• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of chloride salt concentration on unconfined compression strength of cement-treated Lianyungang soft marine clay

    2013-01-08 08:39:27ZhangDingwenCaoZhiguoFanLibinDengYongfeng
    關(guān)鍵詞:年青外祖母男子

    Zhang Dingwen Cao Zhiguo Fan Libin Deng Yongfeng

    (School of Transportation, Southeast University, Nanjing 210096, China)

    Soft marine clay deposits around the coast of Lianyungang and Yancheng regions in Jiangsu province. Its natural water content varies from 50% to 110% and the liquidity indices of the marine clay are in the range of close to or more than one. In particular, the salt concentration is high in pore water of marine soft soil. Due to its very high water content, low shear strength and high salt concentration, the disposal of marine clay at construction sites is a challenge encountered by engineers. An improvement of the super soft soil within a short period to serve as a geomaterial is necessary in ocean and geotechnical engineering practise.

    The deep mixing method is an attractive ground improvement technique for high water content soft clay. In the deep mixing method, powder cement or slurry cement is injected into the natural soil at the required depth and a blade is pushed into the ground to mix the soil and cement. This technique has been increasingly used worldwide, especially in Europe, North America and Asia since its development in Sweden and Japan in 1970s[1]. The deep mixing method was introduced to China in the early 1980s. Because this technique can effectively reduce the compressibility and permeability and increase the strength of soft ground, it rapidly spread throughout China in the 1990s, especially for controlling seepage and as a cut-off barrier, reduction of settlement, prevention of sliding failure and increasing the bearing capacity of the ground[2-5].The bond strength of cement-treated soil is controlled by many factors such as soil gradation, types of clay minerals, organic matter, pH, slat concentration, mixing energy and so on. Numerous researchers have performed experimental studies on the fundamental mechanical properties and engineering behaviour of soil-cement in the past four decades[6-9].

    This study, therefore, aims to quantify the influence of the sodium chloride salt concentration on the strength of cement stabilized Lianyungang soft marine clays. Clay with various sodium chloride salt concentrations was prepared artificially and stabilized by ordinary Portland cement with different contents. A series of UCS tests were performed on cement stabilized clay specimens after desired curing periods. Based on the experimental results, a new parameter, termed as porosity-salt concentration/cement content (PSC) ratio, is found to be appropriate to describe the effect of salt on the strength of cement-treated soil.

    1 Materials and Method

    1.1 Materials

    1.1.1 Soil sample

    The Lianyungang marine clay used in this investigation was obtained from the Liezikou bridge construction field, Guannan County, Jiangsu Province, China. Clay was sampled at 2.0 m depth under the ground surface. The properties of Lianyungang marine clay samples are shown in Tab.1. The clay has a high plasticity with a liquid limit of 58.7% and a plastic limit of 33.8%. The total salt concentration is quite high, with a value of 46.16 g/L. Tab.2 presents the chemical analysis results of the pore water of Lianyungang marine clay. The results show that the dominant salt composition in the pore water is sodium chloride. Based on the sieving and hydrometer analysis (see Fig.1), the soil used in this research consists of 2.8% sand and 97.2% fines (53.5% silt and 43.7% clay), indicating that the Lianyungang marine clay is composed of silt and clay fractions. The pH value of the pore water of natural clay is about 7.8, which is close to neutrality. Liu et al.[15]reported that the most predominant clay minerals in Lianyungang marine deposits were illite-smectite mixed-layer mineral and illite. These results indicate that the Lianyungang marine clay has not only high water content, high void ratio, high compressibility, but also contains a much higher content of sodium chloride salt.

    Tab.1 Properties of Lianyungang marine clay

    Tab.2 Chemical analysis results of pore water of Lianyungang marine clay

    Fig.1 Soil particle distribution curve

    1.1.2 Cement

    Ordinary Portland cement type I is used to investigate the effect of the cement content (the ratio of cement weight to weight of the dry soil, termed asaw) on the strength of stabilized clay.

    1.2 Test method

    In order to investigate the effect of the salt concentration, the clays were treated to eliminate the salt by the wash method first. The wash method was applied as follows: the Lianyungang marine clay from the construction field was air-dried, crushed down, sieved, and dipped in distilled water for 24 h. Salt in the soft soil was removed after repeating this process 5 times. After that, the desired content of sodium chloride salt was added into the washed soil and mixed thoroughly for 10 min by a miniature mixing machine. Their sodium chloride salt concentrations (ratios of the sodium chloride salt weight to the dry soil weight, termed asCs), were 2.5%, 5.0%, 7.5% and 10.0%.

