• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced mobility of MoS2 field-effect transistors by combining defect passivation with dielectric-screening effect*

    2021-01-21 02:15:26ZhaoLi李釗JingPingXu徐靜平LuLiu劉璐andXinYuanZhao趙心愿
    Chinese Physics B 2021年1期
    關鍵詞:劉璐心愿

    Zhao Li(李釗), Jing-Ping Xu(徐靜平), Lu Liu(劉璐), and Xin-Yuan Zhao(趙心愿)

    School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan 430074,China

    Keywords: MoS2 transistor,sulfur vacancy,high-k dielectric,mobility

    1. Introduction

    Since the first discovery of graphene in 2004, twodimensional(2D)materials have been intensively investigated due to their unique structural characteristics and excellent electrical properties.[1–3]Although graphene has been shown to have extremely high carrier mobility,the lack of its bandgap limits its application in logic devices. Unlike graphene,MoS2has an appropriate bandgap and is one of the most representative 2D semiconductor materials in transition metal dichalcogenides(TMDs). It has been found that the bulk MoS2shows an indirect bandgap of 1.2 eV and the monolayer MoS2exhibits a direct bandgap of 1.8 eV,[4–6]which has a wide range of applications in field-effect transistors, memories,[7,8]logic circuits,[9,10]photodetectors,[11]etc.

    Theoretical calculations based on the density functional theory demonstrated that the mobility of the monolayer MoS2can reach 410 cm2/V·s at room temperature.[12,13]However,experimentally,the mobility of the monolayer MoS2as channel material of the field-effect transistor (FET) is still far from its intrinsic limit, which is originated from the effects of some factors, e.g., charged impurities,[14,15]surface defects,[16]phonon scattering,[17]etc.The high-dielectric constant (k) gate dielectrics were widely used to reduce the influence of the charged impurities and can effectively screen their Coulomb scattering, which has been confirmed in many experiments.[6,14,18]Li et al.[19]fabricated MoS2FET with a back-gate structure on Si substrate with high-k Al2O3as the gate dielectric,and its mobility has been significantly improved as compared with the gate dielectric of SiO2. On the other hand,the defect engineering is one of the effective ways to further improve the performance of MoS2devices. Yu et al.[12]found that the sulfur vacancies,which are the main type of intrinsic defects in MoS2, can be effectively repaired by(3-mercaptopropyl)trimethoxysilane(MPS)under a mild annealing, resulting in a significant reduction of the Coulomb impurity and short-range scatterings. However, these investigations usually focused on one of the influencing factors and rarely combined two or more factors for a comprehensive analysis. Therefore, in this work, we adopt a facile approach to combine the defect engineering with the dielectric-screening engineering to fabricate the back-gated MoS2transistors to investigate the effects of the surface passivation of MoS2and the high-k gate dielectrics on electrical characteristics of devices,especially on the carrier mobility.

    2. Experiment s

    The device fabrication begins with thermally-growing SiO2on the cleaned heavily-doped p++-Si wafers with a resistivity of 0.01 Ω·cm,and the thickness of the SiO2was measured to be 32 nm by an ellipsometer. The few-layered MoS2flakes were obtained by a micromechanical exfoliation of the bulk MoS2crystal purchased from SPI,[20]and then transferred to the SiO2/p++-Si substrates with the help of Scotch tape. The thickness of these MoS2flakes can be roughly distinguished by their colors:[21]gray, blue, and purple correspond to the bulk,multilayer,and few-layered MoS2,respectively, as shown in Fig. 1(a). Figure 1(b) shows the AFM height image of the few-layered MoS2flake with a thicknesses of 5.32 nm (~8 layers). The few-layered MoS2flake was chosen to fabricate transistors because it has higher density of states than the monolayer MoS2, which will result in a rather high drive current.[22,23]

    Then, these MoS2flakes were vulcanized in a tube furnace. The one gram of sulfur powder was placed downstream in constant-temperature zone and the MoS2/SiO2/p++-Si substrates were placed upstream ~10 cm away from the sulfur powder in the same temperature zone,as shown schematically in Fig.1(c).During the vulcanization,the furnace temperature was hold at 200?C(an optimum temperature via experiments)for one hour, and the diffusion rate of the sulfur vapor was controlled by adjusting the flow rate of the carrier gas(N2).

    Fig.1. (a)Optical micrographs of different-thickness MoS2 flakes on the dielectric; (b)the AFM height image of the few-layered MoS2 flake; (c) schematic diagram for sulfur treatment on MoS2 flakes; (d) optical micrographs of MoS2 transistor with the inset showing its cross-section diagram.

