• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電化學蝕刻鉭箔制備高容量薄膜鉭電解電容器

    2021-02-02 05:17:42郭永富王日明于淑會初寶進
    集成技術 2021年1期
    關鍵詞:電解電容器薄膜

    郭永富 王日明 于淑會 初寶進 孫 蓉

    1(深圳先進電子材料國際創(chuàng)新研究院 深圳 518103)

    2(中國科學院深圳先進技術研究院 深圳 518055)

    3(中國科學技術大學納米科學技術學院 蘇州 215123)

    4(中國科學技術大學 中國科學院能量轉換材料重點實驗室 合肥 230026)

    1 Introduction

    Fig. 1 Schematic illustration of (a) commercially available copper/dielectric layer/copper structured embedded capacitors, and (b) discrete thin film tantalum electrolytic capacitors圖1 埋入式電容與分立式薄膜電解電容對比圖: (a)商用銅/介電層/銅結構嵌入式電容器;(b)分立薄膜電解電容器

    Electronic devices are continuously progressing toward miniaturization, which puts forward requirements on the size of constituent components. However, the limited surface area on an integrated circuit (IC) board creates a bottleneck on the development of high-density integrated circuits. To solve this problem, the idea of embedding components in the printed circuit board or IC substrate has been proposed[1-6]. Capacitors account for more than half of the passive components on an IC board, covering around 40% of the surface area[7]. Thus, the development of embedded capacitors with high energy density is of vital importance in the advancement of high-density IC[8-9]. However, the current commercial embedded capacitors with BaTiO3filled polymer as dielectric layer (Fig. 1(a)) can only afford very small capacitance of <0.1 nF/mm2, which hinders its wide application[10]. Due to its small specific capacitance value, the embedded capacitance of this ceramic/polymer composite material needs to occupy a large internal space in the circuit board when a large capacitance is needed. So an alternative strategy of using small-sized surface-mounted capacitors as embedded components (Fig. 1(b)) is put forward[11]. Among all types of capacitors, multilayered ceramic capacitors (MLCC) and Tantalum (Ta) electrolytic capacitors are playing dominant roles. Although MLCC has been widely used in electronic devices for its excellent high-voltage and high-frequency performance, MLCC severely suffers from the unstable capacitance with the fluctuation of voltage, temperature, and stress[12-16]. By comparison, Ta possesses a small thermal expansion coefficient[17], and tantalum pentoxide (Ta2O5) exhibits stable physical and chemical properties[18], which both contribute to the outstanding stability of Ta electrolytic capacitors, endowing Ta electrolytic capacitors great potential for their application as embedded capacitors in high-density IC system. Traditionally, the anode of Ta electrolytic capacitors is produced by the sintering of Ta powders[19-20], and the Ta electrolytic capacitor based on sintered Ta anode can provide a high specific capacitance of 0.1 μF~1 000 μF. However, the sintering process is complicated, and usually requires a highly vacuum condition under a temperature of over 1 200 °C[21-25]. The thickness of the obtained Ta electrolytic capacitor is usually beyond millimeter level, and such a huge thickness impedes its application as embedded capacitors, because the substrate where the passives are embedded has a limited thickness of several hundred micrometers.

    Ta and Niobium (Nb) foils etchings have been reported, which involves the electrolyte containing hydrofluoric acid or its mixture[26], and the etched foils were used for catalysis. Similarly, isopropyl alcohol and n-butanol solutions of hydrofluoric acid were used to etch niobium foil, and a better etching effect was obtained[27-28]. Herein, we propose the utilization of invasive electrolyte (hydrofluoric acid n-butyl alcoholic solution) for the electrochemical etching of the Ta foils to fabricate anode for Ta electrolytic capacitors. The equation to calculate the capacitance of a parallel plate capacitor is listed as follows:

    whereεis the permittivity of the dielectric (ε=25 for the anodic oxide of Ta),ε0=8.85×10-14F/cm is the permittivity of free space,Sis the surface area, anddis the dielectric thickness. Based on this equation, it is clear that large capacitance requires largeSwhendis fixed.

    With the electrochemical etching approach, a thin Ta foil can be controllably etched, and the thin foil with enlarged surface area shows a specific capacitance as high as 74 nF/mm2with an oxidation voltage of 12 V when measured in 0.1 mol/L H2SO4. The etched Ta foils is then fabricated into electrolytic capacitors after the deposition of cathode layer, graphite layer, and silver paste[29]in sequence. The electrolytic capacitors based on electrochemically etched Ta foils demonstrate a stable capacitance of >30 nF/mm2over the frequency range of 100 Hz~1 MHz and a low leakage current of 2.7×10-6A. The electrolytic capacitor has a thickness of 75 μm, which is thin enough for their application as embedded capacitors.

    2 Experimental

    2.1 Materials

    Tantalum foils (99.9% purity) with a thickness of 50 μm were purchased from Sigma-Aldrich, China. Phosphoric acid (H3PO4, ≥85wt%) and hydrofluoric acid (HF, ≥40wt%) were purchased from Sinopharm Chemical Reagent. n-butanol (AR, 99%) was purchased from Aladdin. Platinum electrodes were used as counter electrode for both Ta etching and oxidation process. A polytetrafluoroethylene electrolytic cell (Shanghai Honghe Sealing Material Co. LTD), with a volume of 50 mL, was used for etching.