    The clay was then mixed with 10%, 15% and 20% cement by mass of dry soil. In order to eliminate the effects of differences in water content, the samples were prepared to contain the same water content of 70% (i.e. 1.2 times liquid limit) by adding the distilled water into the clay. Kitchen stand mixers were used to mix the cement into the clay for a total mixing time of 10 min until a homogenous clay-water-cement paste was attained. To ensure thorough mixing, the sides of the bowl were continuously scraped and the mixer was stopped as often as needed to scrape off any materials packed onto the bottom of the bowl. Upon completion of mixing, the soil was compacted into plastic tubes with an internal diameter of 50 mm and a height of 100 mm (see Fig.2). All the samples were compacted by hand vibrating to eliminate the entrapped air. The samples were cured at a temperature of about 20 ℃ and a humidity of 95% for the desired curing periods. The samples were removed and carefully extruded from the plastic molds after curing the desired periods. The UCS tests were run on specimens after curing periods of 7, 14 and 28 d according to the procedure of ASTM D2166-06 at a strain rate of 1% per minute. Before the UCS test, the diameter, height and weight of the specimens were measured with accuracies of about 0.1 mm and 0.01 g.

    Fig.2 Picture of prepared specimens

    2 Test Results and Discussion

    2.1 Effect of salt concentration on the UCS

    Since the UCS after curing 28 d is usually used as the design value, the UCS after curing 28 d is discussed hereafter. Fig.3 shows the UCS of the cement stabilized clay after curing 28 d vs. salt concentration, where each data point represents the mean of three specimens. The measured UCS of specimens after curing 7 d and 14 d exhibits the same trend as that after curing 28 d. It can be seen that the UCS of the specimens increases with the increase in cement content and curing time, indicating that a great amount of hydration compounds such as calcium silicate hydrate and calcium aluminate hydrate gels is formed. Compared with the UCS of undisturbed natural sample (i.e. 15 kPa), the results indicate that the addition of cement induces a drastic strength improvement of Lianyungang marine clay and cement stabilization is an attractive and successful method to improve the engineering properties of the Lianyungang soft marine clay.

    Fig.3 UCS of specimens vs. salt concentration

    Fig.3 also indicates that the salt concentration has a great effect on the strength of cement-treated Lianyungang marine clay. It can be seen that the UCS decreases approximately linearly with the increase in the salt concentration. For instance, for specimens with a cement of 20% and a salt concentration of 2.5%, the 28-d UCS is 1.54 MPa. Nevertheless, if the salt concentration is increased to 10.0%, the 28-d UCS is only 1.146 MPa. This leads to the conclusion that the presence of sodium chloride salt in soil has a detrimental effect on the process of the cementation of cement-soil mixtures. This finding agrees with the experimental results of Sinat[16]and Xing et al[12]. However, an increase in strength with salt content in cement-treated clay was reported by Miura et al.[17], Onitsuka et al.[18]and Nor[19]. It should be noted that the strength increase with the increase in the salt concentration was achieved in cement- or lime-treated clay with a high humic acid content. It is generally accepted that the presence of the organic matter in the clay acts to the detriment of the strength of cement or lime stabilized clays. The salt contributes to coagulate with the organic cation, which leaves the clay particles exposed to cement or lime for pozzolanic reaction content, as a result, the strength of cement- or lime-treated soil increases with the increase in salt concentration.

    2.2 Prediction model of UCS of cement-treated salt-rich clay

    Lorenzo and Bergado[8]reported that the after-curing void ratio (et) and cement content (aw) are the fundamental parameters to characterize the strength and compressibility of cement-admixed clay at high water contents. Fig.4 shows the UCS as a function of the after-curing voids/cement content ratio (et/aw, defined as the after-curing voids divided by the cement content). It can be seen that it is not possible to establish a unique relationship between these two factors. The results differ from those obtained by Lorenzo and Bergado[8]where the after-curing voids/cement content ratio was found to be a useful parameter in the analysis of the strength development of materials that the writers studied. However, in their study the salt concentration of the soil was not reported and constant, so that the after-curing voids/cement content ratio does not reflect the influence of salt concentration.

    Fig.4 UCS vs. et/aw ratio

    As mentioned above, the UCS of cement-treated soil is dependent on the cement content, the salt concentration, the curing time and the total water content, and so on; therefore, a new parameter, termed as the PSC ratio, is proposed to relate the UCS values and those factors.

    翠姨越來越瘦了,哥哥去到外祖母家看了她兩次,也不過是吃飯,喝酒,應(yīng)酬了一番。而且說是去看外祖母的。在這里年青的男子,去拜訪年青的女子,是不可以的。哥哥回來也并不帶回什么歡喜或是什么新的憂郁,還是一樣和大家打牌下棋。

    (1)

    wherenis the porosity.