    Next, the sulfur-treated MoS2flakes were used to fabricate the back-gated FETs. Electron beam lithography was used to pattern the source/drain(S/D)of MoS2transistors,and 15-nm Cr/45-nm Au were successively deposited by electronbeam evaporation,followed by a liftoff processing to form S/D electrodes, as shown in Fig. 1(d). The channel length (L) of all transistors was 2 μm and the channel width (W) was 1–4 μm depending on the shapes of the MoS2flakes, and the schematic diagram of the transistor structure is shown in the inset of Fig. 1(d). Lastly, the transistors were rapidly annealed at 300?C for 300 s in a N2atmosphere (1500 sccm)with a pressure of 0.2 Torr to reduce the contact resistance between the MoS2and the Cr/Au electrodes.[24]For comparison, a transistor with the MoS2unexperienced vulcanization was also fabricated as a control sample. Electrical measurements of the transistors were performed using a Keithley 4200-SCS semiconductor parameter analyzer under a light-tight and electrically-shielded condition at room temperature.

    3. Results and discussion

    To ensure the validity of the measured results, at least four transistors for each sample were measured. Figure 2(a)shows the typical drain current (Id) versus drain–source voltage(Vds)curves of the transistors with and without the MoS2treated by vulcanization. It can be clearly seen that the transistors have good output characteristics with clear cut-off region, transition region, and saturation region. Obviously, the post-vulcanization transistor has higher on-state current than the pre-vulcanization transistor,attributing to the reduction of the sulfur defects during vulcanization of MoS2. Figure 2(b)is the Id–Vdscurves in the linear region (Vdsfrom -0.1 V to 0.1 V), and a good linear relationship between Idand Vdscan be observed,indicating a good ohmic contact between the MoS2and the Cr/Au electrodes. Figures 2(c)and 2(d)are the transfer characteristics of the MoS2FETs with Vds=0.2 V in linear scale and in semi-log scale, respectively, and the drain current is normalized to eliminate the effect of different channel widths on the output current. The threshold voltage (Vth)is extracted by the linear extrapolation method through the maximum-slope point of the Id–Vdscurve in Fig. 2(c) to be 1.39 V and 2.43 V before and after vulcanization,respectively.The positive shift of Vthafter the sulfur treatment is mainly due to the reduction of the sulfur vacancies in the MoS2flakes.[25]

    Fig. 2. (a) Output characteristics of MoS2 FETs with and without sulfur treatment; (b) Id–Vds curves in the linear region of the back-gated MoS2 transistor with MoS2 treated by vulcanization;transfer characteristics with Vds=0.2 V in linear scale(c)and in semi-log scale(d);(e)extracted mobility from the transfer curves in(c);(f)PL spectrum of MoS2 flakes before and after vulcanization.

    From the transfer curves of the two transistors before and after vulcanization,their field-effect mobility can be extracted using by

    where Coxis the oxide capacitance per unit area (1.08×10-7F/cm2for 32-nm thick SiO2), L and W are the channel length and width, respectively, and Vgsis the gate–source voltage. As can be seen from Fig. 2(e), the mobility of the transistor with sulfur treatment on MoS2is largely enhanced as compared to that of the non-treated MoS2transistor (46.03 cm2/V·s vs. 25.71 cm2/·V·s). Obviously, this is attributed to the reduction of the sulfur-vacancy defects in MoS2by the sulfur treatment,because these defects could act as scattering centers to slow down the carrier transportation in the channel, resulting in low mobility. This can be supported by Raman spectral analysis,because the measured photoluminescence(PL)intensity depends on the surface defect density of MoS2and the PL intensity weakens as the surface defects decrease.[26]Clearly, from Fig. 2(f), the PL intensity of the MoS2flakes becomes weaker after the sulfur treatment compared to that before the sulfur treatment,indicating the reduction of the defects related to the sulfur vacancies. In addition,the peak of the MoS2PL intensity is at 1.78 eV,which is consistent with the forbidden band of the few-layered MoS2.AFM was employed to analyze the surface morphology of the MoS2flakes before and after vulcanization. It was observed that the surface roughness was decreased by ~0.09 nm after the vulcanization,further indicating the role of the vulcanization. From the above analyses, it can be concluded that the sulfur treatment on MoS2can enhance the carrier mobility in the channel due to the reduction of the surface roughness and the defects in the MoS2flakes.

    Fig.3. AFM surface images(5×5 μm2)of MoS2 flakes before(a)and after(b)sulfur treatment.

    High-k materials,e.g.,hafnium dioxide(HfO2),alumina(Al2O3),are widely used in CMOS devices and play an important role as gate dielectrics in MoS2-based transistors, since they are expected to screen the charged-impurity scattering near the channel, resulting in an enhancement of the carrier mobility.[19,27,28]For this purpose,high-k Al2O3and HfO2are employed to replace SiO2as the gate dielectric of the MoS2transistors respectively to further improve the carrier mobility.The Al2O3and HfO2thin films were grown by atomic layer deposition(ALD)at 200?C with TDMA-Hf(Hf(N(CH3)2)4),TMA (Al(CH3)3), and H2O as Hf, Al, and O precursors, respectively, and N2as the carrier/purge gas. The injection schedule for one cycle of Al2O3and HfO2deposition was 0.02 s–15 s–0.015 s–15 s of TMA–N2–H2O–N2and 0.15 s–15 s–0.015 s–15 s of TDMA–Hf–N2–H2O–N2, respectively.The Al2O3and HfO2thin films with a thickness of 32 nm were obtained after 291 and 311 deposition cycles, respectively. The metal/Al2O3or HfO2/Si MOS capacitors with an area of 7.85×10-5cm2were fabricated using gold as the gate electrode to characterize the dielectric properties of the two films.

