部微生物組的相關(guān)活動(dòng)與慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)和肺癌息息相關(guān),能夠促使COPD向肺癌的轉(zhuǎn)變。本文主要介紹了肺部微生物組穩(wěn)態(tài)及其通過(guò)炎癥反應(yīng)導(dǎo)致COPD和肺癌,重點(diǎn)探討了肺部微生物組如何通過(guò)炎癥反應(yīng)介導(dǎo)COPD轉(zhuǎn)化為肺癌,以期為COPD和肺癌的臨床預(yù)防、優(yōu)化治療以及新型藥物設(shè)計(jì)提供新的理論依據(jù)。
肺部微生物組;慢性阻塞性肺疾病(COPD);肺癌;多樣性;炎癥
隨著16S/18S/基因間隔序列(intergenic trans-cribed spacer, ITS)擴(kuò)增子測(cè)序、宏基因組測(cè)序、微生物全基因組測(cè)序等微生物組測(cè)序技術(shù)在微生物組檢測(cè)中的應(yīng)用[1],人們逐漸意識(shí)到下呼吸道實(shí)際上含有多種細(xì)菌,從而為肺部相關(guān)疾病研究提供了新的方向[2]。微生物組的穩(wěn)態(tài)與宿主健康息息相關(guān),“失調(diào)”的微生物菌群可能作為病原體,通過(guò)引起持續(xù)性炎癥影響人體呼吸道對(duì)各種疾病的易感性[3]。
肺部微生物組對(duì)肺部的損害也逐漸得到證實(shí),并且與慢性阻塞性肺疾病(chronic obstructive pul-monary disease, COPD)、肺癌、哮喘、囊性纖維化等多種肺部疾病相關(guān)[4,5]。其中COPD和肺癌是世界范圍內(nèi)導(dǎo)致死亡的重要原因。COPD作為一個(gè)主要的公共衛(wèi)生問(wèn)題,影響了全球約2.51億人[6,7],是一種以不完全可逆性氣流受限為特征的慢性肺疾病,與有毒顆粒和氣體引起的炎癥反應(yīng)增強(qiáng)有關(guān)[8,9]。煙草煙霧、空氣污染、遺傳因素、表觀遺傳修飾及微生物組等被認(rèn)為是 COPD的高危因素,但其根本病因尚不明確,臨床無(wú)法根治[3]。同樣,肺癌是癌癥相關(guān)死亡的主要原因,幾乎占全球癌癥死亡人數(shù)的1/5[10]。據(jù)估計(jì),到2030年,每年死于肺癌的人數(shù)將上升到1000萬(wàn)人[11]。肺癌是一種由致癌基因突變引起的,導(dǎo)致正常細(xì)胞在遺傳和表觀遺傳學(xué)改變的影響下逐漸轉(zhuǎn)化為惡性衍生物的復(fù)雜的異質(zhì)性疾病[12]。根據(jù)其細(xì)胞起源和表型,肺癌可分為兩個(gè)亞型:非小細(xì)胞肺癌(non-small cell lung cancer, NSCLC)和小細(xì)胞肺癌(small cell lung cancer, SCLC)[12]。NSCLC起源于上皮細(xì)胞,占大多數(shù)病例(80%),可進(jìn)一步劃分為腺癌、鱗狀細(xì)胞癌和大細(xì)胞癌[12]。越來(lái)越多的證據(jù)顯示,慢性炎癥、表觀遺傳、遺傳易感性和環(huán)境因素等都對(duì)COPD轉(zhuǎn)化為肺癌有推動(dòng)作用[3,13]。
肺部微生物組感染COPD患者呼吸道,并在氣道中持續(xù)存在,導(dǎo)致氣道上皮損傷和慢性炎癥,進(jìn)而引發(fā)病情加重[14]。而肺部微生物組在腫瘤發(fā)展中的作用機(jī)制也成為一個(gè)迅速發(fā)展的研究領(lǐng)域,研究發(fā)現(xiàn)細(xì)菌性肺部病原體可以通過(guò)調(diào)節(jié)腫瘤相關(guān)炎癥以及直接促進(jìn)癌細(xì)胞增殖來(lái)促進(jìn)肺癌的發(fā)展[15]。因此肺部微生物組可能通過(guò)慢性炎癥成為COPD和肺癌之間的“中介”,為COPD轉(zhuǎn)化為肺癌提供一個(gè)新的角度。本文將從肺部微生物組如何通過(guò)炎癥反應(yīng)介導(dǎo)COPD轉(zhuǎn)化為肺癌進(jìn)行闡述,以期為COPD轉(zhuǎn)化為肺癌研究提供參考,從而為臨床預(yù)防、優(yōu)化治療以及新型藥物設(shè)計(jì)提供新的理論依據(jù)。
最近使用微生物免培養(yǎng)檢測(cè)技術(shù)已經(jīng)證實(shí),無(wú)論是健康人群的還是疾病患者的肺部,都有不同的微生物菌群[16,17]。這一發(fā)現(xiàn)挑戰(zhàn)了許多關(guān)于呼吸系統(tǒng)及肺部相關(guān)疾病長(zhǎng)期存在的致病機(jī)制假設(shè)。
肺部微生物組包含了存在于呼吸道和實(shí)質(zhì)組織中的細(xì)菌、病毒和真菌,參與呼吸道免疫的成熟與穩(wěn)態(tài)[18]。健康人的肺部微生物組具有多樣性與穩(wěn)定性,并與機(jī)體環(huán)境形成一種動(dòng)態(tài)平衡,有利于機(jī)體新陳代謝、免疫系統(tǒng)發(fā)育和抵抗病原體[19]。然而肺部細(xì)菌負(fù)荷程度低,短暫的微生物組紊亂也會(huì)對(duì)其多樣性造成顯著的影響進(jìn)而因“生態(tài)失調(diào)”而導(dǎo)致嚴(yán)重炎癥反應(yīng)[20]。因此如果肺部微生物組與宿主的動(dòng)態(tài)平衡被打破,出現(xiàn)某種優(yōu)勢(shì)菌群從而使微生物組多樣性改變,可能會(huì)導(dǎo)致氣道失調(diào)和免疫紊亂,產(chǎn)生嚴(yán)重的肺部損傷[16]。
已有研究表明慢性呼吸道疾病患者下呼吸道的微生物組成與健康人群不同[21~23],COPD患者的微生物菌群由健康人群的擬桿菌門(mén)(Bacteriodetes)和厚壁菌門(mén)(Firmicutes)轉(zhuǎn)變?yōu)榱鞲惺妊獥U菌()、肺炎鏈球菌()和卡他莫拉菌()以及惡化期的銅綠假單胞菌()等[24,25]。值得注意的是,可能由于采樣部位的不同,也有許多研究認(rèn)為硬壁菌門(mén)(Firmicutes)也是中重度COPD患者中主要細(xì)菌[3]。