    2.2 Electrochemical etching of Ta foils

    Hydrofluoric acid was diluted to 2 wt% with n-butanol, and was used as etching electrolyte. The tantalum foil was cut to an area of 5 mm×5 mm, the same size as the counter electrode. Tantalum foils were ultra-sonicated in 2-butanone for 10 min, followed by washing with ethanol and drying in oven at 80 ℃, and 20 mL etching electrolyte was added into an electrolytic cell. A series of samples were obtained by applying a pre-defined etching voltage (in the range of 20~80 V) at ambient temperature. The duration of etching time was 2~5 h. The electrochemically etched Ta foils were denoted as Ta-20V2H, Ta-40V2H, Ta-60V2H, Ta-80V2H, Ta-40V3H, Ta-40V4H, and Ta-40V5H, respectively, where the first two digits represented the applied voltage, i.e., 20 V, 40 V, 60 V, and 80 V, and the last digit represented etching hours, i.e., 2 hours, 3 hours, 4 hours, and 5 hours. During the etching process, the speed of the magnetic stirring was set as 800 r/min.

    2.3 Oxidation (Ta2O5 formation)

    The Ta foils were oxidized at a constant voltage of 12 V (formation voltage) for 3 h in 0.1 wt% H3PO4aqueous solution at 80 ℃.

    2.4 Characterizations

    The morphology of pristine and etched Ta foils was examined by field-emission scanning electric microscope (FE-SEM, FEI NovaNano SEM450). The surface elements of tantalum foil before etching, after etching and after oxidation were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Fisher EscaLab 250Xi). 3D Laser Scanning Microscope was used to analyze the surface of etched tantalum foil. Three 1 000 μm×1 000 μm areas were randomly selected for measurement, and the multi-line roughness Ra was measured.

    2.5 Measurement of specific capacitance

    The capacitance (C) was measured in 0.1 mol/L H2SO4by Precision Impedance Analyzer (Agilent 4294a) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (a, c). The counter electrode material is platinum foil. The capacitor lead reserved on the tantalum anode is clamped with a platinum clip and the anode is immersed in sulfuric acid solution. The specific capacitance was acquired by dividing C tested at 100 Hz with the surface area of tantalum foils.

    Fig. 2 Schematic illustration of (a) and (c) measuring capacitance of anode in 0.1 mol/L H2SO4, (b) and (d) measuring capacitance of tantalun capacitor圖2 鉭薄膜電容的濕法測試和器件測試過程: (a)、(c)鉭電容陽極電容值的測量,(b)、(d)鉭電容器件的測試

    The oxidized Ta foils are also fabricated into Ta electrolytic capacitor by the deposition of Poly (2,3-dihydrothieno-1,4-dioxin), graphite layer, and silver paste. The leakage current was measured by an electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd), and the testing process is shown in Fig. 2(b, d). The capacitive performance of Ta electrolytic capacitor is measured by Precision Impedance Analyzer (Agilent 4294A) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (b, d).

    3 Results and Discussions

    3.1 Physical characterizations of electrochemically etched Ta foils

    The surface of pristine Ta foil is not absolutely smooth and has certain roughness before etching (Fig. 3(a)). After electrochemical etching, the surface roughness is enhanced. SEM images (Fig. 3(b-d)) indicate that the surface roughness is linked with the applied voltage, and the surface is more roughened with higher applied voltage. Although the surface of Ta-80V2H appears to be less rough (Fig. 3(e)), large density of holes and even cracks can be found under higher magnification (Fig. 3(f)). The cracks in Ta-80V2H significantly lowers the mechanical property of Ta foils, which makes it impossible to fabricate electrolytic capacitors.

    Fig. 3 SEM images of (a) pristine Ta foils, (b) Ta-20V2H, (c) Ta-40V2H, (d) Ta-60V2H, and (e-f) Ta-80V2H圖3 不同蝕刻條件下得到的鉭箔表面 SEM 圖:(a)無蝕刻,(b) Ta-20V2H,(c) Ta-40V2H,(d) Ta-60V2H,(e-f) Ta-80V2H

    The SEM images of Ta foils etched with 40 V for different hours are shown in Fig. 4, and deep etched holes can be found on all the samples. However, limited by the qualitative nature of SEM images, no significant difference is identified among the SEM images of different etching hours under either low magnification (Fig. 4(a, c, e, g)) or high magnification (Fig. 4(b, d, f, h)). Therefore, 3D Laser Scanning Microscope is used to quantify the influence of electrochemical etching on the Ta surface roughness.

    Fig. 4 SEM images of (a-b) Ta-40V2H, (c-d) Ta-40V3H, (e-f) Ta-40V4H, and (g-h) Ta-40V5H圖4 不同蝕刻條件下得到的鉭箔表面 SEM 圖:(a-b) Ta-40V2H,(c-d) Ta-40V3H,(e-f) Ta-40V4H,(g-h) Ta-40V5H

    Fig. 6 XPS regional spectra of (a) pristine Ta foils, (b) Ta-40V2H foil, and (c) oxidized Ta-40V2H foil圖6 蝕刻和氧化前后鉭箔表面元素的 XPS 區(qū)域光譜變化:(a)無蝕刻鉭箔;(b)蝕刻后鉭箔;(c)氧化后鉭箔

    Ra represents the arithmetic mean of the absolute value of contour offset on the sample surface, and can be used to approximately quantify the surface roughness. Fig. 5 shows the Ra value of the pristine Ta foil and etched Ta foils. The Ra shows a steady increasing trend with both etching voltage and etching time, both of which first undergo a slight increase and then go up sharply. The pristine Ta foil has a Ra of 3 μm, while the Ra of Ta-80V2H foil is almost twice of pristine Ta foil (Fig. 5(a)). Ta-40V5H foil possesses a Ra of ~17 μm, about 5.7 times higher than pristine Ta foil (Fig. 5(b)).