    Figure 4 shows the typical high-frequency (1 MHz) C–V curves for the metal/HfO2/p++-Si and metal/Al2O3/p++-Si MOS capacitors. The accumulation (or oxide) capacitances of the HfO2and Al2O3MOS capacitors are 37 pF and 27 pF,respectively. According to the formula k = (Coxtox)/(Aε0),where ε0is the vacuum permittivity, A is the electrode area,and toxis the physical thickness of the HfO2or Al2O3, the equivalent k-value of the gate dielectric is extracted to be 11.51 and 6.91 for the HfO2and Al2O3gate dielectrics,respectively.Correspondingly,the calculated capacitance-equivalent thickness (CET=(εox/k)tox, εoxis the relative dielectric constant of SiO2) of the HfO2dielectric is smaller than that of the Al2O3dielectric(10.84 nm vs. 18.06 nm),which is beneficial for enhancing the dielectric-screening effect and scaling down the MoS2-based transistor. Even so, the k-value of Al2O3is more suitable for balancing the charged-impurity scattering and the phonon scattering on electrons in the MoS2channel,because the high-k dielectrics can reduce the Coulomb scattering through the dielectric-screening effect but simultaneously can also cause a serious phonon scattering.[17]Moreover, as can be seen from Fig.4,the C–V hysteresis of the Al2O3sample is much smaller than that of the HfO2sample, implying the fewer defect states in the former than the latter.

    Fig.4. The C–V curves of metal/Al2O3/p++-Si and metal/HfO2/p++-Si MOS capacitors.

    Figures 5(a) and 5(b) show the typical transfer characteristics of the MoS2transistors with different gate dielectrics before and after the sulfur treatment on MoS2, respectively,and the corresponding changes of their mobility with Vgsare depicted in Figs. 5(c) and 5(d). The extracted on/off current ratio,peak mobility(μ),and subthreshold swing(SS)for these transistors are listed in Table 1. It can be seen that the transistors with different gate dielectrics (SiO2, Al2O3, and HfO2)have a similar on/off current ratio before the MoS2vulcanization. After the sulfur treatment on MoS2, the on/off current ratios of the transistors are increased, with the maximum obtained in the transistor with Al2O3gate dielectric(2.11×106).

    Fig.5. Typical transfer characteristics of MoS2 transistors with different gate dielectrics(a)before and(b)after sulfur treatment on MoS2;the extracted mobility of MoS2 transistors with different gate dielectrics(c)before and(d)after sulfur treatment on MoS2.

    Table 1. Electrical properties of the MoS2 FETs with SiO2, HfO2, and Al2O3 as the gate dielectric respectively before and after the sulfur treatment.

    The extracted SS’s for the transistors with SiO2, HfO2, and Al2O3gate dielectrics are 253.4 mV/dec, 245.2 mV/dec, and 212.1 mV/dec before the sulfur treatment on MoS2and become 229.7 mV/dec, 201.3 mV/dec, and 179.4 mV/dec, respectively, after the sulfur treatment on MoS2, i.e., the SS is significantly lowered after the MoS2vulcanization as compared with that before the vulcanization, with the minimum obtained in the transistor with Al2O3gate dielectric.The small SS implies a good interface quality between MoS2and Al2O3because the SS is related to the interface-state density(Dit)

    where Csis the barrier capacitance per unit area at the MoS2surface and can be ignored because the SS is generally extracted in the deep subthreshold region; Citis the interfacestate capacitance per unit area; kBis the Boltzmann constant,and q is the electronic charge. According to Eqs. (2) and(3), the calculated interface-state density between MoS2and Al2O3is 3.50×1012eV-1·cm-2before the sulfur treatment and 2.75×1012eV-1·cm-2after the treatment.