Garcia-Nu?ez等[26]對(duì)17名COPD患者的痰標(biāo)本微生物組分析顯示,支氣管微生物組多樣性與COPD嚴(yán)重程度密切相關(guān),尤其是在疾病晚期,細(xì)菌的多樣性顯著下降。在患者中主要的微生物菌群包含變形菌門(mén)(Proteobacteria) (44%)、厚壁菌門(mén)(16%)和放線菌門(mén)(Actinobacteria) (13%)[27]。其中變形菌門(mén)相對(duì)豐度明顯增高,包括大部分通常被視為潛在致病微生物的細(xì)菌,同時(shí)硬壁菌門(mén)中微生物相對(duì)豐度下降[26],這種微生物組成的變化破壞了從口咽到支氣管微生物群落模式的連續(xù)性,與疾病的嚴(yán)重程度平行[28]。Galiana等[29]也發(fā)現(xiàn)與輕/中度患者相比,重度COPD患者微生物組多樣性更低。隨著對(duì)肺部微生物組的深入了解,也有人認(rèn)為COPD的進(jìn)展與惡化可能不僅僅與單個(gè)致病菌有關(guān),而是與整個(gè)微生物菌群的紊亂相關(guān)[30]。
肺部微生物組異常已經(jīng)被證明與一系列肺部疾病相關(guān),例如哮喘、COPD和囊性纖維化[31]。雖然與這些疾病相比,關(guān)于肺癌微生物組的研究仍比較少,但已經(jīng)有研究顯示肺癌與肺部微生物組的菌群多樣性相關(guān)[31]。通過(guò)對(duì)肺癌患者微生物組成分析,發(fā)現(xiàn)微生物組的菌群多樣性改變不僅與肺癌患者的疾病進(jìn)展密切相關(guān),也能反應(yīng)不同的肺癌類型,因此特定的微生物組變化也許可以成為檢測(cè)以及區(qū)分不同類型肺癌的生物標(biāo)記物[32]。
研究人員對(duì)來(lái)自165個(gè)癌癥患者的非惡性肺組織樣本中微生物組進(jìn)行分析,發(fā)現(xiàn)變形菌屬()為主要微生物菌群,在晚期(IIIB, IV)患者的組織中棲熱菌屬()更豐富,軍團(tuán)菌屬()在發(fā)生轉(zhuǎn)移的患者中更多[33]。同時(shí)與非惡性肺組織的微生物菌群相比,腫瘤具有更高的微生物α多樣性[33]。Lee等[34]通過(guò)對(duì)28名肺癌患者與良性腫塊樣病變的支氣管肺泡灌洗液微生物組進(jìn)行比較,結(jié)果顯示肺癌患者與良性腫物樣病變患者的微生物菌群存在差異,肺癌患者的厚壁菌門(mén)和TM7門(mén)相對(duì)豐度顯著增加。肺癌患者中韋榮氏球菌屬()和巨球形菌屬()也相對(duì)豐富,并且其組合預(yù)測(cè)肺癌的曲線下面積為0.888,暗示可以作為肺癌的診斷標(biāo)記物[34]。
對(duì)一組從未吸煙的中國(guó)肺癌女性人群痰樣本微生物組檢測(cè)顯示,與健康對(duì)照組相比營(yíng)養(yǎng)缺陷菌屬()、鏈球菌屬()及顆粒鏈菌屬()顯著富集,同時(shí)微生物組多樣性顯著降低[35]。Mur等[31]的實(shí)驗(yàn)也得出了一致的結(jié)果,顆粒鏈菌屬在肺癌患者中顯著富集。Yan等[36]通過(guò)對(duì)腺癌、鱗狀細(xì)胞癌患者和健康對(duì)照組唾液樣本微生物組比較發(fā)現(xiàn),在肺癌患者中微生物組多樣性改變,二氧化碳噬纖維菌屬()、月形單胞菌屬()和韋榮氏球菌屬顯著富集而奈瑟菌屬()豐度顯著降低,其中二氧化碳噬纖維菌屬聯(lián)合韋榮氏球菌屬作為生物標(biāo)志物可有效區(qū)分腺癌或鱗狀細(xì)胞癌與對(duì)照組,在肺癌的篩查中具有一定的應(yīng)用價(jià)值。
共生菌和致病性微生物,都是宿主免疫系統(tǒng)的關(guān)鍵調(diào)節(jié)者,也是炎癥的調(diào)節(jié)者。共生菌通過(guò)抗菌肽和其他分子來(lái)抑制病原菌的生長(zhǎng)[37],維持菌群的穩(wěn)態(tài),但當(dāng)菌群紊亂時(shí),優(yōu)勢(shì)菌群過(guò)度增殖可能會(huì)引發(fā)炎癥,而炎癥反應(yīng)作為機(jī)體重要的一種環(huán)境應(yīng)激反應(yīng),會(huì)加劇微生物組的紊亂,從而形成惡性循環(huán)[38]。Mayhew等[39,40]對(duì)COPD患者中的肺部微生物組縱向研究結(jié)果也表明,與穩(wěn)定期的患者相比,個(gè)體內(nèi)的惡化表現(xiàn)出更高的微生物群變異性,頻繁惡化患者更有可能經(jīng)歷肺微生物組模式的顯著變化。
模式識(shí)別受體(pattern-recognition receptor, PRR)包括Toll樣受體(Toll-like receptors, TLRs)、NOD樣受體(NOD-like receptors, NLRs)、RIG樣受體(RIG-I like receptors, RLRs)和C型凝集素受體(C-type lectin receptors, CLRs),是一類表達(dá)于固有免疫細(xì)胞表面可與微生物相關(guān)分子模式(microbe-associated mole-cular pattern, MAMP)結(jié)合的識(shí)別分子[41,42]。它們通過(guò)感應(yīng)微生物細(xì)胞壁、細(xì)菌運(yùn)動(dòng)鞭毛蛋白、微生物核酸或應(yīng)激分子來(lái)識(shí)別各種微生物感染[41]。
紊亂的肺部微生物組可以通過(guò)MAMP-PRR的相互作用,激活核轉(zhuǎn)錄因子κB (NF-κB)通路、信號(hào)轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子3 (signal transducer and activator of transcription 3, STAT3)等釋放炎癥細(xì)胞因子調(diào)節(jié)固有免疫和適應(yīng)性免疫,引起炎癥反應(yīng)[4,43]。Th17和γδT炎癥相關(guān)途徑已經(jīng)在許多COPD和肺癌患者中發(fā)現(xiàn),通過(guò)分泌IL-6和IL-17等炎癥因子促進(jìn)炎癥反應(yīng)[20,44]。