    The surface elements of pristine Ta foil, Ta-40V2H foil, and oxidized Ta-40V2H foil are analyzed by XPS. Ta4f regional spectra of all three samples exhibit strong Ta2O5peaks, and the regional Ta4f spectra of the above-mentioned foils are shown in Fig. 6. And pristine Ta foils (Fig. 6(a)) and HFetched Ta foils also show clear peaks corresponding to metallic Ta (Fig. 6(b)), while no metallic Ta peaks are seen on oxidized Ta foils (Fig. 6(c)). The Ta2O5observed on pristine Ta foils is native oxide as reported in literature[30], which also explains the difficulty of Ta electrochemical etching in noninvasive electrolytes, i.e. the inert native oxide films on the surface of pristine Ta foils severely impede the electrochemical etching.

    After electrochemical etching in HF electrolyte, the Ta2O5is still obvious in XPS regional spectra (Fig. 6(b)), which may be caused by the continuous formation of Ta2O5during electrochemical etching. Considering that metallic Ta is resistant to HF corrosion, we speculate that the electrochemical etching of Ta foils is a combination of the following two reactions[31]:

    The XPS results (Table 1) also demonstrate that a large percent of oxygens exist in all three samples.

    Table 1 Elemental contents of pristine Ta foil, Ta-40V2H, and oxidized Ta-40V2H as determined by XPS表1 原始鉭箔、Ta-40V2H 鉭箔和氧化 Ta-40V2H 鉭箔的元素含量數(shù)據(jù)

    Since Ta is leaching into the electrolyte during electrochemical etching, the weight loss percentage is measured (Fig. 7). The weight loss percentage shows a nearly linear relation with etching voltage and etching time, highlighting the controllable manner of electrochemical methods. Similar with Ra values, the weight loss percentage shows a steeper slope with etching time than etching voltage.

    3.2 Capacitance enhancement by electrochemical etching

    The specific capacitance of the pristine Ta foil and etched Ta foils are summarized in Fig. 8. In line with Ra and weight loss percentage, the specific capacitance steadily increases with etching voltage (Fig. 8(a)) and time (Fig. 8(b)). Fig. 8(a) shows that the increase of etching voltage leads to the increase of weight loss, and accordingly, the specific capacitance goes up, except for the etching voltage of 80 V, where the specific capacitance almost levels up with 60 V. The weight loss is nearly proportional to the applied voltage in the range from 20 V to 80 V, while the increase of specific capacitance slows down at higher voltage, which may indicate the limited effect of applied voltage on the specific capacitance. It means that the high voltage, such as 80 V, can still increase the weight loss, but does not contribute to the enhancement of surface roughness.

    Fig. 7 Weight loss percentage of (a) Ta foils etched with various voltages for 2 hours, and (b) Ta foils etched with 40 V voltage for various hours圖7 以電壓和時間為變量時鉭箔蝕刻后質(zhì)量變化:(a) 鉭箔在不同電壓下蝕刻 2 h 的失重百分比;(b) 鉭箔在 40 V 電壓下蝕刻不同時間的失重百分比

    Fig. 8 Specific capacitance of (a) Ta foils etched with various voltages for 2 hours, and (b) Ta foils etched with 40 V voltage for various hours圖8 以電壓和時間為變量時鉭箔蝕刻并氧化后電容值的變化:(a) 鉭箔在不同電壓下蝕刻 2 h 的電容值;(b) 鉭箔在 40 V 電壓下蝕刻不同時間的電容值

    The longer etching time results in more weight loss, and the specific capacitance is raised simultaneously, as displayed in Fig. 8(b). Although the SEM images does not show clear difference between the samples with difference etching time, the specific capacitance varies among these samples. It is speculated that the longer etching time at 40 V contributes to deeper etching, thereby increasing the weight loss. At the same time, deeper etching results in the increase of specific area, thus, the specific capacitance is raised.

    3.3 Capacitive performance of Ta electrolytic capacitors fabricated with etched Ta foils

    Fig. 9 Capacitive performance of the Ta electrolytic capacitor fabricated with Ta-40V5H anode, (a) capacitance over the frequency range of 100 Hz~110 MHz with the capacitor area 3 mm×3 mm, (b) equivalent series resistance (ESR) over the frequency range of 100 Hz~110 MHz, (c) the leakage current under 10 V DC voltage, and (d) the comparison of capacitance variation between the thin-film tantalum capacitor and commercial tantalum capacitor over the frequency range of 100 Hz~110 MHz圖9 采用 Ta-40V5H 鉭芯子制作鉭電解電容器,在頻率為 100 Hz~110 MHz 時測試其電學性能:(a)電容值的變化; (b)等效串聯(lián)電阻的變化; (c)10 V 直流電壓下的泄漏電流;(d)薄膜鉭電容器和商業(yè)鉭電容器電容變化對比