    The mobility of the MoS2transistor is a main concern.The extracted peak mobility for the transistors with SiO2,HfO2,and Al2O3as the gate dielectric and the sulfur treatment on MoS2is 46.03 cm2/V·s,33.63 cm2/V·s,and 64.74 cm2V·s,respectively, which is significantly improved as compared to their counterparts without the sulfur treatment on MoS2(1.5–2.3 times). The high-k oxides are usually used as the gate dielectrics to suppress the Coulomb scattering owing to their dielectric-screening effect.Therefore,the significant improvement for the transistor with Al2O3as the gate dielectric can be attributed to the dielectric-screening effect. However, an opposite trend is observed for the MoS2transistor with HfO2as the gate dielectric, which has an even lower mobility than its counterpart with SiO2as the gate dielectric. Ma et al.[17]reported this similar phenomenon and argued that although the high-k dielectrics can reduce the Coulomb scattering by their dielectric-screening effect at room temperature, an enhanced surface-phonon scattering produced by them counteracts this advantage. When the phonon scattering is negligible,the carrier mobility is almost limited by the Coulomb scattering and is enhanced as the k-value of the gate dielectric increases.However, when the k-value is too large, the electrons in the channel are more likely to excite the phonons in the surrounding dielectric through the remote Coulomb interactions,so that the channel carriers are more strongly affected by the phonon scattering,resulting in the reduction of the mobility. Based on the explanation, the MoS2transistors with Al2O3and HfO2as the gate dielectric exhibit the enhanced and reduced mobility, respectively, as compared with their counterpart with SiO2as the gate dielectric, because the former has a suitable k-value so that the dielectric-screening effect is dominant,and the latter has a larger k-value so that the phonon scattering overwhelms the dielectric-screening effect. The same phenomenon was also demonstrated in Konar’s research on the effect of the high-k gate dielectric on the charge transport in the graphene FETs.[29]

    4. Conclusion

    In summary, the sulfur-treated few-layered MoS2backgated FETs with different gate dielectrics have been fabricated and their electrical properties are compared. It is found that the transistors with the sulfur treatment on MoS2channel exhibit a greatly enhanced carrier mobility as compared to their counterparts without the sulfur treatment. This is mainly owing to the reduction of the defects related to the sulfur vacancies during the vulcanization of the MoS2. Further, it is found that when the high-k Al2O3and HfO2are used to replace SiO2as the gate dielectric, the mobility of the relevant transistors gets enhanced and reduced, respectively. The involved mechanisms lie in that a suitable k-value of the former leads to an effective dielectric-screening effect and a larger kvalue of the latter induces an enhanced phonon scattering over the dielectric-screening effect. For the Al2O3-gate dielectric MoS2FET,its carrier mobility is tripled after the sulfur treatment on MoS2(64.74 cm2/V·s) as compared to that before the sulfur treatment, and also its on/off current ratio and subthreshold swing are improved. Therefore,the sulfur treatment on MoS2provides a facile solution to improve the mobility of the MoS2FETs,especially for the transistor with a reasonable k-value gate dielectric,e.g.,Al2O3.

