• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effects of Er3+ion concentration on 2.0-μm emission performance in Ho3+/Tm3+co-doped Na5Y9F32 single crystal under 800-nm excitation*

    2021-01-21 02:08:34BenliDing丁本利XiongZhou周雄JianliZhang章踐立HaipingXia夏海平HongweiSong宋宏偉andBaojiuChen陳寶玖
    Chinese Physics B 2021年1期

    Benli Ding(丁本利), Xiong Zhou(周雄), Jianli Zhang(章踐立),Haiping Xia(夏海平),?, Hongwei Song(宋宏偉), and Baojiu Chen(陳寶玖)

    1Key Laboratory of Photo-electronic Materials,Ningbo University,Ningbo 315211,China

    2State Key Laboratory on Integrated Optoelectronics,College of Electronic Science and Engineering and College of Physics,Jilin University,Changchun 130012,China

    3Department of Physics,Dalian Maritime University,Dalian 116026,China

    Keywords: 2.0-μm emission,Er3+/Ho3+/Tm3+,energy transfer,Na5Y9F32 single crystal

    1. Introduction

    In recent decades, ~2.0-μm infrared laser single crystals based on Tm3+and Ho3+as the central luminous ions have been received extensive attention owing to their both prominent physical–chemical properties and high emission efficiency beneficial from periodic lattice field structure of threedimensional symmetry.[1–4]Previously studied single crystals were mainly concentrated on oxide ones.[5]The oxide single crystals have drawbacks of the low transmittance in the range of infrared and low luminous efficiency due to high matrix phonon energy.[6]In contrast,the fluorides have attracted substantial attention because of its lower phonon energy and higher transparency. The Na5Y9F32is a newly developed fluoride single crystal.[7]It possesses excellent thermal stability,higher optical transparency in the range of infrared and optical performance, and is easy for trivalent rare-earth ions to replace the Y3+ions. These excellent properties make it very suitable as potential laser matrix for 2.0-μm infrared laser devices. Compared with the cubic NaYF4crystal, Na5Y9F32crystal may possess better thermal stability. Although both Na5Y9F32and cubic NaYF4crystals belong to fluorite cubic system,in which Na3+and Y3+ions are randomly distributed in the cationic positions in the center of the cube, there are still obvious differences in crystal structure resulting into their different properties. For the Na5Y9F32crystal,the dodecahedrons and octahedrons are formed by coordinated by 8 and 6 numbers of F-ions. Both Na+and Y3+are located in the dodecahedral sites, while the octahedrons are in vacant. The octahedral vacancies may provide a possible buffer space for the ion vibration resulting into the thermal stability.[8]While for cubic NaYF4,the cation sites are mainly occupied by Na+and Y3+,adjacent to F-,and each Na+or Y3+is coordinated by 8 number of F-ions to form a dodecahedron.[9]

    As we all know, the energy level transition of Ho3+:5I7→5I8or Tm3+:3F4→3H6can obtain ~2.0-μm emission.For Ho3+ion-doped single crystal, the operation of tunable laser can extend to ~2.1 μm, while for Tm3+-doped single crystal,the tunable range can only be extended from 1.85 μm to 2.03 μm. Moreover,Ho3+ion generally has a higher emission cross section and a longer lifetime of higher laser energy levels compared to Tm3+ion,and these features are conducive to low-threshold and efficient laser operation.[10,11]However,there is still a tough task due to the lack of suitable absorption bands for Ho3+ion that cannot directly absorb the most common commercial laser diodes at the pumping beam of 800 nm or 980 nm.[12]Therefore,some corresponding sensitizers such as Er3+,Tm3+,and Yb3+ions are taken into consideration to absorb pumping energy effectively due to they have strong absorption band near 800-nm wavelength (Er3+or Tm3+ion)and near 980-nm wavelength(Er3+or Yb3+ion).[13]Previous researches have demonstrated that single crystal co-doped or tri-doped with sensitizer ions and Ho3+can lead to an increase in emission intensity of 2.0 μm,and the energy transfer mechanisms between Ho3+ion and sensitizer ions have also been studied in Ho3+/Er3+, Ho3+/Yb3+, Ho3+/Tm3+co-doped,and Ho3+/Er3+/Yb3+tri-doped single crystals.[14–17]Nevertheless,there is no investigation about the 2.0-μm emission of fluoride single crystal tri-doped with Er3+/Tm3+/Ho3+.