    Since the structure of the cement-treated soil is dependent on cement content, soil mineral, curing time and water content in the cement-water-soil mixture, it is logical to utilize a parameter that combines the effects of these factors. The porositynis adopted in this study to take into account the effect of water content primarily. The porosity can be determined by void ratioeusing Eq.(2), which can be determined by the solid-liquid-air phase concept using Eq. (3) with the predetermined indices of specific gravity, water contentw, and bulk density. The bulk density is calculated according to the dimensions of the specimen measured before the UCS test. For convenience of use by engineers in practise, water content here refers to the water in the soil before the mix of cement (i.e. 70% in this study). A composite specific gravity, based on the soil, cement and sodium chloride salt mass percentages in the specimen, is used. The specific gravity values of the soil, the cement, and the sodium chloride salt are 2.72, 3.10 and 2.165, respectively. Sodium chloride salt is simply assumed as a solid phase, although it would react with hydrated products and form complicated forms. Such an assumption is useful to derive the values of the specific gravity of mixed soils.

    (2)

    (3)

    whereGsis the composite specific gravity of the treated soil (dimensionless);γis the unit weight of the treated soil (kN/m3);γwis the unit weight of water (kN/m3).

    Fig.5 shows the UCS of the cement stabilized clay after curing 28 d vs. the PSC ratio. It can be seen that the unconfined compressive strengths increase with the decrease in the ratio. As expected, the increase in cement content, the reduction of water content and the decrease in salt concentration results in a reduction of the ratio, consequently, yielding an increase of unconfined compressive strength. A good correlation (coefficient of determination,R2>0.97) can be observed between this ratio and the UCS of the soil-cement mixture, which can be expressed as

    PSC=Aln(UCS)+B

    (4)

    whereAis the slope of the linear regression, andBis the intercept with ordinate. Furthermore, all the fitting curves representing various salt concentrations present a similar format. The parametersAandBare dependent upon the salt concentration, as observed in Fig.6.

    Fig.5 UCS vs. PSC ratio

    Fig.6 Parameters A and B vs. salt concentration

    It is important to point out that the slopes of the fitting lines and the intercepts change linearly with the increase in the salt concentrationCsand the parameters can be fit very well by the following equations:

    A=-0.012Cs-0.016

    (5)

    B=0.117 4Cs+0.123

    (6)

    Substituting Eqs. (5) and (6) into Eq. (4) gives

    PSC=(-0.012Cs-0.016)ln(UCS)+(0.011 74Cs+0.123)

    (7)

    Eq.(7) relates the UCS of cement-treated soil to the cement content, the salt concentration and the water content of the soil. This equation is very practical for finding the right design parameters. For instance, using Eq.(7), the engineer can choose the amount of cement to provide the soil-cement mixture that meets the strength required by the project for Lianyungang marine clay with a given salt concentration.

    It should be pointed out that those parameters in the empirical equation depend on the used materials (soil, cement and salt type). Therefore, one trying to stabilize a different soil has to carry out a similar testing program and develop the relevant equation using this approach.

    3 Conclusions

    1) The presence of sodium chloride salt in soil has a detrimental effect on the UCS of cement-treated Lianyungang soft marine clay.

    2) The PSC ratio is shown to be an appropriate parameter to evaluate the effect of the salt concentration on the UCS of the soil-cement mixture.

    3) An empirical equation is proposed to predict the UCS of cement-treated Lianyungang marine clay taking the effect of salt into account. It is possible that those parameters in the empirical equation depend on the used materials (soil, cement and salt type).

    Although this study provides information of the UCS of cement-treated Lianyungang marine clay, the microstructure mechanism of adverse effect of salt on the UCS of cement-treated soils requires additional research.

    [1]Bruce D A, Bruce M E C, Dimillio A F. Dry mix methods: a brief overview of international practice[C]//ProceedingsofInternationalConferenceonDryMixMethodsforDeepSoilStabilization. Rotterdam, Netherlands, 1999: 15-25.

    [2]Porbaha A, Tanaka H, Kobayashi M. State of the art in deep mixing technology: part Ⅱ. applications[J].GroundImprovement, 1998,2(3): 125-139.

    [3]Han J, Zhou H T, Ye F. State-of-practice review of deep soil mixing techniques in China[J].JournalofTransportationResearchRecord, 2002,1808: 49-57.

    [4]Liu S Y, Hryciw R D. Evaluation and quality control of dry-jet-mixed clay soil-cement columns by standard penetration test[J].JournalofTransportationResearchRecord, 2003,1849: 47-52.

    [5]Xu C, Ye G B. Deformation and bearing capacity of composite foundation with cement-soil mixed pile[J].ChineseJournalofGeotechnicalEngineering, 2005,27(5): 600-604.(in Chinese)

    [6]Coastal Development Institute of Technology.Thedeepmixingmethod—principle,designandconstruction[M]. Rotterdam,Netherlands: A. A. Balkema Publishers, 2002.

    [7]Horpibulsuk S, Miura N, Nagaraj T S. Assessment of strength development in cement admixed high water content clays with Abram’s law as basis[J].Géotechnique, 2003,53(4): 439-444.