    猜你喜歡
    劉璐心愿
    由年齡推斷屬相
    磨刀不誤砍柴工
    誰算得對
    劉璐規(guī)劃設計作品
    心愿
    劉璐規(guī)劃設計作品
    《珍惜點滴》
    青年文學家(2022年5期)2022-03-25 13:17:27
    最美的心愿
    心聲歌刊(2020年3期)2020-08-12 09:37:26
    不一樣的春節(jié),一樣的健康心愿
    我們的心愿
    亚洲精品一区av在线观看| 久久久久久久久久黄片| 久9热在线精品视频| 久久久久久大精品| 天天添夜夜摸| 叶爱在线成人免费视频播放| 日本免费a在线| av在线天堂中文字幕| 99国产综合亚洲精品| 国产一区二区激情短视频| 久久久国产精品麻豆| 日本免费a在线| 日韩高清综合在线| 国产高清三级在线| 国产老妇女一区| 在线十欧美十亚洲十日本专区| 亚洲av美国av| 亚洲成人久久性| 亚洲最大成人中文| 亚洲成av人片在线播放无| 国产欧美日韩精品一区二区| 久久久精品大字幕| 最新在线观看一区二区三区| 一级作爱视频免费观看| 久久久国产成人免费| 熟女人妻精品中文字幕| 国产97色在线日韩免费| 国产精品久久电影中文字幕| 制服人妻中文乱码| 国产伦精品一区二区三区四那| 91九色精品人成在线观看| 色老头精品视频在线观看| 亚洲人成网站在线播放欧美日韩| 婷婷精品国产亚洲av在线| 少妇丰满av| 国产国拍精品亚洲av在线观看 | 欧美日韩福利视频一区二区| 亚洲av成人精品一区久久| 欧美不卡视频在线免费观看| 久久婷婷人人爽人人干人人爱| av视频在线观看入口| 成年女人毛片免费观看观看9| 国产午夜精品论理片| 99国产极品粉嫩在线观看| 亚洲av日韩精品久久久久久密| 别揉我奶头~嗯~啊~动态视频| 亚洲av成人精品一区久久| 亚洲成人免费电影在线观看| 九色成人免费人妻av| 观看美女的网站| 欧美xxxx黑人xx丫x性爽| 蜜桃久久精品国产亚洲av| 亚洲最大成人中文| 午夜福利欧美成人| 欧美xxxx黑人xx丫x性爽| 国内久久婷婷六月综合欲色啪| 岛国在线观看网站| 欧美午夜高清在线| 桃红色精品国产亚洲av| 国产综合懂色| 国产老妇女一区| 久久精品国产亚洲av香蕉五月| 精品久久久久久久毛片微露脸| 99在线视频只有这里精品首页| 人妻丰满熟妇av一区二区三区| 精品国产亚洲在线| 国产精品,欧美在线| 成人无遮挡网站| 亚洲国产中文字幕在线视频| 99视频精品全部免费 在线| 久久久久免费精品人妻一区二区| 日韩欧美精品v在线| 在线观看美女被高潮喷水网站 | 最近视频中文字幕2019在线8| 国产中年淑女户外野战色| 国产高清三级在线| 午夜视频国产福利| 亚洲欧美一区二区三区黑人| 国产精品一及| 丰满的人妻完整版| 国产不卡一卡二| 亚洲精品色激情综合| 深夜精品福利| 亚洲av电影在线进入| 一个人免费在线观看的高清视频| 国产欧美日韩精品亚洲av| 偷拍熟女少妇极品色| 我要搜黄色片| 无人区码免费观看不卡| 蜜桃久久精品国产亚洲av| 久久久国产精品麻豆| 日韩亚洲欧美综合| 人人妻人人看人人澡| 日韩欧美国产一区二区入口| av视频在线观看入口| 亚洲国产中文字幕在线视频| 黄色成人免费大全| 国产精品三级大全| 久久精品国产99精品国产亚洲性色| 99热精品在线国产| 亚洲av成人不卡在线观看播放网| 国产爱豆传媒在线观看| 亚洲av一区综合| 成人无遮挡网站| 国产 一区 欧美 日韩| 精品国产亚洲在线| 丰满的人妻完整版| 性色avwww在线观看| 中文字幕人妻熟人妻熟丝袜美 | 国产精品一区二区三区四区久久| 欧美日韩乱码在线| 国产极品精品免费视频能看的| 中文资源天堂在线| 蜜桃久久精品国产亚洲av| 久久久久久久亚洲中文字幕 | 高清日韩中文字幕在线| 免费大片18禁| 午夜免费激情av| 国产v大片淫在线免费观看| 国产 一区 欧美 日韩| 国内精品久久久久精免费| 精品福利观看| 久久精品91蜜桃| 国产精品av视频在线免费观看| 我要搜黄色片| 麻豆国产av国片精品| 国产色爽女视频免费观看| 精品一区二区三区人妻视频| 亚洲精品国产精品久久久不卡| 亚洲欧美激情综合另类| 成年女人毛片免费观看观看9| 亚洲av五月六月丁香网| 在线观看一区二区三区| tocl精华| 欧美日韩国产亚洲二区| 欧美bdsm另类| 99在线视频只有这里精品首页| 丰满人妻熟妇乱又伦精品不卡| 午夜福利在线观看免费完整高清在 | 亚洲中文日韩欧美视频| 人人妻人人澡欧美一区二区| 国产成人影院久久av| 啦啦啦观看免费观看视频高清| 日韩欧美国产一区二区入口| 