    In this work, we report the further enhanced 2.0-μm emission by addition of Er3+in the Tm3+/Ho3+co-doped Na5Y9F32single crystals. The 2.0-μm emission characteristics and energy transfer mechanism were analyzed. The absorption cross sections and emission cross sections were determined to evaluate the spectral performance.ions concentrations in Na5Y9F32single crystals were recorded by ICP (Inductive Coupled Plasma Emission Spectrometer).Table 1 illustrated the doping concentrations of Tm3+,Ho3+,and Er3+ions in the raw materials and the measured concentrations of Tm3+, Ho3+, and Er3+ions in the synthesized crystal. A Bruker D8 Advance(Germany)was used to record the x-ray diffraction(XRD).A Cary 5000 UV/VIS/NIR spectrophotometer(Agilent Co.,America)was used to measure the absorption spectra. The emission spectra and decay curves of the prepared single crystals were obtained by an FLSP 920-type spectrometer(Edinburgh Co.,England). All of the above measurements were performed at room temperature.

    2. Experimental

    An improved Bridgman method was used to grow the Na5Y9F32single crystals under the condition of using KF as a flux.The commercial KF,YF3,NaF,HoF3,ErF3,and TmF3powders with 99.99% high purity were prepared as raw materials to grow Na5Y9F32single crystals according to the following molar composition: 30 NaF-18 KF-(50.2-χ)YF3-χ(χ =1, 2, 3) ErF3-0.8 HoF3-1 TmF3. The 0.8-mol% Ho3+singly doped, 0.8-mol% Ho3+/1-mol% Tm3+co-doped, 0.8-mol%Ho3+/0.5 mol%Er3+co-doped, χ-mol%(χ =1,2, 3)Er3+/0.8-mol%Ho3+/1-mol%Tm3+tri-doped Na5Y9F32single crystals were denoted as NYF-H,NYF-HT,NYF-HE,and NYF-HTEχ, respectively. The specific growth processes of Na5Y9F32single crystal were described in Ref.[7].

    The obtained single crystals were cut and then polished to the thickness of 2 mm for the spectral and optical measurements as shown in Fig.2(e). The real Tm3+,Ho3+,and Er3+

    3. Results and discussion

    3.1. EDS and XRD analyses

    Figures 1(a)and 1(b)show the scanning electron microscope(SEM)image and energy dispersive x-ray spectroscopy(EDS) analysis of the NYF-HTE0.5 crystal. It can be seen from the SEM image of Fig.1(a)that the polished single crystal shows a smooth surface at a magnification of 10000. The EDS analysis of Fig. 1(b) shows that the composition of the single crystal is very close to the nominal Na5Y9F32composition and the Na5Y9F32single crystal is mainly composed of F, Na, Y, Ho, Er, Tm and a small amounts of K. The detection of K ion signal in the EDS analysis is believed due to a small amount of K residue as a flux in crystal growth. Figures 1(c)–1(h)display the color mappings of all the elements in the NYF-HTE0.5 crystal.

    Figures 2(b)–2(d) show the XRD patterns of NYF-H,NYF-HE, and NYF-HTE0.5 crystals. According to the PDF cards(27-1428),as shown in Fig.2(a),the diffraction peak position of the obtained single crystal sample doped with Er3+,Ho3+,Tm3+ions completely matches the diffraction peak position of the standard Na5Y9F32. In addition,the cell parameters can be calculated by[18]

    The calculated cell parameters of the NYF-HTE0.5 single crystals are a=b=c=0.5545 nm from the measured XRD pattern.

    Table 1. Molar fractions of Er3+,Ho3+,and Tm3+ in raw material and measured concentrations of Er3+,Ho3+,and Tm3+ ions in Na5Y9F32 single crystals.