    [8]Lorenzo G A, Bergado D T. Fundamental parameters of cement-admixed clay-new approach[J].JournalofGeotechnicalandGeoenvironmentalEngineering,ASCE, 2004,130(10):1042-1050.

    [9]Shen S L, Han J, Miura N. Laboratory evaluation of mixing energy consumption and its influence on soil-cement strength[J].JournalofTransportationResearchRecord, 2004,1868: 23-30.

    [10]Moh Z C. Soil stabilization with cement and sodium additives[J].JournalofSoilMechanicsandFoundationDivision,ASCE, 1962,88(6): 81-105.

    [11]Angelova R. Effect of some chemical additives on the strength development of soil-cement[C]//ProceedingsoftheInternationalConferenceontheImplicationsofGroundChemistryandMicrobiologyforConstruction. Bristol, UK, 1992: 147-159.

    [12]Xing H F, Yang X M, Xu C, et al. Strength characteristics and mechanisms of salt-rich soil-cement[J].EngineeringGeology, 2009,103(1/2): 33-38.

    [13]Modmoltin C, Voottipruex P. Influence of salts on strength of cement-treated clays[J].GroundImprovement, 2009,162(2):15-26.

    [14]Modmoltin C, Lu J M, Onitsuka K. Influence of humic acid and salt concentration on lime stabilised Ariake clays and microstructure research[J].ChineseJournalofGeotechnicalEngineering, 2004,26(2): 281-286.

    [15]Liu S Y, Shao G H, Du Y J. Depositional and geotechnical properties of marine clays in Lianyungang, China[J].EngineeringGeology, 2011,121(1): 66-74.

    [16]Sinat K. Influence of storage conditions on geotechnical properties of Ariake clay and on its chemical stabilization[D]. Saga, Japan: Saga University, 2006.

    [17]Miura N, Taesiri Y, Koga Y, et al. Practical of improvement of Ariake clay by mixing admixtures[C]//ProceedingsoftheInternationalSymposiumonShallowSeaandLowLand. Saga, Japan, 1998: 159-168.

    [18]Onitsuka K, Modmoltin M, Kouno M, et al. Effect of organic matter on lime and cement stabilized Ariake clay[J].JournalofGeotechnicalEngineering,JSCE, 2004,729(Ⅲ-62): 1-13.

    [19]Nor Z B M Y. Stabilisation of organic clay using lime-added salt[D]. Skudai, Malaysia: Universiti Teknologi Malaysia, 2007.