在非腫瘤性的情況下,炎癥可以誘發(fā)增生性病變,但是如果這些病變不受控制地增殖,它們可以轉(zhuǎn)變并適應(yīng)腫瘤和非典型腺瘤的外觀,獲得侵襲性、血管生成性和轉(zhuǎn)移性,最終形成腫瘤[3]。
細(xì)菌容易感染COPD患者呼吸道并在氣道中持續(xù)存在,導(dǎo)致氣道上皮損傷和慢性炎癥,進(jìn)一步損傷肺防御系統(tǒng)和導(dǎo)致更嚴(yán)重的肺部微生物組紊亂,從而形成惡性循環(huán)并伴隨嚴(yán)重后果[45]。
病原微生物組常常定植于穩(wěn)定的COPD患者,并通過(guò)放大肺部炎癥來(lái)促進(jìn)COPD的發(fā)展[46]。Yadava等[47]利用與人類COPD炎癥表型與氣道異常相似的小鼠模型進(jìn)行研究,發(fā)現(xiàn)肺部微生物組失調(diào),導(dǎo)致IL-17A表達(dá)增加。通過(guò)對(duì)比處理后無(wú)菌的小鼠,發(fā)現(xiàn)微生物組可以促進(jìn)γδ+T細(xì)胞產(chǎn)生IL-17A。從LPS/彈性蛋白酶處理的動(dòng)物體內(nèi)轉(zhuǎn)移富集的微生物菌群,并在抗生素治療的小鼠中同時(shí)激發(fā)LPS/彈性蛋白酶,顯示IL-17A免疫表型的上調(diào)。通過(guò)這些對(duì)比實(shí)驗(yàn),可以認(rèn)為肺部微生物組的穩(wěn)態(tài)與炎癥反應(yīng)密切相關(guān)。
Wang等[48]通過(guò)對(duì)87例COPD患者476份痰樣本的16S核糖體RNA縱向調(diào)查顯示,與穩(wěn)定期患者相比,COPD加重期的患者肺部微生物組也發(fā)生了變化,卡他莫拉菌顯著增加。同時(shí)觀察到卡他莫拉菌和中性粒細(xì)胞百分比之間存在正相關(guān)關(guān)系,并與疾病的嚴(yán)重程度顯著相關(guān),這可能與宿主的免疫反應(yīng)有關(guān)。以及分析得到痰液中CXCL8/IL-8與菌群微生物組多樣性呈顯著負(fù)相關(guān),并通過(guò)募集中性粒細(xì)胞和上調(diào)氣道粘蛋白基因來(lái)誘導(dǎo)氣道炎癥,從而產(chǎn)生粘液進(jìn)一步導(dǎo)致慢性炎癥[49]。而且有研究表明,氣道炎癥標(biāo)志物如IL-6、IL-8、IL-1β、TNF-α、白三烯B4(LTB4)、基質(zhì)金屬蛋白酶(MMP)、髓過(guò)氧化物酶(MPO)和中性粒細(xì)胞彈性蛋白酶(NE)在穩(wěn)定的COPD患者中的水平高與無(wú)致病菌定植的患者,強(qiáng)烈暗示細(xì)菌定植會(huì)產(chǎn)生有害的炎癥反應(yīng),這種持續(xù)性炎癥與癥狀惡化和死亡率有關(guān)[13,44,50]。
已經(jīng)有研究提出并驗(yàn)證了介導(dǎo)微生物組致癌的潛在機(jī)制,結(jié)果表明,微生物菌群的生態(tài)失調(diào)在多個(gè)水平上調(diào)控了惡性腫瘤的易感性,包括免疫反應(yīng)、促炎反應(yīng)、毒力增強(qiáng)和代謝改變。肺部微生物組多樣性改變?cè)斐傻奈蓙y,會(huì)使炎癥誘導(dǎo)細(xì)菌增多,從而多層次誘發(fā)癌變[4]。
MAMP和PRR系統(tǒng),不僅可以識(shí)別病原微生物,引發(fā)炎癥,還可以在一定的情況下觸發(fā)上皮細(xì)胞的增殖和存活,從而促進(jìn)癌癥的發(fā)展[4]。TLRs通過(guò)激活NF-κB和STAT3通路引發(fā)炎癥,誘導(dǎo)癌癥發(fā)生[41]。NOD2 (nucleotide-binding oligomerization domain 2)同樣在微生物組活動(dòng)中起著重要的調(diào)節(jié)作用,被敲除NOD2基因的小鼠會(huì)出現(xiàn)細(xì)菌增多和炎癥反應(yīng)增加[51]。而且多項(xiàng)肺癌轉(zhuǎn)移模型和K-ras誘導(dǎo)的肺癌模型顯示,細(xì)菌引起的肺部炎癥明顯加速了肺癌的生長(zhǎng),同時(shí)實(shí)驗(yàn)證明無(wú)菌或抗生素治療的小鼠對(duì)K-ras突變和p53缺失誘發(fā)的肺癌有明顯的保護(hù)作用[15,52,53]。
另外,研究發(fā)現(xiàn)微生物組在髓系細(xì)胞中刺激髓樣分化因子(MyD88)產(chǎn)生的IL-1β和IL-23,誘導(dǎo)Vγ6+Vδ1+γδ T細(xì)胞增殖和活化,釋放IL-17和其他效應(yīng)分子,會(huì)促進(jìn)炎癥和腫瘤細(xì)胞增殖[54]。Jung-nickel等[55]將IL-17C (IL-17C–/–)缺陷小鼠和Toll樣受體2和4 (TLR-2/4–/–)雙缺陷小鼠置于轉(zhuǎn)移性肺癌模型中,實(shí)驗(yàn)結(jié)果表明IL-17C不僅能促進(jìn)中性粒細(xì)胞向腫瘤微環(huán)境的募集,而且能通過(guò)誘導(dǎo)腫瘤細(xì)胞源性趨化因子將中性粒細(xì)胞導(dǎo)向腫瘤組織。這些結(jié)果有力地表明了肺部微生物組可以通過(guò)引起局部炎癥促進(jìn)肺癌的發(fā)展。
COPD和肺癌是世界范圍內(nèi)與肺部疾病相關(guān)的高死亡率的主要原因[3]。流行病學(xué)證據(jù)表明表觀遺傳、免疫功能紊亂、遺傳易感性、氧化應(yīng)激和慢性炎癥等機(jī)制都可以驅(qū)動(dòng)COPD轉(zhuǎn)化為肺癌[12]。同時(shí)COPD也是肺癌發(fā)生的獨(dú)立因素,增加肺癌的發(fā)病率與死亡率,并對(duì)肺癌治療預(yù)后帶來(lái)負(fù)面效果,臨床上常用廣譜抗炎藥物、支氣管擴(kuò)張劑等藥物通過(guò)控制COPD癥狀降低肺癌發(fā)病率[56]。