    The electrochemically etched Ta foil, Ta-40V5H, was fabricated into Ta electrolytic capacitor after oxidation and the deposition of cathode material (Poly(2,3-dihydrothieno-1,4-dioxin), graphite layer and silver layer). The frequency dependent capacitance and Equivalent Series Resistance (ESR) are summarized in Fig. 9(a) & (b). The Ta electrolytic capacitor based on etched Ta foils shows a high capacitance of >250 nF at the frequency of 1 kHz, and more than 70% of the capacitance is maintained even when the frequency rises to 1 MHz, as shown in Fig. 9(a). As seen from Fig. 9(b), the ESR is about 1 Ω at the low frequency range (<10 kHz), and gradually decreases to 0.5 Ω at MHz level. The leakage current under 10 V is shown in Fig. 9(c), and a relatively stable leakage current of ~10-6A is exhibited which is slightly larger than the commercial capacitor. The effective frequency is more than two orders of magnitude higher than commercial Ta electrolytic capacitors (Fig. 9(d)). The effective frequency of traditional Ta electrolytic capacitors is usually limited to 10 kHz, because the highly porous structure contains large amount of cascaded resistance-capacitance (RC) networks, which causes capacitance drop as frequency rises over 100 kHz[20]. The etched surface can diminish this phenomenon, since the cascaded RC network is restricted on the Ta surface with electrochemical etching method. However, there are disadvantages for embedded tantalum capacitors based on electrochemically etched Ta anode. One is that they are prone to short circuit, so tantalum capacitors are usually used at reduced voltage. As shown in Fig. 9(d), the leakage current of the capacitor is about 2×10-6A, which is slightly larger than that of the commercial capacitor.

    The size of fabricated Ta electrolytic capacitor is compared with the commercial one in Fig. 10(a). A thickness of ~75 μm of our Ta electrolytic capacitor is highlighted in Fig. 10(b), while the commercial Ta capacitor has thickness of ~1.6 mm. A cross-sectional SEM image of the Ta electrolytic capacitor fabricated with Ta-40V5H anode is shown in Fig. 10(c). The thickness of the anode is about 55 μm, while the cathode material accounts for a thickness of around 20 μm. A total thickness of ~75 μm endows this Ta electrolytic capacitor configuration a promising potential for its application as embedded capacitors in IC industry.

    Fig. 10 (a) Sizes of chip tantalum electrolytic capacitors and thin film tantalum electrolytic capacitors, (b) optical microscope cross section of tantalum thin film electrolytic capacitor, and (c) SEM cross section of tantalum film electrolytic capacitor圖10 鉭薄膜電解電容器的實物圖:(a)片狀鉭電解電容器和薄膜鉭電解電容器的尺寸;(b)鉭薄膜電解電容器的光學顯微鏡截面圖;(c)鉭薄膜電解電容器的 SEM 截面圖

    3.4 Discussion and analysis

    Ta and Nb foil etching has been reported[26-28], but the etching results were mediocre according to their SEM images, and the etched Ta or Nb foils were not made into capacitors. In this study, in order to apply the etching method to tantalum capacitors, a thin Ta electrolytic capacitor has been developed based on electrochemically etched Ta foils, and an enhanced capacitance is demonstrated. On the other hand, tantalum thin film capacitors have been studied at home and abroad with the method of tantalum powder sintering[19,20,32]. Electrochemical etching of Ta foils, instead of tantalum powder sintering, has less cost and simpler fabrication process. However, compared with the method of tantalum powder sintering, the capacitance of thin film tantalum capacitors prepared by electrochemical etching is smaller. In addition, the electrical property of tantalum capacitors produced by electrochemical etching needs to be improved, especially the proneness to short circuit.

    4 Conclusions

    In conclusion, we proposed the use of electro- chemical etching as an efficient method to produce thin Ta anode to facilitate its application as embedded capacitor. Both qualitative and quantitative techniques are used to characterize the influence of electrochemical etching on the surface roughness. The applied voltage and the electrochemical etching duration play important roles in determining the surface roughness, which shows a very close relation with specific capacitance. By optimizing the electrochemical etching parameters, the specific capacitance of etched Ta anode can reach as high as 74 nF/mm2. The Ta electrolytic capacitor device fabricated based on the etched Ta foils shows a stable capacitance of >30 nF/mm2in the frequency range of 100 Hz~1 MHz, and a low leakage current of 2.7×10-6A under 10 V DC. The electrochemical etching of thin Ta foils holds promising potential to produce Ta electrolytic capacitor for embedded application.