    猜你喜歡
    年青外祖母男子
    外祖母的美味(節(jié)選)
    對(duì)歌趁年青
    歌海(2021年2期)2021-06-22 02:25:59
    年青一代應(yīng)助力長(zhǎng)輩科學(xué)用網(wǎng)
    2019年下半年男子棋手等級(jí)分
    棋藝(2019年8期)2019-12-25 01:25:06
    回憶我的外祖母——堅(jiān)強(qiáng)獨(dú)立的女“水客”廖德英
    文史春秋(2019年9期)2019-10-23 05:18:54
    占先
    智族GQ(2019年7期)2019-08-26 09:31:36
    從男子力保衛(wèi)戰(zhàn)開始
    男子買執(zhí)照騙47萬拆遷款
    菊香依存
    滿臉通紅
    国产在视频线精品| 久久久精品欧美日韩精品| 国产免费一级a男人的天堂| 中文欧美无线码| 秋霞伦理黄片| 亚洲人成网站高清观看| 久久久久久久精品精品| 亚州av有码| 日日撸夜夜添| 十八禁网站网址无遮挡 | 亚洲精品乱久久久久久| 午夜福利网站1000一区二区三区| 国产精品国产av在线观看| 成人黄色视频免费在线看| 纵有疾风起免费观看全集完整版| 午夜免费观看性视频| 国产综合懂色| 久久精品国产亚洲av天美| av国产久精品久网站免费入址| 人妻少妇偷人精品九色| 午夜福利高清视频| 男女边摸边吃奶| 2022亚洲国产成人精品| 欧美日韩精品成人综合77777| 国产精品无大码| 一级黄片播放器| 国产精品嫩草影院av在线观看| 国产视频内射| 亚洲,欧美,日韩| 日韩制服骚丝袜av| 嫩草影院入口| 男女那种视频在线观看| 国产高潮美女av| 国产男人的电影天堂91| 乱系列少妇在线播放| 夜夜爽夜夜爽视频| 22中文网久久字幕| 欧美性感艳星| 一级av片app| 国产成人一区二区在线| 欧美日韩精品成人综合77777| 成人漫画全彩无遮挡| 久久久久国产精品人妻一区二区| 久久这里有精品视频免费| 成年女人看的毛片在线观看| 国产男女内射视频| 国产成人精品婷婷| 亚洲天堂av无毛| 久久人人爽人人爽人人片va| 少妇被粗大猛烈的视频| 啦啦啦啦在线视频资源| 亚洲国产精品成人久久小说| 亚洲国产精品成人久久小说| 久久人人爽人人片av| 亚洲国产成人一精品久久久| 丝袜喷水一区| 另类亚洲欧美激情| 国产成人精品福利久久| 人妻夜夜爽99麻豆av| 国产黄频视频在线观看| 日本色播在线视频| 男的添女的下面高潮视频| 国产成年人精品一区二区| 亚洲精品国产av成人精品| 新久久久久国产一级毛片| 久久女婷五月综合色啪小说 | 777米奇影视久久| 国内精品宾馆在线| 一级黄片播放器| 天堂俺去俺来也www色官网| 亚洲国产欧美人成| 夫妻午夜视频| 亚洲aⅴ乱码一区二区在线播放| 精品久久久久久久末码| 午夜爱爱视频在线播放| 欧美高清性xxxxhd video| 蜜桃亚洲精品一区二区三区| 国产黄片视频在线免费观看| 美女内射精品一级片tv| 亚洲欧美清纯卡通| 日本-黄色视频高清免费观看| 欧美激情国产日韩精品一区| 亚洲色图av天堂| 国产精品.久久久| 男女边摸边吃奶| 自拍欧美九色日韩亚洲蝌蚪91 | 国产伦精品一区二区三区四那| 成年女人在线观看亚洲视频 | 精品久久国产蜜桃| 少妇猛男粗大的猛烈进出视频 | 只有这里有精品99| 亚洲国产欧美人成| 在线免费十八禁| 天堂网av新在线| 夜夜看夜夜爽夜夜摸| 亚洲怡红院男人天堂| 亚洲av免费在线观看| 在线观看美女被高潮喷水网站| 18禁在线播放成人免费| 国产在视频线精品| av国产久精品久网站免费入址| 少妇人妻久久综合中文| 日韩电影二区| 欧美+日韩+精品| 夫妻性生交免费视频一级片| 国内少妇人妻偷人精品xxx网站| 国产爱豆传媒在线观看| 亚洲一区二区三区欧美精品 | 99久国产av精品国产电影| 51国产日韩欧美| 午夜精品国产一区二区电影 | 色5月婷婷丁香| 99精国产麻豆久久婷婷| 久久精品久久久久久噜噜老黄| 中文字幕av成人在线电影| 午夜激情久久久久久久| 禁无遮挡网站| av线在线观看网站| 国产精品.