對(duì)肺部微生物組深入研究也為肺部相關(guān)疾病帶來(lái)了新的解釋。研究表明,在由微生物組導(dǎo)致的相關(guān)疾病中,微生物組通常通過(guò)破壞器官粘膜或上皮組織的完整性、破壞細(xì)胞,導(dǎo)致組織損傷,觸發(fā)局部慢性炎癥反應(yīng),并因此引起持續(xù)不斷的微生物組紊亂[57]。同樣根據(jù)微生物組、炎癥與癌癥進(jìn)展的多項(xiàng)相關(guān)研究,F(xiàn)rancescone等[57]認(rèn)為,微生物組通常通過(guò)誘導(dǎo)炎癥刺激腫瘤生長(zhǎng),而不是直接作用于癌細(xì)胞。因此,微生物組、宿主免疫系統(tǒng)和炎癥之間的微妙平衡對(duì)癌癥的發(fā)展或預(yù)防至關(guān)重要。
慢性炎癥在腫瘤發(fā)生中起重要作用,增加患癌風(fēng)險(xiǎn),高達(dá)10%~20%的癌癥可歸因于慢性炎癥與感染,與腫瘤發(fā)生的各個(gè)過(guò)程相關(guān),包括細(xì)胞轉(zhuǎn)化、促進(jìn)、存活、增殖、侵襲、血管生成和轉(zhuǎn)移等[58]。許多慢性炎癥性肺部疾病如特發(fā)性肺纖維化(idio-pathic pulmonary fibrosis, IPF)、肺結(jié)核(tuberculosis, TB)、COPD等都是肺癌的危險(xiǎn)因素,與肺癌的發(fā)生、發(fā)展密切相關(guān)[59]。在IPF中,持續(xù)存在的慢性炎癥使支氣管上皮細(xì)胞不斷發(fā)生損傷和修復(fù),最終導(dǎo)致DNA損傷,進(jìn)而轉(zhuǎn)變?yōu)榉伟?,同時(shí)在TB中,可通過(guò)誘發(fā)慢性炎癥和組織修復(fù)為肺癌發(fā)生提供環(huán)境[59]。COPD以慢性炎癥為主要特征,涉及復(fù)雜的病理過(guò)程包括破壞肺部結(jié)構(gòu)、改變肺部微環(huán)境甚至促進(jìn)惡性腫瘤發(fā)展[56],相較于其他肺部慢性疾病,以慢性炎癥為主要特征的COPD可以使肺癌的風(fēng)險(xiǎn)增加4~6倍,是導(dǎo)致肺癌的重要原因[13]。我們?cè)谇拔闹幸惨呀?jīng)闡述了肺部微生物組多樣性及其紊亂引起的炎癥反應(yīng)對(duì)COPD和肺癌患者的影響,肺部微生物組和慢性炎癥作為其共同致病因素,可能是介導(dǎo)COPD轉(zhuǎn)化為肺癌的一個(gè)重要原因。
如前文所述,肺部微生物組的多樣性在COPD和肺癌患者中不僅會(huì)發(fā)生改變,而且與COPD和肺癌的疾病進(jìn)展密切相關(guān)。流感嗜血桿菌和硬壁菌門(mén)在COPD和肺癌患者中都是優(yōu)勢(shì)菌群[22]。同樣是肺癌患者致病菌的TM7在COPD患者中也有數(shù)量增加的研究結(jié)果[22]。而吸煙作為COPD和肺癌的共同致病因素,可以通過(guò)破壞肺上皮細(xì)胞,誘發(fā)細(xì)菌感染和炎癥反應(yīng),促進(jìn)COPD轉(zhuǎn)化為肺癌[34]。研究表明,吸煙的肺癌患者的硬壁菌門(mén)與擬桿菌門(mén)的比值明顯比不吸煙的肺癌患者更高[34]。多個(gè)肺癌轉(zhuǎn)移模型和K-ras誘導(dǎo)的肺癌模型均顯示細(xì)菌引起的肺部炎癥明顯加速了肺癌的惡化[15,53,60]。這些結(jié)果都表明了COPD和肺癌在微生物組方面有著密切聯(lián)系,肺部微生物組紊亂和共同的致病菌增加了COPD患者轉(zhuǎn)變?yōu)榉伟┑娘L(fēng)險(xiǎn)。
已經(jīng)有多個(gè)動(dòng)物模型表明不可分型流感嗜血桿菌(nontypeable, NTHi)可能在COPD樣氣道炎癥和肺癌促發(fā)中起到因果關(guān)系。NTHi是一種小的不可分型的缺乏莢膜的革蘭氏陰性球桿菌,主要作為粘膜病原體,定植在約75%的正常成人的上呼吸道[61]。與大多數(shù)其他細(xì)菌感染一樣,NTHi感染可通過(guò)顯著釋放細(xì)胞因子和趨化因子來(lái)誘導(dǎo)炎癥。NTHi可以激活模式識(shí)別受體如NLRs和TLRs,通過(guò)NF-κB通路,顯著增加促炎介質(zhì)的表達(dá)和釋放,包括IL-6、IL-8和TNF,氣道上皮細(xì)胞能夠通過(guò)先天免疫機(jī)制感知和響應(yīng)炎癥刺激從而導(dǎo)致肺部炎癥[62]。
有研究發(fā)現(xiàn)NTHi在30%的慢性阻塞性肺病患者中及87%的急性加重期患者的支氣管組織中定植,可通過(guò)誘導(dǎo)中性粒細(xì)胞進(jìn)入氣道[61]。中性粒細(xì)胞壞死并釋放中性粒細(xì)胞彈性蛋白酶和其他基質(zhì)金屬蛋白酶以及產(chǎn)生氧自由基來(lái)促進(jìn)COPD的進(jìn)展[61,63]。同時(shí)也在肺癌中觀察到NTHi通過(guò)腫瘤相關(guān)炎癥促進(jìn)腫瘤惡化,例如可通過(guò)NF-κB途徑調(diào)節(jié)炎癥介質(zhì)(TNF、IL-6等)表達(dá),從而促進(jìn)腫瘤增殖[15]。
Moghaddam等[53]通過(guò)將攜帶LSL–K-rasG12D等位基因的小鼠與插入Clara細(xì)胞分泌蛋白(CCSP)位點(diǎn)的Cre重組酶的小鼠雜交,建立了兩種新的肺癌小鼠模型(分別為CCSPCre-Neo/LSL–K-rasG12D和CCSPCre/LSL–K-rasG12D)。將CCSPCre/LSL-K-rasG12D小鼠暴露于NTHi裂解物中,形成COPD樣氣道炎癥,最終結(jié)果顯示肺表面腫瘤數(shù)量增加3.2倍[53]。