    Fig. 1. (a) The SEM image of the NYF-HTE0.5 crystal; (b) the EDS analysis of the the NYF-HTE0.5 crystal,and(c)–(h)elemental mappings for the NYF-HTE0.5 crystal.

    Fig.2.XRD patterns of(a)the standard data for Na5Y9F32 crystal;(b)NYFH crystal; (c) NYF-HE crystal; (d) NYF-HTE0.5 crystal; (e) the photos of NYF-HTE0.5 crystal polished slices.

    3.2. Absorption spectra and absorption cross section spectra

    Figure 3 illustrates the absorption spectra of the NYFH, NYF-HE, and NYF-HTE0.5 crystals in the wavelength of 400 nm–2200 nm. In order to eliminate the influence of sample thickness,the absorbance is converted into absorption coefficient α according to the following formula:

    where A and L are the absorbance and the thickness of the single crystal,respectively. The absorption bands of Ho3+,Er3+,and Tm3+are also labeled in Fig.3, which is consistent with transitions from the ground state to higher energy levels. For Ho3+singly doped NYF-H crystal,the absorption peaks corresponding to the Ho3+ion transitions from the5I8ground state to the higher levels5G5,5F1/5G6,5F3,5S2/5F4,5F5,5I6,5I7located in the characteristic wavelength of 413,446,480,535,642,1153,1929 nm,are observed. While for the Ho3+,Er3+co-doped NYF-HE one, it can be observed the Er3+characteristic absorption consisting of seven main bands centered at 485, 516, 538, 639, 800, 973, 1515 nm, which is attributed to the Er3+transitions from4F13/2to4F2/7,4H11/2,4S3/2,4F9/2,4I9/2,4I11/2,4I13/2, respectively besides the absorption bands of Ho3+ion. In addition to the absorption peaks of Er3+and Ho3+, there appear new four absorption bands at 681, 798, 1197, and 1637 nm which is attributed to the transitions from3H6to3S2,3,3H4,3H5, and3F4of Tm3+ion in the Ho3+,Tm3+,and Er3+triply doped NYF-HTE0.5 crystal.It can be confirmed from Figs.1 and 2 that the Ho3+, Tm3+,and Er3+rare-earths ions are effectively introduced into the crystal lattices of Na5Y9F32crystals. In addition, there appear strong absorption bands at 800 nm(Er3+:4F15/2→4I9/2and Tm3+:3H6→3H4)and 980 nm(Er3+:4F15/2→4I11/2)which are very favorable for using commercial LEDs at 800-nm and 980-nm wavelengths as pumping sources.[19]

    Fig.3. Optical absorption spectra of NYF-H,NYF-HE,NYF-HTE0.5 crystals.

    The absorption and emission cross sections at 2.0 μm are usually measured to clarify the energy transfer mechanism between the Er3+, Tm3+, and Ho3+ions. According to the absorption spectra of Na5Y9F32single crystal illustrated in Fig. 3, the absorption cross section at 2.0 μm can be calculated by[20]

    where I0and I are intensity of the incident optical and optical intensity throughout the crystals, respectively. L, N, and α are the thickness of the crystal, the concentration of rare earth ion, and the absorption coefficient, respectively. Figure 4 illustrates the calculated absorption cross sections of the Ho3+:5I7→5I8transition. As shown in the figure,the maximum absorption cross sections of NYF-HTE1 crystal reaches 2.86×10-21cm2.

    Fig.4. Absorption cross-section spectra of the Ho3+ : 5I7 →5I8 transition in NYF-HTE1 crystal.