久久精品91无色码中文字幕| 色综合婷婷激情| 国产成人系列免费观看| 搡老妇女老女人老熟妇| 欧美大码av| 精品福利观看| 国产精品爽爽va在线观看网站| 亚洲最大成人手机在线| 亚洲一区二区三区不卡视频| 91麻豆精品激情在线观看国产| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品av在线| 欧美+亚洲+日韩+国产| 琪琪午夜伦伦电影理论片6080| 成年免费大片在线观看| 国产精品98久久久久久宅男小说| 久久这里只有精品中国| 一本久久中文字幕| 国产又黄又爽又无遮挡在线| 成人国产一区最新在线观看| 国产伦人伦偷精品视频| 欧美一级a爱片免费观看看| 欧美又色又爽又黄视频| 丝袜美腿在线中文| 中文字幕久久专区| 日韩欧美 国产精品| 国产一区二区三区在线臀色熟女| 色尼玛亚洲综合影院| 欧美日韩黄片免| 综合色av麻豆| 欧美国产日韩亚洲一区| 伊人久久大香线蕉亚洲五| 两个人视频免费观看高清| 九色国产91popny在线| 91字幕亚洲| 亚洲av第一区精品v没综合| 国产亚洲欧美98| 变态另类成人亚洲欧美熟女| 国产欧美日韩一区二区三| 国产真实乱freesex| 特级一级黄色大片| 有码 亚洲区| 久久久精品欧美日韩精品| 成人亚洲精品av一区二区| 天天一区二区日本电影三级| 一本综合久久免费| 精品电影一区二区在线| 在线观看av片永久免费下载| 极品教师在线免费播放| 午夜精品在线福利| 亚洲精品456在线播放app | 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品久久男人天堂| 黑人欧美特级aaaaaa片| 欧洲精品卡2卡3卡4卡5卡区| 在线播放无遮挡| 悠悠久久av| 99热只有精品国产| 久久精品综合一区二区三区| 亚洲五月天丁香| 久久精品91无色码中文字幕| 国产v大片淫在线免费观看| 欧美又色又爽又黄视频| 免费人成视频x8x8入口观看| a级一级毛片免费在线观看| 欧美三级亚洲精品| 俄罗斯特黄特色一大片| 免费在线观看亚洲国产| 99久久九九国产精品国产免费| 97人妻精品一区二区三区麻豆| 91久久精品国产一区二区成人 | 国产免费一级a男人的天堂| 中文字幕熟女人妻在线| 法律面前人人平等表现在哪些方面| 精品国产超薄肉色丝袜足j| 国产一区二区三区在线臀色熟女| 高清在线国产一区| 国产免费一级a男人的天堂| 天堂动漫精品| 欧美一级毛片孕妇| 精品人妻1区二区| 高清毛片免费观看视频网站| 国产伦一二天堂av在线观看| 午夜影院日韩av| 国产精品亚洲一级av第二区| 日本撒尿小便嘘嘘汇集6| 淫妇啪啪啪对白视频| 一级黄色大片毛片| 99视频精品全部免费 在线| 久久久久久久午夜电影| 欧美另类亚洲清纯唯美| 最好的美女福利视频网| 亚洲av免费高清在线观看| 99久久精品一区二区三区| 亚洲片人在线观看| 国产视频内射| 一本久久中文字幕| 午夜精品一区二区三区免费看| 亚洲人成网站在线播放欧美日韩| 99精品在免费线老司机午夜| 在线观看66精品国产| 亚洲美女黄片视频| 国产精品日韩av在线免费观看| 亚洲成a人片在线一区二区| 免费av观看视频| 一a级毛片在线观看| 狠狠狠狠99中文字幕| 欧美中文日本在线观看视频| www日本在线高清视频| 无遮挡黄片免费观看| 国产精品一区二区三区四区久久| 99在线视频只有这里精品首页| 欧美日韩国产亚洲二区| 丁香欧美五月| 国模一区二区三区四区视频| 日本在线视频免费播放| 在线观看免费视频日本深夜| 日本与韩国留学比较| 日韩av在线大香蕉| 免费看日本二区| 日韩中文字幕欧美一区二区| avwww免费| 久久久国产成人免费| 99久久成人亚洲精品观看| 国产极品精品免费视频能看的| 十八禁网站免费在线| 亚洲人成伊人成综合网2020| 一级毛片高清免费大全| 亚洲国产日韩欧美精品在线观看 | 神马国产精品三级电影在线观看| 美女黄网站色视频| 给我免费播放毛片高清在线观看| 国内久久婷婷六月综合欲色啪| 久久久国产成人免费| 精品久久久久久久久久久久久| 99国产精品一区二区三区| 亚洲美女视频黄频| 久久九九热精品免费| 老司机在亚洲福利影院| АⅤ资源中文在线天堂| 最新美女视频免费是黄的| 亚洲中文字幕日韩| 亚洲aⅴ乱码一区二区在线播放| 亚洲天堂国产精品一区在线| 男女下面进入的视频免费午夜| 最后的刺客免费高清国语| 熟妇人妻久久中文字幕3abv| 欧美日韩中文字幕国产精品一区二区三区| 亚洲在线自拍视频| 亚洲精品在线美女| av天堂中文字幕网| 久久久久久久午夜电影| 国产综合懂色| 婷婷六月久久综合丁香| 