久久久| 国产精品无大码| 午夜免费鲁丝| 男人狂女人下面高潮的视频| 亚洲国产精品999| 欧美xxⅹ黑人| 大码成人一级视频| 亚洲欧美中文字幕日韩二区| 亚洲丝袜综合中文字幕| 天堂中文最新版在线下载 | 亚洲国产精品成人综合色| 久久久久久久国产电影| 秋霞伦理黄片| 日韩欧美 国产精品| 色吧在线观看| 超碰av人人做人人爽久久| 韩国av在线不卡| 国产又色又爽无遮挡免| 男人舔奶头视频| 国产精品国产三级国产av玫瑰| 久久6这里有精品| 男人狂女人下面高潮的视频| 午夜免费男女啪啪视频观看| 免费观看在线日韩| 婷婷色综合大香蕉| 青春草亚洲视频在线观看| 国产精品熟女久久久久浪| 日韩一区二区三区影片| 新久久久久国产一级毛片| 国产成人freesex在线| 99精国产麻豆久久婷婷| 国产高清不卡午夜福利| 97人妻精品一区二区三区麻豆| 九九久久精品国产亚洲av麻豆| 久久久久久久午夜电影| 能在线免费看毛片的网站| 蜜桃亚洲精品一区二区三区| 免费看不卡的av| 欧美xxⅹ黑人| 国产精品偷伦视频观看了| 久久久久久久亚洲中文字幕| 国产高清三级在线| kizo精华| 交换朋友夫妻互换小说| 日韩三级伦理在线观看| 女的被弄到高潮叫床怎么办| 一级毛片电影观看| 春色校园在线视频观看| 99热这里只有精品一区| 人人妻人人爽人人添夜夜欢视频 | 精品久久久久久电影网| 国产精品嫩草影院av在线观看| 夜夜爽夜夜爽视频| 久久国产乱子免费精品| 欧美成人一区二区免费高清观看| 一级毛片aaaaaa免费看小| 亚洲自拍偷在线| 国产免费一区二区三区四区乱码| 久久久精品免费免费高清| 日韩中字成人| 国产 精品1| 免费大片黄手机在线观看| 99久久中文字幕三级久久日本| 日本欧美国产在线视频| 色综合色国产| 在线观看国产h片| 久久精品国产亚洲av天美| 亚洲精品aⅴ在线观看| 色视频在线一区二区三区| 新久久久久国产一级毛片| 午夜日本视频在线| 久久久久九九精品影院| 搞女人的毛片| 亚洲国产欧美人成| 在线观看人妻少妇| 日韩伦理黄色片| 男人爽女人下面视频在线观看| 97超碰精品成人国产| 日本wwww免费看| 最近的中文字幕免费完整| 亚洲色图av天堂| 精品久久国产蜜桃| 韩国av在线不卡| 热99国产精品久久久久久7| 久久久欧美国产精品| 又大又黄又爽视频免费| 国产精品一区www在线观看| 国产成人freesex在线| 亚洲av福利一区| 男人狂女人下面高潮的视频| 国产乱人视频| 毛片一级片免费看久久久久| 欧美日本视频| 国产精品人妻久久久影院| 婷婷色av中文字幕| 在线看a的网站| 精品少妇久久久久久888优播| 日本三级黄在线观看| 神马国产精品三级电影在线观看| 精品久久久精品久久久| 亚洲最大成人中文| 亚洲最大成人av| 尤物成人国产欧美一区二区三区| 国产黄频视频在线观看| 成年人午夜在线观看视频| 亚洲国产日韩一区二区| 我要看日韩黄色一级片| 欧美潮喷喷水| 99久久中文字幕三级久久日本| 午夜激情福利司机影院| 精品熟女少妇av免费看| 91久久精品国产一区二区成人| 免费少妇av软件| 婷婷色综合大香蕉| 建设人人有责人人尽责人人享有的 | 国产一级毛片在线| 中文字幕av成人在线电影| 亚洲精品影视一区二区三区av| 美女被艹到高潮喷水动态| 少妇人妻 视频| 免费在线观看成人毛片| 国产高潮美女av| av卡一久久| 亚洲精华国产精华液的使用体验| 一本色道久久久久久精品综合| 18禁在线无遮挡免费观看视频| 中文乱码字字幕精品一区二区三区| 尾随美女入室| 国产男人的电影天堂91| videos熟女内射| 欧美日韩在线观看h| 热99国产精品久久久久久7| 黄色配什么色好看| 视频中文字幕在线观看| 赤兔流量卡办理| 日韩大片免费观看网站| 熟妇人妻不卡中文字幕| 国产黄频视频在线观看| 国产片特级美女逼逼视频| 成人亚洲精品一区在线观看 | 亚洲国产欧美在线一区| 午夜亚洲福利在线播放| 亚洲久久久久久中文字幕| freevideosex欧美| 国产精品久久久久久精品电影小说 | 三级男女做爰猛烈吃奶摸视频| 一级毛片电影观看| 成年女人在线观看亚洲视频 | 青春草视频在线免费观看| 又大又黄又爽视频免费| 美女视频免费永久观看网站| 国产黄频视频在线观看| 久久精品国产亚洲网站| 国内少妇人妻偷人精品xxx网站| 色播亚洲综合网| 中文资源天堂在线| 有码 亚洲区| 免费黄频网站在线观看国产| 国产伦精品一区二区三区视频9| 99热6这里只有精品| 亚洲电影在线观看av| 女人十人毛片免费观看3o分钟| 联通29元200g的流量卡| 美女国产视频在线观看| 中文字幕免费在线视频6| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品电影| 天天躁日日操中文字幕| 久久99热6这里只有精品| 日本午夜av视频| 免费看a级黄色片| 深爱激情五月婷婷| 国产亚洲一区二区精品| 欧美人与善性xxx| 