    3.3. Emission spectra and emission cross section spectra

    Figure 5(a) illustrates the fluorescence spectra of χEr/0.8Ho/1Tm(χ =0,0.5,1,and 2)doped Na5Y9F32crystals in the range of 1400 nm–2200 nm under excitation at 800 nm,and figures 5(b)and 5(c)show the intensity at 2.0 μm,1.47 μm, 1.53 μm, and 1.64 μm as change of the Er3+concentrations. Figures 6(a) and 6(b) display the fluorescence spectra of χEr/0.8Ho/1Tm (χ = 0, 0.5, 1, and 2) tri-doped Na5Y9F32crystals in the 2500 nm–2900 nm band and the intensity at 2.7 μm and 2.8 μm as change of Er3+concentration.In addition, the relative fluorescence intensity of the ordinate in Figs. 5(a) and 6(a) is the fluorescence intensity obtained by measurement. As shown in Fig. 5(a), there are main four emission peaks centered at 2 μm,1.64 μm,1.53 μm,1.47 μm,while in Fig. 6(b), two peaks at 2.7 μm and 2.8 μm. The intensity of emission bands at 1.64 μm, 1.53 μm is extremely weak in all four samples as shown in insert of Fig.5(a). The emissions at 2.0 μm and 2.8 μm come from the transitions of Ho3+:5I7→5I8and Ho3+:5I6→5I7, respectively. The emissions at 1.53 μm and 2.7 μm correspond to the transitions of Er3+:4I13/2→4I15/2and Er3+:4I11/2→4I13/2, respectively. The other emissions at 1.47 μm and 1.64 μm arise from Tm3+:3H4→3F4and Tm3+:3F4→3H6transitions,respectively. As shown in Figs.5(b),5(c),and 6(b),by contrast of NYF-HT and NYF-HTEχ (χ =0.5,1,and 2)crystals,it is apparent that the 1.53-μm,1.64-μm,2.0-μm,2.7-μm,and 2.8-μm emission intensities of Na5Y9F32crystals increase gradually as increase of Er3+concentration from 0 mol%to 1 mol%,and it reaches maximum when the Er3+concentration is about~1 mol%,it decreases abruptly with Er3+concentration ranging from 1 mol%to 2 mol%. However,the fluorescence intensity of 1.47 μm gradually decreases as increase of the Er3+ion concentration. In addition, the peak intensity ratio values of 2.0 μm to 1.64 μm and 2.0 μm 1.53 μm in NYF-HT and NYF-HTEχ crystals are also shown in Table 2. The 2.0-μm fluorescence of NYF-HTE1 crystals possesses the maximum intensity in the present study, and the peak intensity ratios of 2.0 μm to 1.64 μm and 2.0 μm to 1.53 μm return to 50.22 and 59.09. It strongly indicates that the energy in Tm3+:3F4(1.64 μm)and Er3+:4I13/2(1.53 μm)levels mostly transfers sufficiently to the Ho3+:5I7level by emitting 2.0-μm emission. Besides, the values of the I2.0/I1.53, I2.0/I1.64become larger as the concentration of Er3+ion increases until the Er3+concentration reaches 1 mol%. Therefore,the Er3+ion is considered as an efficient sensitizer for improving 2.0-μm emission in Ho3+,Tm3+co-doped Na5Y9F32crystals,and the optimum doping combination concentrations of Er3+,Ho3+,and Tm3+are about 1 mol%,0.8 mol%,and 1 mol%.

    Fig.5. (a)Emission spectra of NYF-HT,NYF-HTEχ (χ=0.5,1,2)crystals pumped at 800-nm LD, (b) the relationships between the 2.0-μm intensity and the concentration of Er3+, (c) the relationships between the 1.47-μm,1.53-μm,and 1.53-μm intensities and the concentration of Er3+.

    Fig. 6. Emission spectra of NYF-HT, NYF-HTEχ (χ =0.5, 1, 2) crystals pumped at 800-nm LD, (b) the relationships between the 2.7-μm, 2.8-μm intensities and the concentration of Er3+.

    Table 2. The intensity ratios of I2.0/I1.53,I2.0/I1.64 in NYF-HT,NYF-HTEχ(χ =0.5,1,2)crystals.

