• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High temperature strain glass in Ti–Au and Ti–Pt based shape memory alloys*

    2021-01-21 02:15:22ShuaiRen任帥ChangLiu劉暢andWeiHuaWang汪衛(wèi)華
    Chinese Physics B 2021年1期
    關(guān)鍵詞:劉暢

    Shuai Ren(任帥), Chang Liu(劉暢), and Wei-Hua Wang(汪衛(wèi)華)

    1

    Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2Frontier Institute of Science and Technology,State Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: shape memory alloys,martensitic transformation,strain glass,glass transition temperature

    1. Introduction

    Shape memory alloys (SMAs) are one of the most important smart materials that exhibit unique properties of the shape memory effect and superelasticity, due to a ferroelastic/martensitic transformation.[1]The two main SMA systems for current commercial applications are Ti–Ni-based and Cu-based alloys.[1]However,their martensitic transformation temperatures(Ms)are generally lower than 373 K,which limits the applications of SMAs in high temperature conditions.As a result, Ti–Au and Ti–Pt high temperature SMAs (HTSMAs)have received wide attention due to their high Ms.[2–4]

    Doping is an essential way to modify the martensitic transformation as well as the associated properties in SMAs.[5]However, doping usually introduces point defects into the SMAs, and thus further reduces the Ms. In recent years, it has been reported that when the martensitic transformation in SMAs is suppressed by excess doping, the system does not directly become nontransforming, but exhibits a novel glass transition.[6]As a result, the long-range strain ordered phase(i.e.,martensitic phase)is replaced by a short-range strain ordered glass state, which is termed as the “strain glass” given that the lattice strain is the order parameter of the martensitic transformation.[6]

    Strain glass is characterized by several typical features,such as no enthalpy change during the glass transition observed by differential scanning calorimetry(DSC),the disappearance of thermal hysteresis in electrical resistivity curves,and no breaking of the parent phase symmetry during the glass transition in the x-ray diffraction spectrums.[7]It also exhibits some important glass transition features, including the dynamic freezing measured by dynamic mechanical analysis (DMA) experiments and the breaking down of ergodicity measured by zero-field-cooling and field-cooling(ZFC/FC)experiments.[7]Moreover, the strain glass is of potential interest for applications, because it exhibits many interesting properties, such as the superelasticity of slim hysteresis,[8]stress tuned intelligent damping properties,[9]and low-fieldtriggered large magnetostriction.[10]Unfortunately, the glass transition temperature(Tg)of current strain glass alloys is generally lower than 273 K, which not only limits the potential applications of the strain glass,but also interrupts the investigation of the nature of strain glass as well.

    For example, the low glass transition temperature makes the experimental investigation of dynamic relaxation of strain glass difficult. Dynamic relaxation is an intrinsic feature of glasses, and exploring the dynamic relaxation of glasses is significant for understanding the nature of glasses.[11]The dynamic relaxation is generally measured by the DMA experiments,and the lower temperature limit of the DMA is around 130 K, as illustrated in Fig. 1. In metallic glass, thanks to their high Tg, several unique dynamic relaxation modes are observed, including primary α-relaxation, β-relaxation, and nearly constant loss, as illustrated in the loss modulus curve of a La55Ni20Al25bulk metallic glass(BMG)in Fig.1(a). In comparison, only one relaxation mode has been reported in strain glass up to now.[6,7]As shown in Fig. 1(b), there is a peak in the loss modulus curve of a Ti48.5Ni51.5strain glass alloy,close to the lower temperature limit of the DMA,which corresponds to the primary α-relaxation of the BMG.No other relaxation mode can be found except this peak,due to the low Tgof the strain glass.

    Fig. 1. Comparison of the loss modulus curve of (a) a La55Ni20Al25 bulk metallic glass(BMG)and(b)a Ti48.5Ni51.5 strain glass(STG)alloy, measured by the DMA experiment. The lower temperature limit is around 130 K.Above this limit,the BMG exhibits several relaxation modes in(a),including primary α-relaxation mode,β-relaxation mode,and nearly constant loss(NCL),while the strain glass only exhibits one α-relaxation mode in(b).

    In metallic glass, the β-relaxation has been well known as one of the intrinsic dynamic relaxation modes besides the α-relaxation,which corresponds to localized cooperative motions of a small number of atoms confined in loosely packed regions.[11]If strain glass possesses the same glassy dynamics as metallic glass,the β-relaxation should exist in the strain glass in principle. Therefore, the investigation of possible βrelaxation in strain glass may provide insight into the common dynamic characteristics of these two glasses, and deepen the understanding of the nature of strain glass. However, the investigation is interrupted due to the low Tgof current strain glass systems. As a result,it is of importance to discover high temperature strain glass systems.