美女主播在线视频| 亚洲色图综合在线观看| 蜜桃久久精品国产亚洲av| 插逼视频在线观看| 又粗又硬又长又爽又黄的视频| 黄色怎么调成土黄色| 涩涩av久久男人的天堂| 在线观看av片永久免费下载| 国产精品精品国产色婷婷| 亚洲国产成人一精品久久久| 夫妻性生交免费视频一级片| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久久精品电影小说 | 一级毛片久久久久久久久女| 91狼人影院| 少妇人妻一区二区三区视频| 丝袜美腿在线中文| 亚洲在线观看片| 午夜福利在线在线| 免费观看无遮挡的男女| 涩涩av久久男人的天堂| av网站免费在线观看视频| 色哟哟·www| 国产亚洲一区二区精品| 国产精品.久久久| 少妇人妻 视频| 成人黄色视频免费在线看| 最近手机中文字幕大全| 日韩电影二区| 成人黄色视频免费在线看| 嫩草影院入口| 看黄色毛片网站| 搡女人真爽免费视频火全软件| 国产在视频线精品| 尾随美女入室| 最近最新中文字幕免费大全7| 午夜福利视频1000在线观看| 午夜免费男女啪啪视频观看| 亚洲怡红院男人天堂| 亚洲欧美一区二区三区国产| 成人亚洲精品一区在线观看 | 身体一侧抽搐| 日本av手机在线免费观看| 国产日韩欧美在线精品| 欧美日韩在线观看h| 久久国内精品自在自线图片| 国产精品99久久久久久久久| 亚洲一级一片aⅴ在线观看| 三级国产精品片| 亚洲国产精品999| 欧美日韩精品成人综合77777| 久久午夜福利片| 看黄色毛片网站| 少妇人妻久久综合中文| 熟女人妻精品中文字幕| 搞女人的毛片| 国产欧美另类精品又又久久亚洲欧美| 乱系列少妇在线播放| 成人免费观看视频高清| 中文精品一卡2卡3卡4更新| 日本黄色片子视频| 在线天堂最新版资源| 久久久久久久午夜电影| 日本欧美国产在线视频| 国产成人午夜福利电影在线观看| 国产老妇女一区| 丰满人妻一区二区三区视频av| 日韩一区二区三区影片| 成人亚洲欧美一区二区av| 91久久精品国产一区二区三区| 国产精品蜜桃在线观看| 成人毛片a级毛片在线播放| 少妇猛男粗大的猛烈进出视频 | 精品午夜福利在线看| 极品教师在线视频| 日本黄大片高清| 国产av国产精品国产| 日韩欧美一区视频在线观看 | 少妇的逼水好多| 又大又黄又爽视频免费| 狂野欧美白嫩少妇大欣赏| 大陆偷拍与自拍| 国产精品精品国产色婷婷| 国产大屁股一区二区在线视频| 日韩人妻高清精品专区| 王馨瑶露胸无遮挡在线观看| 亚洲精华国产精华液的使用体验| 精品国产乱码久久久久久小说| 日本一二三区视频观看| 免费看光身美女| 一级a做视频免费观看| 亚洲久久久久久中文字幕| 午夜福利在线在线| 日本一二三区视频观看| 国产欧美亚洲国产| 男女边吃奶边做爰视频| 国产乱人偷精品视频| 午夜福利在线在线| 美女cb高潮喷水在线观看| 国产成人freesex在线| 国国产精品蜜臀av免费| av黄色大香蕉| 2022亚洲国产成人精品| 午夜老司机福利剧场| 91狼人影院| 高清av免费在线| 久久久久久久久久久丰满| 亚洲综合色惰| 狂野欧美激情性bbbbbb| www.av在线官网国产| 精品久久久久久久久av| 亚洲美女搞黄在线观看| 午夜福利网站1000一区二区三区| 日本猛色少妇xxxxx猛交久久| 少妇 在线观看| 久久久久久久久久人人人人人人| 国产精品人妻久久久影院| 欧美3d第一页| 你懂的网址亚洲精品在线观看| 国产一区二区亚洲精品在线观看| 性色av一级| 日本免费在线观看一区| 深爱激情五月婷婷| 在线观看一区二区三区激情| 国产精品福利在线免费观看| 99久久精品国产国产毛片| 久久久久久久久久成人| 国产精品国产三级国产av玫瑰| 午夜爱爱视频在线播放| 少妇高潮的动态图| 国产黄a三级三级三级人| 久久精品国产亚洲av天美| 汤姆久久久久久久影院中文字幕| 欧美激情在线99| 国产免费又黄又爽又色| 成人黄色视频免费在线看| 老司机影院成人| 国产精品一区二区在线观看99| 久久久久久国产a免费观看| 久久久久久久久久久丰满| 黄片无遮挡物在线观看| 丝袜脚勾引网站| 精品酒店卫生间| 欧美少妇被猛烈插入视频| 免费黄频网站在线观看国产| 少妇被粗大猛烈的视频| 免费黄色在线免费观看| 精品一区二区三卡| 欧美日韩一区二区视频在线观看视频在线 | 色吧在线观看| 国产精品蜜桃在线观看| 男女边摸边吃奶| 一本一本综合久久| 三级经典国产精品| 听说在线观看完整版免费高清| 日日啪夜夜爽| 亚洲真实伦在线观看| 热99国产精品久久久久久7| 亚洲最大成人中文| av在线天堂中文字幕| 