    The emission cross section can be obtained from the calculated absorption cross section by using the McCumber formula as follows:[21]

    where Zland Zurepresent the partition functions of the lower level (Ho3+:5I8) and the upper level (Ho3+:5I7), respectively; T, K are room temperature and the Boltzmann constant, respectively; h, λ, c, and Ezldenote Planck constant,transition (Ho3+:5I7→5I8) wavelength, light velocity, and zero-line energy,respectively.

    Figure 7 illustrates the calculated emission cross sections of the Ho3+:5I7→5I8transition. As shown in the figure,the maximum emission cross sections of NYF-HTE1 crystal reaches 5.26×10-21cm2. The obtained emission cross section of Na5Y9F32single crystal is larger than those in tellurite glass (4.52×10-21cm2),[22]fluoride glass (2.47×10-21cm2)[23]and germanate glass(4×10-21cm2).[24]The laser effect would benefit from the Na5Y9F32single crystal of high emission cross-section as host material, indicating that the Er3+/Ho3+/Tm3+tri-doped Na5Y9F32single crystal is a potentially useful material for 2.0-μm applications.

    Fig.7. Emission cross-section spectra of the Ho3+: 5I7 →5I8 transition in NYF-HTE1 crystal.

    3.4. Gain cross section spectra

    On the basis of the obtained absorption cross section and emission cross section, the optical gain coefficient g(λ) as a function of population inversion for the upper laser state can be calculated and defined as[25]

    where N2and N1are the population inversion volume-densities of the upper level(Ho3+:5I7)and lower level(Ho3+:5I7),respectively. The inversion volume-density of total population is N=N2+N1,and therefore the gain cross section spectrum G(λ)can be estimated by

    where P is the proportion of population inversion, and 0 ≤P ≤1. Figure 8 shows the gain cross sections of Ho3+:5I7→5I8transition in NYF-HTE1 crystal based on a function of differentP values and wavelengths. The value of P increases gradually from 0 to 1, with an increment of 0.1. As shown in Fig.8,a positive gain is obtained when P >0.3. It is confirmed that the gain band extends to longer wavelength and the gain coefficient increases with the increased value of P. In addition,it can be noticed that the pumping threshold of 2.0-μm laser is lower,which is advantageous for the 2.0-μm laser.

    Fig.8.Gain cross-section spectra of the Ho3+:5I7 →5I8 transition in NYFHTE1 crystal.

    3.5. Energy transfer mechanics and fluorescence decay curves

    Fig.9. The energy level diagram and possible energy transfer mechanism in Ho3+/Tm3+ co-doped and Er3+/Ho3+/Tm3+ tri-doped Na5Y9F32 crystals.

    Then, we calculate the fluorescence lifetime by the following formula:

    Figure 10 shows the decay curves of Ho3+:5I7→5I8transition monitored at 2.0-μm region of NYF-HT and NYFHTE1 crystals excited by 800 nm, the fitted lifetimes is 18.46 ms and 16.28 ms, repetitively. It can be observed that when Er3+ions are added to the Tm3+/Ho3+system,the lifetime of 2.0 μm is reduced from 18.46 ms to 16.28 ms.It can be seen from Fig.9,the ET1,ET2,ET3,ET5,and ET6 processes are probable to occur between Er3+and Tm3+,Er3+and Ho3+due to the near energy levels. It should be noted that the ET6 process is much easier to take place due to no requiring phonon assistance between Tm3+:3H4and Er3+:4I9/2. Under excitation of 800-nm light, the Tm3+ion absorbs the photo of 800 nm by transition from3H6to3H4, and some of energy transfer to Er3+ion by ET6 process. As is known,the ET4 is easier to occur than ET2 process because of the nearer energy difference. The triply doping of Er3+results into the attenuation of the ET4 process and reduction of the lifetime of 2.0 μm.The fluorescence lifetime of NYF-HTE1 crystal at 2.0 μm is much higher than that of germanium tellurate glass reported previously (6.83 ms).[13]The longer radiation lifetime usually reduces the laser oscillation threshold,[26]which indicates that Er3+/Ho3+/Tm3+tri-doped Na5Y9F32single crystal is a promising 2.0-μm laser candidate material.