    In Ti50Ni50xFexSMAs, the Tgof strain glass at x=6 is around 180 K,while the Msof the host alloy(i.e.,Ti50Ni50)is around 350 K.[12]On the other hand,in Ti50Pd50-xFexSMAs,the Tgof strain glass at x=14 is about 280 K,while the Msof the host alloy(i.e.,Ti50Pd50)is around 800 K.[13]The comparison between these two systems gives us a clue that the strain glass with high Tgcomes from high MsSMA systems. Therefore,we chose the two HTSMAs,Ti50Au50(Ms=893 K)and Ti50Pt50(Ms=1340 K),[2]as the host alloys and tried to find the strain glass in them. In this paper, we reported the strain glass with relatively high Tgfound in these two HTSMAs. In Ti50Au50-xCrxSMAs,strain glass appears at x=25,while in Ti50Pt50-yFeySMAs, strain glass takes place at y=30. Owing to the very high Msof the host alloys, these two systems both exhibit a relatively large ideal glass transition temperature(T0), which is comparable with the highest T0value reported until now.

    2. Experimental methods

    Samples of Ti50Au50-xCrx(x =15, 25, abbreviated by Crx hereafter) and Ti50Pt50-yFey(y=25, 30, abbreviated by Fey hereafter) alloys were prepared from highly pure metals(>99.95 at.%) by arc-melting under an argon atmosphere.The ingots were solution-treated at 1373 K for 12 h in evacuated quartz tubes,followed by water quenching. Then the ingots were cut into suitable shapes for different measurements.Latent heat of transformation was measured with a differential scanning calorimeter (DSC-Q200 from TA Company) with a cooling/heating rate of 10 K/min. Electrical resistivity (ER)of specimens was measured through a four-probe method with a constant current of 100 mA and a cooling/heating rate of 2 K/min. The anelasticity was detected by dynamic mechanical analysis(DMA-Q800 from TA Instruments)using a cooling rate of 2 K/min with a single cantilever mode in the frequency range from 0.2 Hz to 20 Hz.

    3. Results and discussion

    Figures 2(a1) and 2(a2) exhibit the DSC curves of Ti50Au50-xCrxSMAs. Sharp heat flow peaks are observed during cooling and heating for Cr15 of which the Msis around 385 K,while the heat flow peaks disappear for Cr25. It means that 25 at.% of chromium is enough to suppress the martensitic transformation in Ti–Au SMAs. On the other hand,in Ti50Pt50-yFeySMAs, the doping of 25 at.% iron is still not high enough to lead to the suppression of the martensitic phase. As shown in Fig.2(b1), weak heat flow peaks are detected for Fe25(Ms=403 K),while figure 2(b2)shows that it requires 30 at.%of iron to completely suppress the formation of the martensitic phase.

    Figure 3 exhibits the ER curves with different doping levels for these two systems respectively. Because the martensitic transformation is the first order phase transformation in thermodynamics, it always exhibits a thermal hysteresis loop in the ER curve during cooling and heating. As shown in Fig. 3(a1), a clear thermal hysteresis loop takes place in the ER curve of Cr15, while no hysteresis loop is observed for Cr25 in Fig. 3(a2). It means that the martensitic transformation still exists in Cr15,whereas there is no martensitic transformation in Cr25. A similar case is found in Ti50Pt50-yFeySMAs.The absence of hysteresis loop in the ER curve of Fe30 in Fig.3(b2)indicates that there is no martensitic transformation in Fe30 either.Thus,the ER curves are consistent with the DSC results. Both of them indicate that the martensitic transformations in the two HTSMAs can be completely suppressed by doping excess point defects.

    Fig. 2. DSC curves of Ti50Au50-xCrx and Ti50Pt50-yFey alloys. Heat flow peaks can be observed in(a1)Cr15 and(b1)Fe25, while there is no peak in(a2)Cr25 and(b2)Fe30.

    Fig.3. ER curves of Ti50Au50-xCrx and Ti50Pt50-yFey alloys. Thermal hysteresis loops can be observed in(a1)Cr15 and(b1)Fe25,while the hysteresis loop disappears in(a2)Cr25 and(b2)Fe30.

    It is noted that the strain glass in Ti–Au–Cr alloys exhibits a negative temperature dependence of electrical resistivity in Fig. 3(a2), while the strain glass in Ti–Pt–Fe alloys shows a positive temperature dependence in Fig.3(b2). The electrical resistivity has been well known to be sensitive to the phase structure of the nanodomains in strain glass.[12,14–16]Thus,the difference in the temperature dependence of electrical resistivity suggests that the phase structure of the nanodomains in these two strain glasses is remarkably different,which is worthy to be investigated in the future.