Barta等[64]在維甲酸誘導(dǎo)的G蛋白偶聯(lián)受體敲除小鼠模型(Gprc5a–/–小鼠)中,分別研究了細(xì)菌誘導(dǎo)的COPD樣炎癥和煙草致癌物促進(jìn)腫瘤發(fā)生/炎癥的作用。結(jié)果表明細(xì)菌單獨(dú)誘導(dǎo)的慢性外源性肺部炎癥可增強(qiáng)Gprc5a–/–小鼠的肺癌發(fā)生,NTHi暴露可使增生灶數(shù)目增加6倍,腫瘤多樣性增加2倍。NTHi暴露后,NF-κB通過(guò)激活HIF-1α(hypoxia inducible factor 1alpha)通路及其下游血管生成信號(hào),促進(jìn)Gprc5a–/–小鼠對(duì)細(xì)菌性炎癥的反應(yīng),同時(shí)產(chǎn)生細(xì)胞因子和趨化因子(如IL-6和IL-17)[65],吸引白細(xì)胞,從而促進(jìn)腫瘤進(jìn)展、癌細(xì)胞生長(zhǎng)和擴(kuò)散、血管生成、侵襲和腫瘤免疫抑制[66]。
多項(xiàng)研究結(jié)果證明,NTHi誘導(dǎo)的COPD樣氣道炎癥提供了一個(gè)有利于肺部腫瘤促進(jìn)和發(fā)展的腫瘤微環(huán)境,表明了肺部微生物組可以通過(guò)炎癥反應(yīng)促進(jìn)COPD轉(zhuǎn)變?yōu)榉伟?/p>
為了進(jìn)一步探究COPD樣炎癥促進(jìn)肺癌的機(jī)制,在細(xì)菌誘導(dǎo)的COPD樣炎癥小鼠模型中,IL-6基因敲除型及IL-17C?/?和TLR-2/4?/?雙缺陷型小鼠均能抑制COPD炎癥及腫瘤進(jìn)展[67]。COPD樣炎癥促進(jìn)肺癌的過(guò)程不僅與NF-κB和STAT3通路激活、炎癥細(xì)胞因子的增加有關(guān),而且與骨髓細(xì)胞反應(yīng)的增強(qiáng)(M2型巨噬細(xì)胞極化及中性粒細(xì)胞和髓源性抑制細(xì)胞的積累)有關(guān)[67]。綜上所述,這些結(jié)果都表明了肺部微生物組及相關(guān)炎癥在促進(jìn)COPD轉(zhuǎn)化為肺癌方面的重要性。
COPD和肺癌是世界范圍內(nèi)導(dǎo)致死亡的重要原因,有共同的致病機(jī)制,而COPD在各種因素作用下可以發(fā)展為肺癌[3]。隨著微生物組測(cè)序技術(shù)的發(fā)展,肺部微生物組在COPD和肺癌的影響也逐漸被大家認(rèn)識(shí),成為新的研究熱點(diǎn)。人們的注意力也從初始的對(duì)肺部微生物組多樣性的了解轉(zhuǎn)移到特定的微生物菌群的定植與持續(xù)存在即紊亂,以及相關(guān)的炎癥途徑及導(dǎo)致的功能改變[68,69]。而肺部微生物組介導(dǎo)的慢性炎癥作為COPD和肺癌的共同致病因素,也為COPD轉(zhuǎn)變?yōu)榉伟┨峁┝诵碌慕忉尅?/p>
肺部微生物組的改變與機(jī)體之間是雙向關(guān)系,呼吸道的任何炎癥源都會(huì)引發(fā)一系列的宿主反應(yīng),打破肺部微生物組與宿主之間的動(dòng)態(tài)平衡,從而改變微生物組生長(zhǎng)條件致使微生物菌群紊亂[16]。紊亂的微生物菌群通過(guò)MAMP-PPR的相互作用,激活NF-κB及STAT3等相關(guān)通路釋放炎癥細(xì)胞因子[43],介導(dǎo)慢性炎癥以及刺激細(xì)胞增殖、血管生成、組織重塑或轉(zhuǎn)移進(jìn)而導(dǎo)致癌變[54],這會(huì)導(dǎo)致肺部微環(huán)境的進(jìn)一步紊亂,從而形成一個(gè)惡性循環(huán)加劇疾病進(jìn)展(圖1)。因此,一個(gè)自我放大的反饋回路使呼吸道炎癥以及推動(dòng)炎癥的紊亂微生物菌群持續(xù)存在,可能在COPD轉(zhuǎn)化為肺癌中發(fā)揮重要作用。
目前,肺部微生物組學(xué)的研究缺乏對(duì)采樣類型、環(huán)境污染等因素的標(biāo)準(zhǔn)化質(zhì)控以及大型實(shí)驗(yàn)研究,例如不同的樣本類型如肺部組織、痰、支氣管肺泡灌洗液及支氣管鏡標(biāo)本可能會(huì)有不同的結(jié)果,取樣偏差也會(huì)導(dǎo)致類似的問(wèn)題[4]。對(duì)于肺部微生物組研究存在的問(wèn)題,國(guó)際研究人員可以共同建立標(biāo)準(zhǔn)化樣本類型及質(zhì)控標(biāo)準(zhǔn),以便于更深入的開(kāi)展對(duì)肺部微生物組與疾病之間關(guān)系的研究。本實(shí)驗(yàn)室也正在大量收集云南省宣威市COPD和肺癌患者痰樣本,針對(duì)肺部微生物組、COPD和肺癌之間聯(lián)系進(jìn)行研究,并希望可以為肺部微生物組的研究做出貢獻(xiàn)。
圖1 肺部微生物組與COPD、肺癌之間聯(lián)系
雖然目前由于采樣類型、環(huán)境污染及樣本量等原因的影響,肺部微生物組學(xué)在COPD和肺癌中的研究仍然充滿挑戰(zhàn)。但從肺部微生物組角度研究COPD與肺癌之間的關(guān)系,有助于提供COPD和肺癌患者提臨床預(yù)防和優(yōu)化治療的新方向,也為新型藥物設(shè)計(jì)提供了新的靶點(diǎn)。有研究表明在NTHi誘導(dǎo)的COPD樣炎癥轉(zhuǎn)化為肺癌的研究模型中,IL-6阻斷劑不僅對(duì)腫瘤細(xì)胞有直接的內(nèi)在抑制作用,而且可以通過(guò)改變腫瘤細(xì)胞與抗腫瘤免疫細(xì)胞的相對(duì)比例,使肺部微環(huán)境向抗腫瘤表型轉(zhuǎn)化,可以作為預(yù)防和治療K-ras突變型肺腫瘤的潛在藥物靶點(diǎn)[67]。同樣抗生素已被用作治療COPD惡化的標(biāo)準(zhǔn)管理方法,但其在這方面的價(jià)值仍不確定,而如何更加有效的使用抗生素是一個(gè)巨大的挑戰(zhàn)[70]。也許通過(guò)對(duì)肺部微生物組組成變化的深入了解,可以為抗生素的優(yōu)化使用帶來(lái)新的理論依據(jù),也為COPD和肺癌的防治帶來(lái)新的契機(jī)。
[1] Liu YX, Qin Y, Guo XX, Bai Y. Methods and applications for microbiome data analysis., 2019, 41(9): 845–862.劉永鑫, 秦媛, 郭曉璇, 白洋. 微生物組數(shù)據(jù)分析方法與應(yīng)用. 遺傳, 2019, 41(9): 845–862.