    猜你喜歡
    電解電容器薄膜
    復合土工薄膜在防滲中的應用
    電容器的實驗教學
    物理之友(2020年12期)2020-07-16 05:39:20
    輕輕松松學“電解”
    含有電容器放電功能的IC(ICX)的應用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無功補償電容器的應用
    山東冶金(2019年5期)2019-11-16 09:09:38
    β-Ga2O3薄膜的生長與應用
    光源與照明(2019年4期)2019-05-20 09:18:18
    高強化平行流電解提高A級銅表面質(zhì)量實踐
    山東冶金(2018年6期)2019-01-28 08:15:06
    一種不易起皮松散的柔軟型聚四氟乙烯薄膜安裝線
    電線電纜(2017年2期)2017-07-25 09:13:35
    石墨烯在超級電容器中的應用概述
    CIGS薄膜太陽電池柔性化
    電源技術(2015年12期)2015-08-21 08:58:58
    久久国产乱子免费精品| 日日摸夜夜添夜夜爱| 日韩在线高清观看一区二区三区| 精品久久久久久电影网| 中国美白少妇内射xxxbb| 精品久久久精品久久久| 精品酒店卫生间| 久久综合国产亚洲精品| 亚洲成人av在线免费| 久热久热在线精品观看| 91久久精品国产一区二区三区| 97超碰精品成人国产| 内地一区二区视频在线| 下体分泌物呈黄色| 欧美激情在线99| 午夜激情久久久久久久| 免费观看a级毛片全部| 欧美最新免费一区二区三区| 丝袜喷水一区| 性色av一级| 最近中文字幕高清免费大全6| 黄色配什么色好看| 观看免费一级毛片| 国产成人aa在线观看| 午夜免费鲁丝| 日韩制服骚丝袜av| 亚洲欧美精品自产自拍| 午夜福利视频精品| 精品一区二区免费观看| 国产成人精品久久久久久| av专区在线播放| 亚洲成人一二三区av| 51国产日韩欧美| 一个人观看的视频www高清免费观看| 国产黄色免费在线视频| 国产伦理片在线播放av一区| 精品人妻熟女av久视频| 免费观看a级毛片全部| 日本黄色片子视频| 视频中文字幕在线观看| 伊人久久精品亚洲午夜| 亚洲国产欧美人成| 欧美激情国产日韩精品一区| 成年免费大片在线观看| 色哟哟·www| 亚洲精品乱码久久久久久按摩| 蜜桃久久精品国产亚洲av| 久久午夜福利片| 国产精品av视频在线免费观看| 99久久精品一区二区三区| 在线 av 中文字幕| 国产亚洲91精品色在线| 中文资源天堂在线| 少妇熟女欧美另类| 日韩人妻高清精品专区| 亚洲国产精品成人综合色| 日韩欧美精品v在线| 在线精品无人区一区二区三 | 久久97久久精品| 午夜精品一区二区三区免费看| 嫩草影院新地址| 久久久久精品久久久久真实原创| 建设人人有责人人尽责人人享有的 | 夫妻午夜视频| 日产精品乱码卡一卡2卡三| 日韩国内少妇激情av| 国产淫片久久久久久久久| 少妇人妻久久综合中文| 你懂的网址亚洲精品在线观看| 大香蕉97超碰在线| 国产成年人精品一区二区| 亚洲国产高清在线一区二区三| 免费少妇av软件| 又爽又黄无遮挡网站| 免费观看的影片在线观看| 丝袜美腿在线中文| 欧美日韩视频高清一区二区三区二| 少妇人妻 视频| 日产精品乱码卡一卡2卡三| 纵有疾风起免费观看全集完整版| 色视频www国产| 日本一二三区视频观看| 免费av毛片视频| 91aial.com中文字幕在线观看| 成人美女网站在线观看视频| 亚洲欧美日韩另类电影网站 | 久久午夜福利片| 中文精品一卡2卡3卡4更新| 亚洲精华国产精华液的使用体验| 天美传媒精品一区二区| 亚洲欧美精品自产自拍| 欧美一区二区亚洲| 久久精品熟女亚洲av麻豆精品| 夫妻午夜视频| 亚洲欧美一区二区三区国产| 欧美性猛交╳xxx乱大交人| 国产极品天堂在线| 欧美日本视频| 欧美一级a爱片免费观看看| 如何舔出高潮| 亚洲欧美中文字幕日韩二区| 一二三四中文在线观看免费高清| 国产真实伦视频高清在线观看| 亚洲在久久综合| 欧美日韩亚洲高清精品| 久久久欧美国产精品| 中文在线观看免费www的网站| 嫩草影院新地址| 国产一区二区在线观看日韩| 成人国产麻豆网| 婷婷色综合大香蕉| 日日啪夜夜撸| 永久网站在线| 国产成人午夜福利电影在线观看| 啦啦啦中文免费视频观看日本| 最近最新中文字幕免费大全7| 男女边摸边吃奶| 国产一区二区三区综合在线观看 | 2018国产大陆天天弄谢| av免费在线看不卡| 国产成人精品久久久久久| 欧美xxⅹ黑人| 亚洲欧美日韩东京热| 真实男女啪啪啪动态图| 国产久久久一区二区三区| 