    The storage modulus and tanδ curves of Cr25 and Fe30 are shown in Fig. 4 respectively. In Fig. 4(a), there are two anomalies in the storage modulus curves of Cr25 upon cooling. The first anomaly appears around 300 K, and exhibits a frequency dependent behavior, namely, the dip temperatures in storage modulus decrease with frequency lowering. Corresponding to the dip in storage modulus, the tanδ exhibits a peak,and the peak temperatures show the same frequency dependent behavior. This frequency dependent behavior is a typical glass feature for strain glass as previously reported,which indicates the slowing-down of dynamics during the strain glass transition.[6,7]It thus corresponds to the primary α-relaxation in metallic glass, as shown in Fig. 1(a). The frequency dependence of the dip can be fitted by the Vogel–Fulcher(V–F)relation ω =ω0exp[-Ea/kB(Tg-T0)],[6,7]where ω is the oscillating frequency,ω0the frequency at infinitely high temperature,Eathe activation energy,kBthe Boltzmann constant,Tgthe strain glass transition temperature, and T0the ideal freezing temperature. For convenience, we use the T0to compare the glass transition temperatures of different systems below.According to the V–F relation, the ideal freezing temperature T0is about 251 K.

    Fig. 4. (a) Storage modulus and tanδ curves of Ti50Au25Cr25 (Cr25).Two anomalies are detected in the curves. The anomaly around 290 K exhibits a frequency dependent behavior,corresponds to the strain glass transition. By fitting the V–F relation in the inset of(a),the ideal freezing temperature T0 is around 251 K.The other anomaly around 160 K in the storage modulus curve corresponds to a spontaneous transition from strain glass to martensite. (b) Storage modulus and tanδ curves of Ti50Pt20Fe30 (Fe30). The anomaly around 320 K corresponds to the strain glass transition. According to the V–F relation in the inset of(b),the T0 is around 272 K.Upon cooling,a modulus softening is observed at low temperatures.

    With further cooling, another dip in the storage modulus curves of Cr25 appears around 150 K in Fig.4(a). Meanwhile,the intensity of tanδ increases correspondingly,but the peak cannot be detected. This second anomaly indicates that a spontaneous transition from the strain glass(the frozen local strain ordered state)to martensite(the ferroelastic phase with long-range strain ordering) takes place. Such a spontaneous transition has been widely found in strain glass alloys,[17–19]which suggests that the strain glass is not the ground state of the system at low temperatures.

    The storage modulus and tanδ curves of Fe30 are shown in Fig.4(b). Only one anomaly is clearly found around 320 K,which exhibits the frequency dependent behavior of the dip temperatures in storage modulus and the corresponding peak temperatures in tanδ, the same as the first anomaly of Cr25.By fitting the V–F relation,T0is about 272 K.When the temperature further decreases,no second anomaly can be detected.Despite the absence of the second anomaly,the modulus softening is observed upon cooling below 230 K,which is known as a signal of the onset of the martensitic transition.[18]It suggests that the second anomaly actually exists, but locates at a low temperature below the lower limit of the DMA experiment. As a result, only the strain glass transition is clearly observed for Fe30 by the DMA experiment.

    Fig. 5. Summary of the T0 of current main strain glass alloy systems.The data of Ti–Ni-based strain glasses come from Refs. [6,12,19,20],the data of Ti–Pd-based strain glasses are from Ref.[13], and the data of ferromagnetic strain glass alloys come from Refs.[10,20,21].

    These two new strain glass systems exhibit a relatively high ideal freezing temperature T0, as compared with other systems. Figure 5 summarizes the T0of current main strain glass systems. In Ti–Ni-based strain glass alloys, T0is generally lower than 200 K.[6,12,19,20]Ti–Pd-based strain glass alloys exhibit a relatively high T0, which is around 250 K.[13]As for the ferromagnetic strain glass(FSTG)alloys,the highest T0is also around 250 K.[10,21,22]Thus, the highest T0of current strain glass systems is around 250 K. In comparison,the T0of the Ti50Au25Cr25strain glass alloy is about 251 K,which is comparable with the highest T0value,and that of the Ti50Pt20Fe30strain glass alloy is about 272 K, which is even higher than the T0maximum of the current main strain glass alloys.

    Although the strain glass in the Ti50Pt20Fe30alloy exhibits the highest T0so far,it is not high enough as expected,given that the host alloy Ti50Pt50exhibits a quite high Ms(~1340 K).[2]Figure 6 compares the phase diagrams of several Ti-based alloys.[12,13]The composition dependence of the transformation behavior is similar for these four systems:there is a critical defect concentration separating the martensitic phase and strain glass. It is noted that as the Msof the host alloy increases, the critical defect concentration strongly increases,whereas the increase of the T0is limited. As a result,although the Ti–Pt-based alloys start from the pure Ti50Pt50host alloy with high Ms(~1340 K),much higher than the Msof the pure Ti50Pd50host alloy(~800 K)in Ti–Pd-based alloys,the T0of the strain glass in Ti–Pt-based alloys(~272 K)is only slightly higher than that of the strain glass in Ti–Pdbased alloys(~250 K).