[2] Kim HJ, Kim YS, Kim KH, Choi JP, Kim YK, Yun SM, Sharma L, Cruz CSD, Lee JS, Oh YM, Lee SD, Lee SW. The microbiome of the lung and its extracellular vesicles in nonsmokers, healthy smokers and COPD patients., 2017, 49(4): e316.
[3] Parris BA, O’Farrell HE, Fong KM, Yang IA. Chronic obstructive pulmonary disease (COPD) and lung cancer: Common pathways for pathogenesis., 2019, 11(Suppl.17): S2155–S2172.
[4] Mao QX, Jiang F, Yin R, Wang J, Xia WJ, Dong GC, Ma WD, Yang Y, Xu L, Hu JZ. Interplay between the lung microbiome and lung cancer., 2018, 415: 40–48.
[5] Mendez R, Banerjee S, Bhattacharya SK, Banerjee S. Lung inflammation and disease: A perspective on microbial homeostasis and metabolism., 2019, 71(2): 152–165.
[6] Shen YC, Chen L, Wen FQ. Interpretation of 2019 global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease., 2018, 98(48): 3913–3916.申永春, 陳磊, 文福強(qiáng). 2019年慢性阻塞性肺疾病全球創(chuàng)議更新要點(diǎn). 中華醫(yī)學(xué)雜志, 2018, 98(48): 3913– 3916.
[7] Quaderi SA, Hurst JR. The unmet global burden of COPD., 2018, 3: e4
[8] Fang TT, Wang MN, Xiao HY, Wei XW. Mitochondrial dysfunction and chronic lung disease., 2019, 35(6): 493–502.
[9] Qian GQ. Advances in genome-wide association study of chronic obstructive pulmonary disease., 2020, 42(9): 832–846.錢國(guó)清. 慢性阻塞性肺疾病全基因組關(guān)聯(lián)研究進(jìn)展. 遺傳, 2020, 42(9): 832–846.
[10] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017., 2017, 67(1): 7–30.
[11] Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012., 2015, 65(2): 87–108.
[12] Houghton AM. Mechanistic links between COPD and lung cancer., 2013, 13(4): 233–45.
[13] Caramori G, Ruggeri P, Mumby S, Ieni A, Lo Bello F, Chimankar V, Donovan C, Andò F, Nucera F, Coppolino I, Tuccari G, Hansbro PM, Adcock IM. Molecular links between COPD and lung cancer: new targets for drug discovery?, 2019, 23(6): 539–553.
[14] Chalela R, Gea J, Barreiro E. Immune phenotypes in lung cancer patients with COPD: Potential implications for immunotherapy., 2018, 10(Suppl.18): S2186–S2189.
[15] Jungnickel C, Wonnenberg B, Karabiber O, Wolf A, Voss M, Wolf L, Honecker A, Kamyschnikow A, Herr C, Bals R, Beisswenger C. Cigarette smoke-induced disruption of pulmonary barrier and bacterial translocation drive tumor-associated inflammation and growth., 2015, 309(6): L605–L613.
[16] Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The microbiome and the respiratory tract., 2016, 78: 481–504.
[17] Sze MA, Dimitriu PA, Suzuki M, McDonough JE, Campbell JD, Brothers JF, Erb-Downward JR, Huffnagle GB, Hayashi S, Elliott WM, Cooper J, Sin DD, Lenburg ME, Spira A, Mohn WW, Hogg JC. Host response to the lung microbiome in chronic obstructive pulmonary disease., 2015, 192(4): 438–445.
[18] Budden KF, Shukla SD, Rehman SF, Bowerman KL, Keely S, Hugenholtz P, Armstrong-James DPH, Adcock IM, Chotirmall SH, Chung KF, Hansbro PM. Functional effects of the microbiota in chronic respiratory disease., 2019, 7(10): 907–920.
[19] Mitchell AB, Glanville AR. The human respiratory microbiome: implications and impact., 2018, 39(2): 199–212.
[20] Wu BG, Segal LN. Lung microbiota and its impact on the mucosal immune phenotype., 2017, 5(3).
[21] Moffatt MF, Cookson WO. The lung microbiome in health and disease., 2017, 17(6): 525–529.
[22] Sze MA, Dimitriu PA, Hayashi S, Elliott WM, McDonough JE, Gosselink JV, Cooper J, Sin DD, Mohn WW, Hogg JC. The lung tissue microbiome in chronic obstructive pulmonary disease., 2012, 185(10): 1073–1080.
[23] Faner R, Sibila O, Agustí A, Bernasconi E, Chalmers JD, Huffnagle GB, Manichanh C, Molyneaux PL, Paredes R, Brocal VP, Ponomarenko J, Sethi S, Dorca J, Monsó E. The microbiome in respiratory medicine: Current challenges and future perspectives., 2017, 49(4): 1602086.
[24] Dima E, Kyriakoudi A, Kaponi M, Vasileiadis I, Stamou P, Koutsoukou A, Koulouris NG, Rovina N. The lung microbiome dynamics between stability and exacerbation in chronic obstructive pulmonary disease (COPD): Current perspectives., 2019, 157: 1–6.
[25] Welp AL, Bomberger JM. Bacterial community interac-tions during chronic respiratory disease., 2020, 10: 213.
[26] Garcia-Nu?ez M, Millares L, Pomares X, Ferrari R, Pérez-Brocal V, Gallego M, Espasa M, Moya A, Monsó E. Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease., 2014, 52(12): 4217–4223.
[27] Pragman AA, Lyu T, Baller JA, Gould TJ, Kelly RF, Reilly CS, Isaacson RE, Wendt CH. The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease., 2018, 6(1): 7.
[28] Monsó E. Microbiome in chronic obstructive pulmonary disease., 2017, 5(12): 251.