国产精品久久久久久精品古装| 丰满人妻一区二区三区视频av| 亚洲国产精品999| 麻豆精品久久久久久蜜桃| 综合色丁香网| 日日摸夜夜添夜夜添av毛片| 亚洲精品久久久久久婷婷小说| 狂野欧美白嫩少妇大欣赏| 91午夜精品亚洲一区二区三区| 欧美97在线视频| 午夜老司机福利剧场| 青青草视频在线视频观看| 大话2 男鬼变身卡| 成人亚洲精品一区在线观看 | 日本一二三区视频观看| 久久99热这里只有精品18| 亚洲av中文av极速乱| h日本视频在线播放| 赤兔流量卡办理| 美女cb高潮喷水在线观看| av免费在线看不卡| 日本免费在线观看一区| 亚洲丝袜综合中文字幕| 亚洲图色成人| 一区二区三区乱码不卡18| 久久ye,这里只有精品| 国产午夜福利久久久久久| 日本三级黄在线观看| 少妇熟女欧美另类| 久久国内精品自在自线图片| 最近最新中文字幕免费大全7| 最近中文字幕2019免费版| 女的被弄到高潮叫床怎么办| 有码 亚洲区| av免费观看日本| 国产精品一区二区性色av| 三级男女做爰猛烈吃奶摸视频| 老女人水多毛片| 日韩 亚洲 欧美在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产 一区 欧美 日韩| 亚洲国产色片| 久久韩国三级中文字幕| 日韩欧美 国产精品| 国产精品麻豆人妻色哟哟久久| 国产 精品1| 好男人在线观看高清免费视频| 日日撸夜夜添| 久久鲁丝午夜福利片| 精品久久久噜噜| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美精品专区久久| 在线看a的网站| 两个人的视频大全免费| 身体一侧抽搐| 五月伊人婷婷丁香| 国国产精品蜜臀av免费| 午夜老司机福利剧场| 免费看日本二区| 国产美女午夜福利| 在线 av 中文字幕| 国产精品伦人一区二区| 亚洲内射少妇av| 亚洲综合色惰| 一区二区av电影网| 国产精品偷伦视频观看了| 一级爰片在线观看| 欧美3d第一页| 韩国av在线不卡| 99久国产av精品国产电影| 免费观看的影片在线观看| 91久久精品国产一区二区成人| 2018国产大陆天天弄谢| 免费看不卡的av| 人人妻人人看人人澡| 人妻一区二区av| 欧美人与善性xxx| 亚洲欧美成人精品一区二区| 赤兔流量卡办理| 成年女人在线观看亚洲视频 | 久久人人爽人人爽人人片va| 欧美bdsm另类| 搡女人真爽免费视频火全软件| 蜜臀久久99精品久久宅男| 一区二区三区精品91| 91午夜精品亚洲一区二区三区| 水蜜桃什么品种好| 青春草亚洲视频在线观看| 五月玫瑰六月丁香| 国产精品秋霞免费鲁丝片| 深夜a级毛片| 热99国产精品久久久久久7| 国产成人福利小说| 久久久久久伊人网av| 麻豆国产97在线/欧美| av一本久久久久| 亚洲美女视频黄频| 国产午夜精品久久久久久一区二区三区| 亚洲人成网站高清观看| 国产欧美日韩一区二区三区在线 | 欧美成人精品欧美一级黄| 久久鲁丝午夜福利片| 亚洲性久久影院| 免费黄网站久久成人精品| 国产 精品1| 国产成人免费无遮挡视频| 日本av手机在线免费观看| 亚洲精品久久午夜乱码| 91久久精品国产一区二区成人| 午夜激情久久久久久久| 久久人人爽人人爽人人片va| 久久久久久国产a免费观看| 啦啦啦中文免费视频观看日本| 亚洲av成人精品一二三区| 亚洲精品乱久久久久久| 日韩三级伦理在线观看| 日韩三级伦理在线观看| 国产精品爽爽va在线观看网站| 亚洲伊人久久精品综合| 中文精品一卡2卡3卡4更新| 国产精品爽爽va在线观看网站| 免费不卡的大黄色大毛片视频在线观看| av播播在线观看一区| 日本午夜av视频| 国产老妇女一区| 麻豆久久精品国产亚洲av| 身体一侧抽搐| 免费观看av网站的网址| 在线看a的网站| 精品国产露脸久久av麻豆| 在线a可以看的网站| 亚洲欧美精品自产自拍| 欧美三级亚洲精品| 国产午夜福利久久久久久| 国产高清不卡午夜福利| 九草在线视频观看| 夫妻性生交免费视频一级片| av在线亚洲专区| 男女那种视频在线观看| 欧美成人午夜免费资源| 蜜桃久久精品国产亚洲av| 亚洲精品成人av观看孕妇| 国产老妇伦熟女老妇高清| 久久国内精品自在自线图片| 欧美日韩国产mv在线观看视频 | 亚洲国产欧美在线一区| 日日撸夜夜添| 亚洲欧美日韩无卡精品| 亚洲欧美日韩无卡精品| 亚洲真实伦在线观看| 欧美日韩精品成人综合77777| 99精国产麻豆久久婷婷| 不卡视频在线观看欧美| 搞女人的毛片| 夜夜爽夜夜爽视频| 日韩欧美一区视频在线观看 | 天美传媒精品一区二区| 美女国产视频在线观看| 少妇人妻久久综合中文| 精华霜和精华液先用哪个| 