    Fig.6. Comparison of the phase diagrams of Ti-based SMAs. The critical defect concentration for each system is labeled by the red dot line.The data of Ti50Ni50-xFex and Ti50Pd50-xCrx come from Refs.[12,13],and the data of Ti50Pt50 and Ti50Au50 are from Ref.[2].

    Obviously, doping point defects is not an effective way to further increase the T0of strain glass above ambient temperature. According to the phenomenological model of strain glass,[23]point defects generally introduce two effects to the martensitic system: One is a global effect,which changes the global thermodynamic stability of martensite;the other is a local effect,which leads to a fluctuation in local thermodynamic stability of martensite. In most cases,the global effect of point defects is to decrease the Ms,which causes a strong transition temperature decrease before the system goes to the strain glass and thus results in a low T0.

    Besides the point defects,some other crystallographic defects such as dislocations[24]and nanoprecipitates[25,26]have also been reported to be able to suppress the martensitic transformation and generate a frozen strain glass state. Moreover,it is reported that the dislocations and nanoprecipitates can maintain the T0of strain glass better than the point defects.[24]The reason is that the global effect of dislocations is negligible,while nanoprecipitates sometimes may lead to an opposite global effect as compared with point defects(for example,the Msof the B2-R martensitic transition in Ti–Ni SMAs increases due to the Ti3Ni4precipitation[5]). Thus, a potential solution to design high T0strain glass alloys is to choose a host alloy with high Msand introduce other defects such as dislocations and nanoprecipitates in it,which requires a further study in the future.

    Moreover, in ferromagnetic shape memory alloys which are an important subgroup of SMAs,the global effect of point defects may vary due to the magnetoelastic coupling. For example, in Co-doped Ni–Mn–Ga ferromagnetic strain glass alloys, the Msfirst keeps constant rather than decreases with doping cobalt,and the T0in this system is actually comparable with that of strain glass in Ti–Pd-based SMAs.[21]Thus,ferromagnetic shape memory alloys are also a promising candidate to exhibit high T0,worthy to be further investigated.

    4. Conclusion

    We found high temperature strain glass in Ti–Au-based and Ti–Pt-based HTSMAs. The critical defect concentration for Ti50Au50-xCrxalloys is around x = 25, while that for Ti50Pt50-yFeyalloys is about y=30. The T0of strain glass in Ti–Au-based alloys is around 251 K,and that of strain glass in Ti–Pt-based alloys is around 272 K.Both of them are comparable with the highest T0value so far. This work suggests that doping point defects is not an effective way to increase the T0above the ambient temperature,some other methods are required to find the strain glass with higher T0.