老司机午夜福利在线观看视频| 人妻夜夜爽99麻豆av| 一边摸一边抽搐一进一小说| 美女被艹到高潮喷水动态| 色吧在线观看| 老鸭窝网址在线观看| 久久精品亚洲精品国产色婷小说| 日本 av在线| 成年免费大片在线观看| 国产av在哪里看| 国内毛片毛片毛片毛片毛片| 精品久久久久久久人妻蜜臀av| 国产熟女xx| 亚洲熟妇熟女久久| 91麻豆av在线| 欧美av亚洲av综合av国产av| 老司机午夜福利在线观看视频| 欧美区成人在线视频| 99国产精品一区二区蜜桃av| 搞女人的毛片| 国产国拍精品亚洲av在线观看 | av天堂中文字幕网| 母亲3免费完整高清在线观看| 最近最新中文字幕大全电影3| 婷婷六月久久综合丁香| 亚洲男人的天堂狠狠| 欧美一区二区精品小视频在线| 成年人黄色毛片网站| 免费av不卡在线播放| 女人十人毛片免费观看3o分钟| 亚洲欧美日韩高清在线视频| 亚洲熟妇中文字幕五十中出| 国产综合懂色| 男人舔奶头视频| 女人十人毛片免费观看3o分钟| 欧美一级a爱片免费观看看| 亚洲专区国产一区二区| 亚洲精品国产精品久久久不卡| 老司机午夜福利在线观看视频| 黄色日韩在线| 亚洲国产欧洲综合997久久,| 校园春色视频在线观看| 国产高潮美女av| 黄色视频,在线免费观看| 国产精品久久电影中文字幕| 久久国产精品影院| 免费看a级黄色片| 偷拍熟女少妇极品色| 国产v大片淫在线免费观看| 又黄又爽又免费观看的视频| 亚洲成人精品中文字幕电影| 天美传媒精品一区二区| 97超级碰碰碰精品色视频在线观看| 激情在线观看视频在线高清| 最新中文字幕久久久久| 亚洲av熟女| 男女那种视频在线观看| 亚洲av五月六月丁香网| АⅤ资源中文在线天堂| 亚洲第一欧美日韩一区二区三区| 亚洲av电影不卡..在线观看| 99久久九九国产精品国产免费| 一二三四社区在线视频社区8| 国产在线精品亚洲第一网站| 99热只有精品国产| 天堂影院成人在线观看| 亚洲成人久久性| 88av欧美| 好男人在线观看高清免费视频| 免费观看精品视频网站| 久久99热这里只有精品18| 午夜老司机福利剧场| 亚洲午夜理论影院| 最近视频中文字幕2019在线8| 国产激情偷乱视频一区二区| 久久久久久国产a免费观看| 国产欧美日韩精品一区二区| 90打野战视频偷拍视频| 色综合婷婷激情| 综合色av麻豆| netflix在线观看网站| 嫩草影院精品99| 久久精品国产综合久久久| 亚洲av电影在线进入| 国产成人a区在线观看| 欧美黑人欧美精品刺激| 亚洲av电影不卡..在线观看| 久久婷婷人人爽人人干人人爱| 久久伊人香网站| 黄色女人牲交| 中文在线观看免费www的网站| 国产精品av视频在线免费观看| 桃红色精品国产亚洲av| 午夜福利在线观看免费完整高清在 | or卡值多少钱| 欧美大码av| 精品乱码久久久久久99久播| 精品一区二区三区av网在线观看| www.999成人在线观看| 免费在线观看日本一区| 19禁男女啪啪无遮挡网站| 99久久精品一区二区三区| 久久精品综合一区二区三区| 国产精品女同一区二区软件 | 99在线视频只有这里精品首页| 色哟哟哟哟哟哟| 成人av在线播放网站| 伊人久久大香线蕉亚洲五| 男女床上黄色一级片免费看| 免费人成在线观看视频色| 99在线人妻在线中文字幕| 免费一级毛片在线播放高清视频| 国产精品精品国产色婷婷| 欧美中文综合在线视频| 黄色女人牲交| 久久人妻av系列| 亚洲熟妇中文字幕五十中出| 看黄色毛片网站| 草草在线视频免费看| 一卡2卡三卡四卡精品乱码亚洲| 搡女人真爽免费视频火全软件 | 亚洲av不卡在线观看| 日本 av在线| 欧美成人性av电影在线观看| 变态另类成人亚洲欧美熟女| 国产精华一区二区三区| 悠悠久久av| 少妇人妻精品综合一区二区 | 欧美中文综合在线视频| 国产野战对白在线观看| 亚洲男人的天堂狠狠| 久久国产乱子伦精品免费另类| 老司机福利观看| 男女做爰动态图高潮gif福利片| 一个人观看的视频www高清免费观看| 在线观看66精品国产| 给我免费播放毛片高清在线观看| 国产免费一级a男人的天堂| 亚洲人与动物交配视频| 国产三级在线视频| www国产在线视频色| av欧美777| 国产精品女同一区二区软件 | 熟妇人妻久久中文字幕3abv| 午夜福利免费观看在线| 内射极品少妇av片p| 一个人观看的视频www高清免费观看| 国产精品野战在线观看| 日本免费a在线| 亚洲av五月六月丁香网| 岛国视频午夜一区免费看| 窝窝影院91人妻| 欧美性猛交黑人性爽| 久久精品亚洲精品国产色婷小说| 岛国在线免费视频观看| 国产精品乱码一区二三区的特点| 国模一区二区三区四区视频| 身体一侧抽搐| 夜夜夜夜夜久久久久| 国产精品香港三级国产av潘金莲| 亚洲天堂国产精品一区在线| АⅤ资源中文在线天堂| 尤物成人国产欧美一区二区三区| 亚洲18禁久久av| 桃色一区二区三区在线观看| 欧美bdsm另类| av黄色大香蕉| 男女下面进入的视频免费午夜| 久久草成人影院| 国产野战对白在线观看| 狂野欧美白嫩少妇大欣赏| 国产黄a三级三级三级人| 午夜亚洲福利在线播放| 亚洲av电影不卡..