    Fig. 10. Decay curves of Ho3+ : 5I7 levels monitored at 2.0-μm region of NYF-HT and NYF-HTE1 samples.

    Based on the obtained fluorescence lifetimes,we can calculate the energy transfer efficiency between Er3+and Ho3+in Er3+/Ho3+/Tm3+tri-doped Na5Y9F32single crystal by the following equation[29]

    where τAand τDAare the lifetime of the Ho3+:5I7level in NYF-HT crystal and the Ho3+:5I7level in NYF-HTE1 crystal, respectively. The efficiency of ET2 process from Er3+:4I13/2to Ho3+:5I7is calculated to be 11.81%. It suggests that the process of Er3+to Ho3+makes a part of the contribution of transfer energy to Ho3+ion together with the energy transfer process of Tm3+to Ho3+,resulting into further enhancement of 2.0 μm.

    4. Conclusion

    Our experiments demonstrated that the 2.0-μm emission intensity of Tm3+/Ho3+co-doped Na5Y9F32single crystal can be further enhanced by introduction of Er3+into the system under 800-nm excitation. The optimized doping concentration of Er3+is ~1 mol% for Tm3+(~1 mol%),Ho3+(~0.8 mol%)-doped Na5Y9F32crystal to reach a maximum fluorescence emission of 2.0 μm. The calculated maximum absorption and emission cross-sections at 2.0 μm for 1Er3+/0.8Ho3+/1Tm3+tri-doped Na5Y9F32crystal are 2.86×10-21cm2and 5.26×10-21cm2, respectively. Meanwhile,the fluorescence lifetimes of 1Er3+/0.8Ho3+/1Tm3+tri-doped Na5Y9F32crystal is 18.46 ms. The efficiency of ET2 progress is calculated to be 11.81%according to the measured fluorescence lifetimes. Consequently,the excellent luminous properties suggest that Er3+/Ho3+/Tm3+tri-doped Na5Y9F32crystals are attractive and significant materials for 2.0-μm lasers.

    Acknowledgment

    Benli Ding prepared the samples and wrote the article.Xiong Zhou and Jianli Zhang carried out relevant experimental measurements. Xia Haiping embellished and checked the article. Hongwei Song and Baojiu Chen assisted the data analysis. All authors contributed to the general discussion.