    猜你喜歡
    劉暢
    Measurement of International Competitiveness of Clothing Industry under the Background of Value Chain Reconstruction
    水蒸氣變戲法
    春來(lái)啦
    They are just kids
    愛挑剔的番茄
    珍視自我
    劉暢作品
    海參
    夏天咋來(lái)的
    月亮洗澡
    亚洲人成网站在线播| 国产精品一区二区三区四区久久| 在线观看av片永久免费下载| 国产成人aa在线观看| 久久精品综合一区二区三区| av.在线天堂| 99久久成人亚洲精品观看| 精品欧美国产一区二区三| 久久久久久久久久黄片| av播播在线观看一区| 在线a可以看的网站| 国产av一区在线观看免费| 国产白丝娇喘喷水9色精品| 久久精品国产鲁丝片午夜精品| 欧美一区二区亚洲| 国产av码专区亚洲av| 国产91av在线免费观看| 国产av不卡久久| 日本黄大片高清| 亚洲国产成人一精品久久久| 久久婷婷人人爽人人干人人爱| 日本熟妇午夜| 美女cb高潮喷水在线观看| 一级黄色大片毛片| av卡一久久| 丰满人妻一区二区三区视频av| av专区在线播放| 在线免费观看不下载黄p国产| 噜噜噜噜噜久久久久久91| 免费看光身美女| 狠狠狠狠99中文字幕| 男女啪啪激烈高潮av片| 午夜视频国产福利| 精品欧美国产一区二区三| 国产黄a三级三级三级人| 色噜噜av男人的天堂激情| 夜夜看夜夜爽夜夜摸| 天堂av国产一区二区熟女人妻| 蜜桃亚洲精品一区二区三区| 美女内射精品一级片tv| 国产成人免费观看mmmm| 1000部很黄的大片| 国产日韩欧美在线精品| 国产成人aa在线观看| 午夜老司机福利剧场| 欧美精品国产亚洲| 国产精品福利在线免费观看| 国产午夜精品一二区理论片| 国产成人精品一,二区| 晚上一个人看的免费电影| 一区二区三区乱码不卡18| 久久久久久久久久黄片| av在线观看视频网站免费| 色综合色国产| 极品教师在线视频| 亚洲国产欧洲综合997久久,| 亚洲丝袜综合中文字幕| 久久人人爽人人片av| 久久久精品欧美日韩精品| 亚洲国产精品专区欧美| 国产精品国产三级专区第一集| 九九在线视频观看精品| 秋霞伦理黄片| 亚洲图色成人| 建设人人有责人人尽责人人享有的 | 女的被弄到高潮叫床怎么办| 男人和女人高潮做爰伦理| 欧美性感艳星| 小说图片视频综合网站| 美女高潮的动态| 亚洲av免费高清在线观看| 日本爱情动作片www.在线观看| 色吧在线观看| 国产真实伦视频高清在线观看| 美女脱内裤让男人舔精品视频| 日韩成人伦理影院| 尤物成人国产欧美一区二区三区| 久久久久性生活片| 免费观看性生交大片5| 国产国拍精品亚洲av在线观看| 久久精品久久久久久噜噜老黄 | 听说在线观看完整版免费高清| 久久婷婷人人爽人人干人人爱| 国产精品国产三级专区第一集| 在线a可以看的网站| 熟妇人妻久久中文字幕3abv| 高清在线视频一区二区三区 | 国产 一区 欧美 日韩| 日韩一区二区三区影片| 国产亚洲精品久久久com| 日本av手机在线免费观看| 国产精品久久久久久av不卡| 我的老师免费观看完整版| 亚洲国产日韩欧美精品在线观看| 九九爱精品视频在线观看| 春色校园在线视频观看| 一区二区三区乱码不卡18| 69人妻影院| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av在线观看视频网站免费| 永久网站在线| 国语自产精品视频在线第100页| 国产精品99久久久久久久久| 可以在线观看毛片的网站| 久久精品国产鲁丝片午夜精品| 啦啦啦啦在线视频资源| 男人和女人高潮做爰伦理| 日日摸夜夜添夜夜爱| 精品人妻偷拍中文字幕| 你懂的网址亚洲精品在线观看 | 亚洲av免费在线观看| www日本黄色视频网| 国产极品天堂在线| 一区二区三区高清视频在线| 熟女电影av网| 欧美最新免费一区二区三区| 美女被艹到高潮喷水动态| 日韩一区二区三区影片| 久久久国产成人免费| 亚洲最大成人手机在线| 日日摸夜夜添夜夜爱| 嫩草影院入口| 一个人观看的视频www高清免费观看| 免费大片18禁| 床上黄色一级片| 亚洲综合色惰| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品日韩av在线免费观看| 亚洲国产精品sss在线观看| 亚洲精品,欧美精品| 久久精品人妻少妇| ponron亚洲| 精品熟女少妇av免费看| 波多野结衣高清无吗| 