国产精品国产三级专区第一集| av福利片在线观看| 黄色配什么色好看| 人人妻人人澡人人爽人人夜夜| 国产精品不卡视频一区二区| 伊人久久精品亚洲午夜| 亚洲三级黄色毛片| av在线亚洲专区| 午夜激情久久久久久久| 亚洲高清免费不卡视频| 国产精品熟女久久久久浪| 青青草视频在线视频观看| 久久精品久久精品一区二区三区| 日韩欧美 国产精品| 久久精品国产a三级三级三级| 午夜精品国产一区二区电影 | 国产免费视频播放在线视频| 亚洲婷婷狠狠爱综合网| 五月天丁香电影| 国产69精品久久久久777片| 中文在线观看免费www的网站| 中文字幕亚洲精品专区| 中文在线观看免费www的网站| 久久精品国产a三级三级三级| 国产91av在线免费观看| 亚洲丝袜综合中文字幕| 岛国毛片在线播放| 成人毛片60女人毛片免费| 亚洲精品,欧美精品| 免费不卡的大黄色大毛片视频在线观看| 亚洲av成人精品一二三区| 国产一区亚洲一区在线观看| 嫩草影院新地址| 精品人妻熟女av久视频| 新久久久久国产一级毛片| 在线精品无人区一区二区三 | 在线观看三级黄色| 嫩草影院新地址| 最近2019中文字幕mv第一页| 亚洲人成网站高清观看| 久热这里只有精品99| 亚洲av二区三区四区| 久久久亚洲精品成人影院| 亚洲av免费在线观看| 午夜福利视频精品| 免费在线观看成人毛片| 免费黄频网站在线观看国产| 九草在线视频观看| 亚洲精品成人久久久久久| 亚洲av一区综合| 王馨瑶露胸无遮挡在线观看| 少妇熟女欧美另类| 精品久久久噜噜| 国产成人精品久久久久久| 亚洲怡红院男人天堂| 听说在线观看完整版免费高清| 99九九线精品视频在线观看视频| 日日摸夜夜添夜夜爱| 亚洲精品第二区| 少妇的逼水好多| 国产高清不卡午夜福利| 丰满人妻一区二区三区视频av| 青春草亚洲视频在线观看| 下体分泌物呈黄色| 久久久久久久亚洲中文字幕| 看免费成人av毛片| 黄片wwwwww| 97在线视频观看| 少妇熟女欧美另类| 成人一区二区视频在线观看| 人人妻人人澡人人爽人人夜夜| 99视频精品全部免费 在线| 午夜日本视频在线| 日日撸夜夜添| 亚洲,一卡二卡三卡| 国产乱来视频区| 国产欧美日韩精品一区二区| 免费看光身美女| 寂寞人妻少妇视频99o| 成人国产av品久久久| 自拍偷自拍亚洲精品老妇| 亚洲精品视频女| 中国三级夫妇交换| 嫩草影院入口| 蜜桃久久精品国产亚洲av| 中文资源天堂在线| 久久久亚洲精品成人影院| 国产成人福利小说| 亚洲精品影视一区二区三区av| 搡老乐熟女国产| 日本欧美国产在线视频| 久久久久久久国产电影| 97超碰精品成人国产| 欧美精品一区二区大全| 久久人人爽人人爽人人片va| 丰满少妇做爰视频| 国产欧美日韩一区二区三区在线 | av国产免费在线观看| 色吧在线观看| av在线播放精品| 美女高潮的动态| 国产成人freesex在线| 亚洲va在线va天堂va国产| 亚洲精品456在线播放app| 十八禁网站网址无遮挡 | 久久久午夜欧美精品| 最近最新中文字幕免费大全7| 天美传媒精品一区二区| 美女视频免费永久观看网站| 91狼人影院| 国产女主播在线喷水免费视频网站| 国产黄频视频在线观看| 欧美少妇被猛烈插入视频| 18禁在线无遮挡免费观看视频| 日韩免费高清中文字幕av| 亚洲美女搞黄在线观看| 免费大片黄手机在线观看| 最新中文字幕久久久久| 免费观看性生交大片5| 三级国产精品片| 特级一级黄色大片| 欧美亚洲 丝袜 人妻 在线| 观看美女的网站| 91精品国产九色| 久久久久国产网址| 欧美bdsm另类| 69av精品久久久久久| 亚洲图色成人| 久久久久久久久久久免费av| 成人国产麻豆网| 18禁在线无遮挡免费观看视频| 秋霞在线观看毛片| 另类亚洲欧美激情| av在线蜜桃| 最近最新中文字幕免费大全7| 天天躁日日操中文字幕| 国产v大片淫在线免费观看| 伦精品一区二区三区| 五月伊人婷婷丁香| 六月丁香七月| videos熟女内射| 天堂中文最新版在线下载 | 日韩一本色道免费dvd| 国产一区二区亚洲精品在线观看| 亚洲av免费高清在线观看| 国产高清三级在线| 天堂中文最新版在线下载 | 两个人的视频大全免费| 97超视频在线观看视频| 国语对白做爰xxxⅹ性视频网站| 国产亚洲一区二区精品| 内射极品少妇av片p| 一区二区三区精品91| 亚洲精品国产色婷婷电影| a级毛色黄片| 网址你懂的国产日韩在线| 日韩制服骚丝袜av| 久久韩国三级中文字幕| 国内精品宾馆在线| 新久久久久国产一级毛片| 亚洲欧美日韩东京热| 中文字幕免费在线视频6| 色5月婷婷丁香| 五月伊人婷婷丁香| 狂野欧美激情性bbbbbb| kizo精华| 五月伊人婷婷丁香| 