[29] Galiana A, Aguirre E, Rodriguez JC, Mira A, Santiban?z M, Candela I, Llavero J, Garcinun? P, Lo?ez F, Ruiz M, Garcia-Pachon E, Royo G. Sputum microbiota in moderate versus severe patients with COPD., 2014, 43(6): 1787–1790.
[30] Millares L, Pérez-Brocal V, Ferrari R, Gallego M, Pomares X, García-Nú?ez M, Montón C, Capilla S, Monsó E, Moya A. Functional metagenomics of the bronchial microbiome in COPD., 2015, 10(12): e0144448.
[31] Mur LA, Huws SA, Cameron SJ, Lewis PD, Lewis KE. Lung cancer: A new frontier for microbiome research and clinical translation., 2018, 12: 866.
[32] Dong H, Huang D, Yuan M, Cai S. The characterization of lung microbiome in sputum of lung cancer patients with different clinicopathology., 2019, 199: A5553.
[33] Yu GQ, Gail MH, Consonni D, Carugno M, Humphrys M, Pesatori AC, Caporaso NE, Goedert JJ, Ravel J, Landi MT. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features., 2016, 17(1): 163.
[34] Lee SH, Sung JY, Yong D, Chun J, Kim SY, Song JH, Chung KS, Kim EY, Jung JY, Kang YA, Kim YS, Kim SK, Chang J, Park MS. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions., 2016, 102: 89–95.
[35] Liu HX, Tao LL, Zhang J, Zhu YG, Zheng Y, Liu D, Zhou M, Ke H, Shi MM, Qu JM. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects., 2018, 142(4): 769–778.
[36] Yan XM, Yang MX, Liu J, Gao RC, Hu JH, Li J, Zhang LJ, Shi YJ, Guo HR, Cheng JL, Razi M, Pang S, Yu XW, Hu S. Discovery and validation of potential bacterial biomarkers for lung cancer., 2015, 5(10): 3111–3122.
[37] Gallo RL. S. epidermidis influence on host immunity: More than skin deep., 2015, 17(2): 143–144.
[38] Wang L, Hao K, Yang T, Wang C. Role of the lung microbiome in the pathogenesis of chronic obstructive pulmonary disease., 2017, 130(17): 2107–2111.
[39] Mayhew D, Devos N, Lambert C, Brown JR, Clarke SC, Kim VL, Magid-Slav M, Miller BE, Ostridge KK, Patel R, Sathe G, Simola DF, Staples KJ, Sung R, Tal-Singer R, Tuck AC, Van Horn S, Weynants V, Williams NP, Devaster JM, Wilkinson TMA. Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacer-bations., 2018, 73(5): 422–430.
[40] Wang Z, Singh R, Miller BE, Tal-Singer R, Van Horn S, Tomsho L, MacKay A, Allinson JP, Webb AJ, Brookes AJ, George LM, Barker B, Kolsum U, Donnelly LE, Belchamber K, Barnes PJ, Singh D, Brightling CE, Donaldson GC, Wedzicha JA, Brown JR, COPDMAP. Sputum microbiome temporal variability and dysbiosis in chronic obstructive pulmonary disease exacerbations: An analysis of the COPDMAP study., 2018, 73(4): 331–338.
[41] Arora S, Ahmad S, Irshad R, Goyal Y, Rafat S, Siddiqui N, Dev K, Husain M, Ali S, Mohan A, Syed MA. TLRs in pulmonary diseases., 2019, 233: 116671.
[42] Zhou HT, Coveney AP, Wu M, Huang J, Blankson S, Zhao H, O’Leary DP, Bai ZJ, Li YP, Redmond HP, Wang JH, Wang J. Activation of both TLR and NOD signaling confers host innate immunity-mediated protection against microbial infection., 2019, 9: 3082.
[43] Huffnagle GB, Dickson RP, Lukacs NW. The respiratory tract microbiome and lung inflammation: a two-way street., 2017, 10(2): 299–306.
[44] He BK, Liu YY, Hoang TK, Tian XJ, Taylor CM, Luo M, Tran DQ, Tatevian N, Rhoads JM. Antibiotic-modulated microbiome suppresses lethal inflammation and prolongs lifespan in Treg-deficient mice., 2019, 7(1): 145.
[45] Mammen MJ, Sethi S. COPD and the microbiome., 2016, 21(4): 590–599.
[46] Voss M, Wonnenberg B, Honecker A, Kamyschnikow A, Herr C, Bischoff M, Tschernig T, Bals R, Beisswenger C. Cigarette smoke-promoted acquisition of bacterial pathogens in the upper respiratory tract leads to enhanced inflammation in mice., 2015, 16(1): 41.
[47] Yadava K, Pattaroni C, Sichelstiel AK, Trompette A, Gollwitzer ES, Salami O, Von Garnier C, Nicod LP, Marsland BJ. Microbiota promotes chronic pulmonary inflammation by enhancing IL-17A and autoantibodies., 2016, 193(9): 975–987.
[48] Wang Z, Bafadhel M, Haldar K, Spivak A, Mayhew D, Miller BE, Tal-Singer R, Johnston SL, Ramsheh MY, Barer MR, Brightling CE, Brown JR. Lung microbiome dynamics in COPD exacerbations., 2016, 47(4): 1082–1092.
[49] Bautista MV, Chen YJ, Ivanova VS, Rahimi MK, Watson AM, Rose MC. IL-8 Regulates Mucin Gene Expression at the Posttranscriptional Level in Lung Epithelial Cells., 2009, 183(3): 2159–2166.
[50] Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease., 2017, 151(4): 363–374.
[51] Negroni A, Pierdomenico M, Cucchiara S, Stronati L. NOD2 and inflammation: current insights., 2018, 11: 49–60.
[52] Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, Huot L, Grandjean T, Bressenot A, Delanoye-Crespin A, Gaillot O, Schreiber S, Lemoine Y, Ryffel B, Hot D, Nù?ez G, Chen G, Rosenstiel P, Chamaillard M. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer., 2013, 123(2): 700–711.
[53] Moghaddam SJ, Li HG, Cho SN, Dishop MK, Wistuba II, Ji L, Kurie JM, Dickey BF, DeMayo FJ. Promotion of lung carcinogenesis by chronic obstructive pulmonary disease-like airway inflammation in a K-ras-induced mouse model., 2009, 40(4): 443–453.
[54] Jin CC, Lagoudas GK, Zhao C, Bullman S, Bhutkar A, Hu B, Ameh S, Sandel D, Liang XS, Mazzilli S, Whary MT, Meyerson M, Germain R, Blainey PC, Fox JG, Jacks T. Commensal microbiota promote lung cancer developmentγδ T cells., 2019, 176(5): 998–1013.e16.