中文天堂在线官网| 天天躁夜夜躁狠狠久久av| 亚洲激情五月婷婷啪啪| 亚洲精品自拍成人| 亚洲精品亚洲一区二区| 国产爱豆传媒在线观看| 男的添女的下面高潮视频| 亚洲欧美日韩东京热| 国产伦在线观看视频一区| 中文字幕人妻熟人妻熟丝袜美| 亚洲综合精品二区| 久久精品综合一区二区三区| 亚洲欧洲日产国产| 国产精品av视频在线免费观看| 熟女电影av网| 天堂av国产一区二区熟女人妻| 精品国内亚洲2022精品成人| 女人被狂操c到高潮| 晚上一个人看的免费电影| 免费av观看视频| 熟女电影av网| 永久免费av网站大全| 寂寞人妻少妇视频99o| 少妇的逼水好多| 亚洲精品一区蜜桃| 国产综合懂色| 中文字幕亚洲精品专区| 午夜精品国产一区二区电影 | 免费黄网站久久成人精品| 久久久色成人| 美女cb高潮喷水在线观看| 嫩草影院新地址| 精品久久国产蜜桃| 久久久久久伊人网av| 在线a可以看的网站| 久久久精品大字幕| 麻豆成人午夜福利视频| 成人漫画全彩无遮挡| 色综合站精品国产| 嫩草影院精品99| 我要搜黄色片| av视频在线观看入口| 卡戴珊不雅视频在线播放| 久久午夜福利片| 插阴视频在线观看视频| 国产精品人妻久久久影院| 日韩欧美三级三区| 精品午夜福利在线看| 欧美精品国产亚洲| 成人特级av手机在线观看| 精华霜和精华液先用哪个| 国产成人精品久久久久久| 高清午夜精品一区二区三区| 欧美精品一区二区大全| 中文天堂在线官网| 汤姆久久久久久久影院中文字幕 | 久久久久久久国产电影| 桃色一区二区三区在线观看| 成人鲁丝片一二三区免费| 欧美丝袜亚洲另类| 99热这里只有是精品在线观看| 日韩 亚洲 欧美在线| 在线免费十八禁| 亚洲人与动物交配视频| 午夜激情福利司机影院| 日本黄色片子视频| 亚洲欧美精品综合久久99| 免费看日本二区| 亚洲美女搞黄在线观看| 精品99又大又爽又粗少妇毛片| 国产大屁股一区二区在线视频| 亚洲人成网站高清观看| 成人综合一区亚洲| 国产成人午夜福利电影在线观看| 亚洲人成网站在线观看播放| 久久亚洲国产成人精品v| 国产伦在线观看视频一区| 国产精品国产高清国产av| 亚洲成色77777| 插逼视频在线观看| 亚洲第一区二区三区不卡| 亚洲欧美精品自产自拍| 熟女电影av网| 中文天堂在线官网| 日韩人妻高清精品专区| 久久久午夜欧美精品| 少妇人妻一区二区三区视频| 搡女人真爽免费视频火全软件| 菩萨蛮人人尽说江南好唐韦庄 | 中国国产av一级| 少妇猛男粗大的猛烈进出视频 | 欧美激情久久久久久爽电影| h日本视频在线播放| 一级黄色大片毛片| 日本黄大片高清| 日产精品乱码卡一卡2卡三| www日本黄色视频网| 精品国产三级普通话版| 最近最新中文字幕免费大全7| 少妇的逼好多水| 综合色av麻豆| 岛国在线免费视频观看| 亚洲精品影视一区二区三区av| 男人的好看免费观看在线视频| 日韩 亚洲 欧美在线| 国产乱来视频区| 欧美成人精品欧美一级黄| 十八禁国产超污无遮挡网站| 久久亚洲国产成人精品v| 亚洲成人av在线免费| 国产精品久久久久久久电影| 精品国产露脸久久av麻豆 | 精品人妻一区二区三区麻豆| 青春草视频在线免费观看| 免费av观看视频| 老司机影院毛片| 午夜福利在线在线| 午夜a级毛片| 日韩强制内射视频| 国产精品日韩av在线免费观看| 69人妻影院| 亚洲国产精品成人久久小说| 久久久久久久国产电影| 国产免费又黄又爽又色| 91狼人影院| 1000部很黄的大片| 国产三级在线视频| 免费电影在线观看免费观看| 亚洲av成人av| 成人无遮挡网站| 亚洲一区高清亚洲精品| 中文字幕人妻熟人妻熟丝袜美| 欧美高清成人免费视频www| 亚洲无线观看免费| 人体艺术视频欧美日本| 2022亚洲国产成人精品| 爱豆传媒免费全集在线观看| 一级毛片久久久久久久久女| 美女cb高潮喷水在线观看| 99久国产av精品| 精品国内亚洲2022精品成人| 欧美人与善性xxx| 亚洲av二区三区四区| 国产精品综合久久久久久久免费| 日韩精品有码人妻一区| 国产成人免费观看mmmm| 亚洲国产精品专区欧美| 国产成人精品婷婷| 一级二级三级毛片免费看| 午夜福利视频1000在线观看| 秋霞在线观看毛片| 欧美成人精品欧美一级黄| 天堂网av新在线| 精品久久久久久久人妻蜜臀av| 黄色配什么色好看| 午夜福利网站1000一区二区三区| 日产精品乱码卡一卡2卡三| 99热网站在线观看| 国产黄片视频在线免费观看| 亚洲人与动物交配视频| 别揉我奶头 嗯啊视频| 国产又色又爽无遮挡免| 国产精品国产高清国产av| 国产精品1区2区在线观看.