男插女下体视频免费在线播放| 99热这里只有是精品50| 精品久久久久久久久亚洲| 亚洲欧美日韩卡通动漫| 黄色欧美视频在线观看| 亚洲成人中文字幕在线播放| 好男人在线观看高清免费视频| 最近最新中文字幕大全电影3| 久久女婷五月综合色啪小说 | 美女主播在线视频| 午夜福利在线观看免费完整高清在| 亚洲电影在线观看av| 精品国产乱码久久久久久小说| 嫩草影院精品99| 成人亚洲精品av一区二区| 成年版毛片免费区| 少妇人妻一区二区三区视频| 久久韩国三级中文字幕| videos熟女内射| 成人毛片a级毛片在线播放| 亚洲国产欧美人成| 极品教师在线视频| 一级毛片黄色毛片免费观看视频| 丰满人妻一区二区三区视频av| 成人无遮挡网站| av黄色大香蕉| 午夜福利在线观看免费完整高清在| 黑人高潮一二区| 建设人人有责人人尽责人人享有的 | 建设人人有责人人尽责人人享有的 | 国产探花极品一区二区| 久久久久久九九精品二区国产| 高清av免费在线| 狂野欧美激情性bbbbbb| 18+在线观看网站| 日韩欧美一区视频在线观看 | 国产淫语在线视频| 日韩人妻高清精品专区| 国精品久久久久久国模美| 最近最新中文字幕大全电影3| 久久精品国产亚洲av涩爱| 99热网站在线观看| 乱系列少妇在线播放| 国产精品99久久久久久久久| 亚洲美女视频黄频| 大香蕉97超碰在线| 尾随美女入室| 亚洲图色成人| 国语对白做爰xxxⅹ性视频网站| 一级av片app| 亚洲色图av天堂| 大码成人一级视频| 又爽又黄无遮挡网站| 大陆偷拍与自拍| 97在线视频观看| 亚洲成人一二三区av| 岛国毛片在线播放| 国产一区亚洲一区在线观看| 99热这里只有是精品在线观看| 人人妻人人看人人澡| 久久久久久伊人网av| 熟女人妻精品中文字幕| 久久久久久久久久久免费av| 亚洲精品色激情综合| 国产人妻一区二区三区在| 在线播放无遮挡| 国产成人91sexporn| 久久久色成人| av专区在线播放| 哪个播放器可以免费观看大片| 亚洲aⅴ乱码一区二区在线播放| 下体分泌物呈黄色| 国产成人一区二区在线| 久久久久久久久大av| 久久99热6这里只有精品| 人人妻人人澡人人爽人人夜夜| 国产精品久久久久久精品电影| 久久久色成人| 日韩,欧美,国产一区二区三区| 日本wwww免费看| 国产亚洲av嫩草精品影院| 免费看光身美女| 亚洲国产欧美人成| 久久精品国产亚洲av天美| 亚洲精品乱码久久久久久按摩| 日韩成人av中文字幕在线观看| 亚洲精品乱码久久久v下载方式| 在线看a的网站| 午夜亚洲福利在线播放| 精品视频人人做人人爽| 亚洲欧美成人综合另类久久久| 男插女下体视频免费在线播放| 99久久精品一区二区三区| 欧美日韩精品成人综合77777| 日本一二三区视频观看| 欧美+日韩+精品| 午夜免费鲁丝| 十八禁网站网址无遮挡 | 久热久热在线精品观看| 神马国产精品三级电影在线观看| 高清欧美精品videossex| 夜夜看夜夜爽夜夜摸| 久久午夜福利片| 色网站视频免费| 王馨瑶露胸无遮挡在线观看| av福利片在线观看| 欧美xxxx黑人xx丫x性爽| 国产男女超爽视频在线观看| 嫩草影院入口| 国产精品.久久久| 亚洲婷婷狠狠爱综合网| .国产精品久久| 亚洲综合精品二区| 全区人妻精品视频| 国产精品熟女久久久久浪| 我的老师免费观看完整版| 老司机影院成人| 交换朋友夫妻互换小说| 日韩 亚洲 欧美在线| freevideosex欧美| 少妇熟女欧美另类| av播播在线观看一区| 超碰97精品在线观看| 国产 一区精品| 国产v大片淫在线免费观看| 国产一区二区在线观看日韩| 欧美高清性xxxxhd video| 国产成人91sexporn| videos熟女内射| 国产成年人精品一区二区| 亚洲丝袜综合中文字幕| 国产视频首页在线观看| 色5月婷婷丁香| 校园人妻丝袜中文字幕| 高清视频免费观看一区二区| 国产av国产精品国产| 波野结衣二区三区在线| 18禁裸乳无遮挡免费网站照片| 高清视频免费观看一区二区| 一区二区三区四区激情视频| 老司机影院毛片| 人妻人人澡人人爽人人| 最近最新中文字幕大全免费视频 | 天天躁日日躁夜夜躁夜夜| 国产精品av久久久久免费| 天天躁日日躁夜夜躁夜夜| 中文字幕人妻丝袜制服| 女性被躁到高潮视频| 麻豆av在线久日| 欧美亚洲日本最大视频资源| 国产精品秋霞免费鲁丝片| av在线老鸭窝| 又粗又硬又长又爽又黄的视频| 久久精品熟女亚洲av麻豆精品| 美女扒开内裤让男人捅视频| 久久毛片免费看一区二区三区| www.精华液| 免费在线观看完整版高清| 亚洲精品av麻豆狂野| 黑丝袜美女国产一区| 一本大道久久a久久精品| 男女免费视频国产| 亚洲精品第二区|