[55] Jungnickel C, Schmidt LH, Bittigkoffer L, Wolf L, Wolf A, Ritzmann F, Kamyschnikow A, Herr C, Menger MD, Spieker T, Wiewrodt R, Bals R, Beisswenger C. IL-17C mediates the recruitment of tumor-associated neutrophils and lung tumor growth., 2017, 36(29): 4182– 4190.
[56] Zhou WM, Guo QR, Wang H, Wu ZB, Zhang JY. Research advances in the transformation of chronic obstructive pulmonary disease to lung cancer., 2020, 55(7): 1410–1418.周雯敏, 郭喬如, 王會(huì), 吳增寶, 張建業(yè). 慢性阻塞性肺疾病轉(zhuǎn)化為肺癌的研究進(jìn)展. 藥學(xué)學(xué)報(bào), 2020, 55(7): 1410–1418.
[57] Francescone R, Hou V, Grivennikov SI. Microbiome, inflammation, and cancer., 2014, 20(3): 181– 189.
[58] Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, Azmi AS, Lokeshwar BL, Grue B, Panis C, Boosani CS, Poudyal D, Stafforini DM, Bhakta D, Niccolai E, Guha G , Rupasinghe HPV, Fujii H, Honoki K, Mehta K, Aquilano K, Lowe L, Hofseth LJ, Ricciardiello L, Ciriolo MR, Singh N, Whelan RL, Chaturvedi R, Ashraf SS, Kumara HMCS, Nowsheen S , Mohammed SI, Keith WN, Helferich WG, Yang XJ. A multi-targeted approach to suppress tumor-promoting inflammation., 2015, 35 (Suppl.): S151–S184.
[59] Tang Mq, Yang JJ, Xu XX. Research progress on association between chronic inflammation of lung and lung cancer., 2017, 37(11): 849–853.唐敏強(qiáng), 楊俊俊, 徐興祥. 肺部慢性炎癥與肺癌相關(guān)性的研究進(jìn)展. 國(guó)際呼吸雜志, 2017, 37(11): 849–853.
[60] Chang SH, Mirabolfathinejad SG, Katta H, Cumpian AM, Gong L, Caetano MS, Moghaddam SJ, Dong C. T helper 17 cells play a critical pathogenic role in lung cancer., 2014, 111(15): 5664–5669.
[61] Moghaddam SJ, Ochoa CE, Sethi S, Dickey BF. Nonty-peable haemophilus influenzae in chronic obstructive pulmonary disease and lung cancer., 2011, 6(1): 113–123.
[62] Sriram KB, Cox AJ, Sivakumaran P, Singh M, Watts AM, West NP, Cripps AW. Non-typeable Haemophilus Influenzae detection in the lower airways of patients with lung cancer and chronic obstructive pulmonary disease., 2018, 13(1): 11.
[63] Berenson CS, Murphy TF, Wrona CT, Sethi S. Outer membrane protein p6 of nontypeable Haemophilus influenzae is a potent and selective inducer of human macrophage proinflammatory cytokines., 2005, 73(5): 2728–2735.
[64] Barta P, Van Pelt C, Men T, Dickey BF, Lotan R, Moghaddam SJ. Enhancement of lung tumorigenesis in a Gprc5a Knockout mouse by chronic extrinsic airway inflammation., 2012, 11: 4.
[65] Luo JL, Maeda S, Hsu LC, Yagita H, Karin M. Inhibition of NF-κB in cancer cells converts inflammation- induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression., 2004, 6(3): 297–305.
[66] Kovaleva OV, Romashin D, Zborovskaya IB, Davydov MM, Shogenov MS, Gratchev A. Human lung microbiome on the way to cancer., 2019, 2019: 1394191.
[67] Caetano MS, Zhang HY, Cumpian AM, Gong L, Unver N, Ostrin EJ, Daliri S, Chang SH, Ochoa CE, Hanash S, Behrens C, Wistuba II, Sternberg C, Kadara H, Ferreira CG, Watowich SS, Moghaddam SJ. IL6 blockade reprograms the lung tumor microenvironment to limit the development and progression of K-ras-mutant lung cancer., 2016, 76(11): 3189–3199.
[68] Segal LN, Clemente JC, Tsay JCJ, Koralov SB, Keller BC, Wu BG, Li YH, Shen N, Ghedin E, Morris A, Diaz P, Huang L, Wikoff WR, Ubeda C, Artacho A, Rom WN, Sterman DH, Collman RG, Blaser MJ, Weiden MD. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype., 2016, 1: 16031.
[69] Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, Boushey H. The airway microbiome in patients with severe asthma: Associations with disease features and severity., 2015, 136(4): 874–884.
[70] Vollenweider DJ, Frei A, Steurer-Stey CA, Garcia- Aymerich J, Puhan MA. Antibiotics for exacerbations of chronic obstructive pulmonary disease., 2018, 10(10): CD010257.
Lung microbiome mediates the progression from chronic obstructive pulmonary disease to lung cancer through inflammation
Yajie Wang, Shuangshuang Wu, Jiang Chu, Xiangyang Kong
Lung microbiome exists in the respiratory tract and parenchymal tissues. It mediates lung injury through a variety of mechanisms, including bacterial disturbance, metabolites, inflammatory response, immune response, and genotoxicity. Accumulating evidences suggest that changes in lung microbiome correlates with chronic obstructive pulmonary disease (COPD) and lung cancer, and the microbiome promotes the progression from COPD to lung cancer. In this review, we mainly introduce the impairment of the homeostasis of the lung microbiome and its inflammation that leads to COPD and lung cancer, then focus on how the microbiome mediates the progression from COPD to lung cancer through inflammatory response. The review may provide a new theoretical basis for clinical prevention, optimal treatment strategy and design of new drugs for COPD and lung cancer.
lung microbiome; chronic obstructive pulmonary disease; lung cancer; diversity; inflammation
2020-11-24;
2020-12-28
昆明理工大學(xué)省級(jí)人培項(xiàng)目(編號(hào):KKSY201660006) [Supported by Provincial Training Program of Kunming University of Science and Technology (No. KKSY201660006)]
王婭潔,在讀碩士研究生,專業(yè)方向:遺傳學(xué)。E-mail: 1186958954@qq.com
孔祥陽(yáng),博士,教授,研究方向:慢性阻塞性肺病和肺癌的基因組學(xué)研究。E-mail: kxy2772@yahoo.com儲(chǔ)江,博士,講師,研究方向:慢性阻塞性肺病和肺癌的代謝研究。E-mail: chujiang2015@126.com
10.16288/j.yczz.20-315
2021/1/13 13:41:56
URI: https://kns.cnki.net/kcms/detail/11.1913.R.20210112.1032.003.html
(責(zé)任編委:姜長(zhǎng)濤)