| 大话2 男鬼变身卡| 免费观看a级毛片全部| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产精品专区欧美| 九九热线精品视视频播放| 六月丁香七月| 秋霞在线观看毛片| 天堂影院成人在线观看| 亚洲国产日韩欧美精品在线观看| 小说图片视频综合网站| 2022亚洲国产成人精品| 免费不卡的大黄色大毛片视频在线观看 | 成年版毛片免费区| 国产极品天堂在线| av免费在线看不卡| 18禁在线播放成人免费| 国产成人aa在线观看| 成人美女网站在线观看视频| av天堂中文字幕网| 日韩中字成人| 有码 亚洲区| 一区二区三区乱码不卡18| 又爽又黄无遮挡网站| 啦啦啦韩国在线观看视频| 亚洲欧美日韩东京热| 一个人看的www免费观看视频| 成人毛片a级毛片在线播放| 婷婷色综合大香蕉| 久久精品影院6| 一区二区三区免费毛片| 99热6这里只有精品| 午夜精品一区二区三区免费看| 国产精品1区2区在线观看.| 亚洲精品日韩av片在线观看| 国产视频首页在线观看| 亚洲欧美中文字幕日韩二区| 一级爰片在线观看| 一级黄色大片毛片| 精品国产三级普通话版| 免费观看性生交大片5| 国产精品一二三区在线看| 国产欧美日韩精品一区二区| 国产成人精品久久久久久| 国产精品一及| 久久精品久久精品一区二区三区| 久久99热6这里只有精品| 久久久久久久久中文| 精品不卡国产一区二区三区| 日韩一本色道免费dvd| 久久婷婷人人爽人人干人人爱| 最近视频中文字幕2019在线8| 精品一区二区三区视频在线| 国产乱人偷精品视频| 黄色欧美视频在线观看| 亚洲色图av天堂| 日韩欧美精品v在线| or卡值多少钱| 亚洲成人久久爱视频| 久久精品熟女亚洲av麻豆精品 | 三级国产精品片| 可以在线观看毛片的网站| av.在线天堂| 亚洲精品乱久久久久久| 毛片一级片免费看久久久久| 久久精品久久久久久久性| 国产精品电影一区二区三区| 亚洲国产高清在线一区二区三| 国产成人91sexporn| 欧美一区二区亚洲| 午夜激情福利司机影院| 99久久精品一区二区三区| 人人妻人人澡人人爽人人夜夜 | 波多野结衣巨乳人妻| 午夜福利在线观看免费完整高清在| 亚洲美女视频黄频| 精品免费久久久久久久清纯| 韩国高清视频一区二区三区| 国产精品电影一区二区三区| 亚洲中文字幕日韩| 亚洲国产精品专区欧美| 男女视频在线观看网站免费| 亚洲欧美精品综合久久99| 精品少妇黑人巨大在线播放 | 一本久久精品| 黄色欧美视频在线观看| 成人毛片60女人毛片免费| 高清日韩中文字幕在线| 一区二区三区免费毛片| 亚洲不卡免费看| 波野结衣二区三区在线| 婷婷六月久久综合丁香| 色播亚洲综合网| 国产精品综合久久久久久久免费| 村上凉子中文字幕在线| 免费观看人在逋| 美女高潮的动态| 在线播放无遮挡| 国产av在哪里看| 综合色av麻豆| 免费黄色在线免费观看| 国产在线男女| 久久欧美精品欧美久久欧美| a级毛片免费高清观看在线播放| av女优亚洲男人天堂| 99热这里只有是精品50| 国产一级毛片七仙女欲春2| 国产一区亚洲一区在线观看| 最后的刺客免费高清国语| 亚洲天堂国产精品一区在线| 你懂的网址亚洲精品在线观看 | 嘟嘟电影网在线观看| 国内精品一区二区在线观看| eeuss影院久久| av卡一久久| 国产av一区在线观看免费| 欧美区成人在线视频| 国产成人免费观看mmmm| 免费观看的影片在线观看| 精品国内亚洲2022精品成人| 国产精品一区二区性色av| 亚洲精品乱久久久久久| 亚洲国产精品成人综合色| 亚洲国产精品久久男人天堂| 在线a可以看的网站| 免费不卡的大黄色大毛片视频在线观看 | 欧美日本亚洲视频在线播放| 我要搜黄色片| 女的被弄到高潮叫床怎么办| 国产老妇女一区| 亚洲18禁久久av| 麻豆成人午夜福利视频| 国产激情偷乱视频一区二区| 亚洲欧美日韩无卡精品| 亚洲婷婷狠狠爱综合网| 午夜精品一区二区三区免费看| 婷婷色麻豆天堂久久 | 国产成人a区在线观看| 91久久精品电影网| av在线播放精品| 老司机福利观看| 国产精品久久久久久久电影| 少妇的逼好多水| 韩国高清视频一区二区三区| 三级男女做爰猛烈吃奶摸视频| 五月玫瑰六月丁香| 亚洲欧美日韩高清专用| 久久久久久久亚洲中文字幕| 男人舔奶头视频| 亚洲aⅴ乱码一区二区在线播放| 中文字幕制服av| 欧美日韩综合久久久久久| 男人舔奶头视频| 精品人妻偷拍中文字幕| 一夜夜www| 国产色爽女视频免费观看| 日日啪夜夜撸| 两个人视频免费观看高清| 国产一区有黄有色的免费视频 | 三级毛片av免费| 国内精品一区二区在线观看| 