在线观看| 国产精品影院久久| 国产精品 国内视频| 又黄又粗又硬又大视频| 丰满人妻一区二区三区视频av | 真人一进一出gif抽搐免费| 看免费av毛片| 精品乱码久久久久久99久播| 国产成人aa在线观看| 欧美三级亚洲精品| 欧美一区二区国产精品久久精品| 蜜桃亚洲精品一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 两个人视频免费观看高清| 成年女人毛片免费观看观看9| 久久精品国产亚洲av香蕉五月| 免费在线观看影片大全网站| 午夜免费激情av| 悠悠久久av| 国产成人欧美在线观看| 亚洲,欧美精品.| 国产综合懂色| 听说在线观看完整版免费高清| 黄色日韩在线| 国产精品久久视频播放| 老熟妇仑乱视频hdxx| 免费在线观看成人毛片| 亚洲真实伦在线观看| 国产精品永久免费网站| 久久精品夜夜夜夜夜久久蜜豆| 国内精品久久久久精免费| 少妇丰满av| 亚洲av电影不卡..在线观看| 国产国拍精品亚洲av在线观看 | 欧美又色又爽又黄视频| 一级作爱视频免费观看| 中文字幕人成人乱码亚洲影| 免费观看精品视频网站| 床上黄色一级片| 国产探花极品一区二区| 久久性视频一级片| 不卡一级毛片| 亚洲第一欧美日韩一区二区三区| 啦啦啦免费观看视频1| 国产在视频线在精品| a级毛片a级免费在线| 午夜日韩欧美国产| 成人无遮挡网站| 大型黄色视频在线免费观看| 国产视频内射| 美女黄网站色视频| 欧美一级a爱片免费观看看| 噜噜噜噜噜久久久久久91| 欧美最新免费一区二区三区 | 午夜精品在线福利| 999久久久精品免费观看国产| 国产精品亚洲av一区麻豆| 午夜福利高清视频| 在线观看日韩欧美| 精品国产三级普通话版| 在线播放国产精品三级| 精品久久久久久久毛片微露脸| av天堂中文字幕网| 黄片大片在线免费观看| 日韩欧美精品v在线| 观看免费一级毛片| 亚洲内射少妇av| 激情在线观看视频在线高清| 女生性感内裤真人,穿戴方法视频| 日韩精品中文字幕看吧| 久99久视频精品免费| 亚洲精品亚洲一区二区| 99久久成人亚洲精品观看| 久久久国产精品麻豆| 国产成+人综合+亚洲专区| 毛片女人毛片| av在线蜜桃| 亚洲av电影不卡..在线观看| 久久久久久国产a免费观看| 久久久久久久久中文| 亚洲aⅴ乱码一区二区在线播放| 91久久精品电影网| 可以在线观看的亚洲视频| 搡女人真爽免费视频火全软件 | 国产高清视频在线播放一区| 精品午夜福利视频在线观看一区| 欧美bdsm另类| 成人精品一区二区免费| 亚洲熟妇熟女久久| 国产精品99久久99久久久不卡| 在线免费观看不下载黄p国产 | 99久久99久久久精品蜜桃| 国产精品久久视频播放| av天堂中文字幕网| 最新在线观看一区二区三区| 十八禁网站免费在线| 国产激情偷乱视频一区二区| 18美女黄网站色大片免费观看| 欧美又色又爽又黄视频| 精品午夜福利视频在线观看一区| 久久香蕉国产精品| 中文字幕久久专区| a级毛片a级免费在线| 全区人妻精品视频| 久久午夜亚洲精品久久| 男人舔女人下体高潮全视频| 在线国产一区二区在线| 国产黄色小视频在线观看| 国产高清视频在线播放一区| 蜜桃久久精品国产亚洲av| 深夜精品福利| 99久久九九国产精品国产免费| 中文字幕精品亚洲无线码一区| 精品久久久久久,| 国产探花在线观看一区二区| 欧美性猛交╳xxx乱大交人| 白带黄色成豆腐渣| 在线看三级毛片| 日韩欧美三级三区| 看黄色毛片网站| 禁无遮挡网站| 欧美+亚洲+日韩+国产| 99久久综合精品五月天人人| 欧美日韩中文字幕国产精品一区二区三区| 亚洲色图av天堂| 禁无遮挡网站| 在线观看一区二区三区| 国产亚洲欧美98| 亚洲熟妇熟女久久| 国产乱人伦免费视频| 亚洲aⅴ乱码一区二区在线播放| 99视频精品全部免费 在线| 99久国产av精品| 欧美又色又爽又黄视频| 精品一区二区三区av网在线观看| 欧美在线一区亚洲| 国产视频一区二区在线看| 国产精品久久久久久久久免 | 一区福利在线观看| svipshipincom国产片| 欧美日韩乱码在线| 中文字幕av成人在线电影| 国产美女午夜福利| 97超视频在线观看视频|