国产探花在线观看一区二区| 久久久久久伊人网av| 女的被弄到高潮叫床怎么办| 自拍偷自拍亚洲精品老妇| 亚洲欧美中文字幕日韩二区| 国产av码专区亚洲av| 国产精品久久久久久av不卡| 国产伦在线观看视频一区| 精品久久国产蜜桃| 在线观看一区二区三区激情| 成人国产麻豆网| 日本黄色片子视频| 日韩av不卡免费在线播放| 欧美成人一区二区免费高清观看| 日日摸夜夜添夜夜添av毛片| 欧美另类一区| 精品久久久噜噜| 嫩草影院精品99| 国产成年人精品一区二区| 干丝袜人妻中文字幕| 久久精品人妻少妇| 男人和女人高潮做爰伦理| 99视频精品全部免费 在线| 免费观看无遮挡的男女| 日韩电影二区| 在线观看三级黄色| 国产日韩欧美亚洲二区| 少妇丰满av| 亚洲国产成人一精品久久久| 国产午夜精品久久久久久一区二区三区| 亚洲欧美清纯卡通| 国产精品一区二区三区四区免费观看| 少妇的逼好多水| 大又大粗又爽又黄少妇毛片口| 99热网站在线观看| 91精品国产九色| 国产午夜精品久久久久久一区二区三区| 亚洲欧美中文字幕日韩二区| 三级国产精品欧美在线观看| 男插女下体视频免费在线播放| 国产成人一区二区在线| 亚洲最大成人av| 欧美日本视频| 91久久精品国产一区二区三区| 国产成人a区在线观看| 亚洲av.av天堂| 久久久a久久爽久久v久久| 99久久中文字幕三级久久日本| 久久久久久久国产电影| 少妇被粗大猛烈的视频| 精品99又大又爽又粗少妇毛片| 久久99蜜桃精品久久| 午夜激情福利司机影院| 日韩一本色道免费dvd| 国产 精品1| 久久精品人妻少妇| 久久精品夜色国产| 国产黄色免费在线视频| 久久精品国产亚洲网站| 婷婷色麻豆天堂久久| 麻豆乱淫一区二区| 自拍偷自拍亚洲精品老妇| 性色av一级| 国产午夜精品久久久久久一区二区三区| 亚洲人与动物交配视频| 午夜日本视频在线| 青春草国产在线视频| 国产黄频视频在线观看| 久久99热6这里只有精品| 91aial.com中文字幕在线观看| 亚洲欧美日韩另类电影网站 | 中国美白少妇内射xxxbb| 久久人人爽av亚洲精品天堂 | 十八禁网站网址无遮挡 | 中文天堂在线官网| 国产黄色视频一区二区在线观看| 在线看a的网站| 国产美女午夜福利| 国产爱豆传媒在线观看| 少妇人妻精品综合一区二区| 久久久午夜欧美精品| 亚洲精品成人av观看孕妇| 久久99精品国语久久久| 日本黄色片子视频| 精品人妻视频免费看| 在线亚洲精品国产二区图片欧美 | 免费观看性生交大片5| 日韩国内少妇激情av| 一二三四中文在线观看免费高清| 日韩,欧美,国产一区二区三区| 久久综合国产亚洲精品| 特级一级黄色大片| 69av精品久久久久久| 久久久久久久久久久免费av| 国语对白做爰xxxⅹ性视频网站| 少妇人妻精品综合一区二区| 亚洲真实伦在线观看| 国产精品久久久久久精品古装| 深夜a级毛片| 亚洲久久久久久中文字幕| 高清日韩中文字幕在线| 天堂网av新在线| 男女边吃奶边做爰视频| 欧美老熟妇乱子伦牲交| 黄色怎么调成土黄色| 五月开心婷婷网| 日韩免费高清中文字幕av| av在线蜜桃| 久久精品国产亚洲网站| 亚洲精品日韩av片在线观看| 久久久久久久大尺度免费视频| 99热国产这里只有精品6| 日日啪夜夜爽| 久久久国产一区二区| 小蜜桃在线观看免费完整版高清| 国产精品三级大全| 欧美老熟妇乱子伦牲交| 亚洲,一卡二卡三卡| 黄色配什么色好看| 精品久久久精品久久久| 交换朋友夫妻互换小说| 久久人人爽人人片av| 亚洲熟女精品中文字幕| 日本三级黄在线观看| 亚州av有码| 精品久久久久久久人妻蜜臀av| 久久久久久久午夜电影| 久久亚洲国产成人精品v| av在线播放精品| 精品国产露脸久久av麻豆| 下体分泌物呈黄色| 国产极品天堂在线| 嘟嘟电影网在线观看| 亚洲综合色惰| 久久这里有精品视频免费| 国产精品精品国产色婷婷| 国产精品.久久久| 国产亚洲精品久久久com| 亚洲精品视频女| 国产精品蜜桃在线观看| 亚洲av.av天堂| 美女被艹到高潮喷水动态| 免费大片18禁| 黄色日韩在线| 简卡轻食公司| av播播在线观看一区| 久久精品国产亚洲av天美| 亚洲av福利一区| 久久久久久久久久成人| 亚洲高清免费不卡视频| 我的老师免费观看完整版| 欧美丝袜亚洲另类| 男女下面进入的视频免费午夜| 又爽又黄a免费视频| 一级a做视频免费观看| 91狼人影院| 丰满少妇做爰视频| 亚洲av欧美aⅴ国产| 天堂俺去俺来也www色官网| 欧美bdsm另类| 国产免费又黄又爽又色| 在线观看国产h片| 国产精品一区二区在线观看99|