久久久久精品久久久久真实原创| 欧美色视频一区免费| 在线播放无遮挡| 久久精品久久久久久噜噜老黄 | 看十八女毛片水多多多| av又黄又爽大尺度在线免费看 | av黄色大香蕉| 亚洲真实伦在线观看| 午夜老司机福利剧场| 一级毛片aaaaaa免费看小| 国产精品无大码| 丰满少妇做爰视频| 国产成人午夜福利电影在线观看| 91av网一区二区| 日本欧美国产在线视频| 国产成人一区二区在线| 免费av毛片视频| 国产老妇伦熟女老妇高清| 九草在线视频观看| 亚洲国产精品专区欧美| 精品人妻熟女av久视频| 久久久久国产网址| 97在线视频观看| 免费黄网站久久成人精品| 欧美一区二区精品小视频在线| 女人十人毛片免费观看3o分钟| 国产淫语在线视频| 26uuu在线亚洲综合色| 精品人妻熟女av久视频| 国产白丝娇喘喷水9色精品| 男女边吃奶边做爰视频| 亚洲精品乱码久久久v下载方式| 中文字幕av成人在线电影| 男女视频在线观看网站免费| 免费一级毛片在线播放高清视频| 五月伊人婷婷丁香| 能在线免费观看的黄片| .国产精品久久| 狂野欧美激情性xxxx在线观看| 亚洲图色成人| 欧美日本亚洲视频在线播放| 久久国内精品自在自线图片| 不卡视频在线观看欧美| 久久人人爽人人爽人人片va| 18禁动态无遮挡网站| 欧美日韩综合久久久久久| 淫秽高清视频在线观看| 色尼玛亚洲综合影院| 日韩av不卡免费在线播放| 国产成人a∨麻豆精品| 欧美潮喷喷水| 九九久久精品国产亚洲av麻豆| 久久精品夜色国产| 国语自产精品视频在线第100页| 久久久久久久午夜电影| 亚洲国产精品国产精品| av在线观看视频网站免费| 日韩高清综合在线| 国产伦理片在线播放av一区| 美女黄网站色视频| 免费看av在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 91午夜精品亚洲一区二区三区| 91精品伊人久久大香线蕉| 成人午夜精彩视频在线观看| 日本wwww免费看| 国产精品国产三级国产专区5o | 久久久精品94久久精品| 高清在线视频一区二区三区 | 国产一区二区亚洲精品在线观看| 国产91av在线免费观看| 久久精品人妻少妇| videossex国产| 国产精品99久久久久久久久| 日韩欧美三级三区| 晚上一个人看的免费电影| 日本免费一区二区三区高清不卡| 亚洲婷婷狠狠爱综合网| 国产午夜精品论理片| 国产高清视频在线观看网站| 女的被弄到高潮叫床怎么办| 亚洲激情五月婷婷啪啪| 久久午夜福利片| 亚洲,欧美,日韩| 亚洲av福利一区| av线在线观看网站| 欧美日本亚洲视频在线播放| 一本一本综合久久| 成年版毛片免费区| 欧美性感艳星| 一级爰片在线观看| 成人国产麻豆网| 建设人人有责人人尽责人人享有的 | 欧美性猛交╳xxx乱大交人| 亚洲人成网站高清观看| 精品国产三级普通话版| 国产精品国产三级国产专区5o | 一区二区三区免费毛片| 欧美人与善性xxx| 国产一区二区在线av高清观看| 国产在视频线在精品| 日韩中字成人| 国产视频内射| 天天躁夜夜躁狠狠久久av| 午夜福利视频1000在线观看| 九草在线视频观看| 欧美一区二区亚洲| 国产伦精品一区二区三区四那| av免费在线看不卡| 久久久久久久国产电影| 亚洲欧美精品专区久久| 熟女人妻精品中文字幕| 国产午夜福利久久久久久| 久久韩国三级中文字幕| 搞女人的毛片| 噜噜噜噜噜久久久久久91| 国产成人精品一,二区| 免费播放大片免费观看视频在线观看 | 亚洲精品影视一区二区三区av| 国产伦一二天堂av在线观看| 长腿黑丝高跟| 老师上课跳d突然被开到最大视频| 美女大奶头视频| 日韩一区二区三区影片| 日韩人妻高清精品专区| 在现免费观看毛片| 在线天堂最新版资源| 精品久久久久久久末码| 亚洲最大成人中文| or卡值多少钱| 欧美变态另类bdsm刘玥| 日本猛色少妇xxxxx猛交久久| 国产亚洲av片在线观看秒播厂 | 免费无遮挡裸体视频| 校园人妻丝袜中文字幕| 在线播放无遮挡| 丰满乱子伦码专区| 国产精品野战在线观看| 中文精品一卡2卡3卡4更新| 国产精品麻豆人妻色哟哟久久 | 亚洲精品日韩av片在线观看| 国产视频内射| 波多野结衣高清无吗| 亚洲欧美一区二区三区国产| 久久热精品热| 久99久视频精品免费| 国产女主播在线喷水免费视频网站 | 五月伊人婷婷丁香| 国产精品久久久久久久久免| 少妇人妻一区二区三区视频| 国产精品国产三级国产专区5o | 精品欧美国产一区二区三| 欧美激情国产日韩精品一区| 在线观看美女被高潮喷水网站| 国产又色又爽无遮挡免| 嫩草影院精品99| 成人美女网站在线观看视频|