    乱人视频在线观看| 非洲黑人性xxxx精品又粗又长| 老女人水多毛片| 欧美激情久久久久久爽电影| 91av网一区二区| 久久精品综合一区二区三区| 欧美色视频一区免费| 国产色爽女视频免费观看| 看十八女毛片水多多多| 亚洲欧洲国产日韩| av在线播放精品| 国产人妻一区二区三区在| 真实男女啪啪啪动态图| 麻豆久久精品国产亚洲av| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久网色| 久久久精品大字幕| 亚洲国产日韩欧美精品在线观看| 国产三级中文精品| 97在线视频观看| 好男人在线观看高清免费视频| 国产大屁股一区二区在线视频| 国产黄片美女视频| 亚洲av成人精品一二三区| 免费看美女性在线毛片视频| 如何舔出高潮| 网址你懂的国产日韩在线| 国产一区二区在线观看日韩| 一区二区三区免费毛片| 亚洲人成网站高清观看| 日韩人妻高清精品专区| 最近视频中文字幕2019在线8| 简卡轻食公司| 成人午夜精彩视频在线观看| 神马国产精品三级电影在线观看| 一级二级三级毛片免费看| 一级黄片播放器| 精品久久久久久久人妻蜜臀av| 亚洲精品aⅴ在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品国产三级普通话版| 久久午夜福利片| 高清毛片免费看| 精品酒店卫生间| www日本黄色视频网| 嫩草影院新地址| 国产精品日韩av在线免费观看| 99久久无色码亚洲精品果冻| 欧美xxxx性猛交bbbb| 日韩欧美国产在线观看| 日韩成人伦理影院| 久久久久久久久久久免费av| 最近中文字幕2019免费版| 久久99蜜桃精品久久| 久久久精品94久久精品| 干丝袜人妻中文字幕| 国产午夜精品论理片| 亚洲精品,欧美精品| 亚洲最大成人av| 麻豆乱淫一区二区| 99热精品在线国产| 波多野结衣高清无吗| 男女国产视频网站| 欧美成人精品欧美一级黄| 日韩国内少妇激情av| 精品人妻视频免费看| 在线观看美女被高潮喷水网站| 妹子高潮喷水视频| 成人亚洲精品一区在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美清纯卡通| 国产色爽女视频免费观看| 欧美日韩一区二区视频在线观看视频在线| 国产男女内射视频| 亚洲成人一二三区av| 精品人妻熟女毛片av久久网站| 国产一区二区三区av在线| 中国国产av一级| 日韩一区二区三区影片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 两性夫妻黄色片 | 久久毛片免费看一区二区三区| 亚洲激情五月婷婷啪啪| 国产av国产精品国产| 久久久久久人人人人人| 全区人妻精品视频| 欧美精品av麻豆av| 久久久久久久大尺度免费视频| 黄色配什么色好看| 18禁裸乳无遮挡动漫免费视频| 在现免费观看毛片| 久久精品aⅴ一区二区三区四区 | 99久久中文字幕三级久久日本| 婷婷色综合www| 欧美精品高潮呻吟av久久| 国产女主播在线喷水免费视频网站| 少妇的逼好多水| 欧美精品亚洲一区二区| 在线天堂中文资源库| 99热国产这里只有精品6| 亚洲成人手机| 亚洲三级黄色毛片| 日韩av在线免费看完整版不卡| 国产精品一区二区在线不卡| 精品99又大又爽又粗少妇毛片| 免费高清在线观看日韩| 亚洲av福利一区| 人妻少妇偷人精品九色| 国产一区二区三区综合在线观看 | 精品视频人人做人人爽| 免费观看a级毛片全部| 美女福利国产在线| 国产色爽女视频免费观看| av网站免费在线观看视频| 狂野欧美激情性xxxx在线观看| 99热这里只有是精品在线观看| 在线精品无人区一区二区三| 中文字幕人妻熟女乱码| 99久久精品国产国产毛片| 精品一品国产午夜福利视频| 这个男人来自地球电影免费观看 | 狂野欧美激情性xxxx在线观看| 热re99久久精品国产66热6| 国产一区二区三区综合在线观看 | 国产av一区二区精品久久| 在线观看免费日韩欧美大片| 精品国产国语对白av| 国产精品久久久av美女十八| 亚洲精品自拍成人| 久久韩国三级中文字幕| 亚洲三级黄色毛片| 久久精品国产自在天天线| 午夜91福利影院| 国产又爽黄色视频| 男人操女人黄网站| 亚洲精品国产av成人精品| 国产淫语在线视频| 亚洲欧美成人综合另类久久久| 国语对白做爰xxxⅹ性视频网站| 免费人成在线观看视频色| 亚洲精品久久久久久婷婷小说| 久久99热这里只频精品6学生| 乱人伦中国视频| 大话2 男鬼变身卡| 亚洲 欧美一区二区三区| 91成人精品电影| 国产永久视频网站| 美女福利国产在线| 国产精品国产av在线观看| 国产精品一国产av| 国产片特级美女逼逼视频| 熟女av电影| 亚洲美女视频黄频| 在线免费观看不下载黄p国产| 久久久久久久久久成人| 精品久久蜜臀av无| 欧美成人精品欧美一级黄| 熟女电影av网| 9色porny在线观看| 国产xxxxx性猛交| 亚洲精品,欧美精品| 热re99久久国产66热| 欧美精品高潮呻吟av久久| 2022亚洲国产成人精品| 亚洲欧美清纯卡通| 成年人免费黄色播放视频| 亚洲av男天堂| 欧美丝袜亚洲另类| 交换朋友夫妻互换小说| 亚洲婷婷狠狠爱综合网| 亚洲精品久久成人aⅴ小说| 欧美人与性动交α欧美精品济南到 | 国产成人91sexporn| 97人妻天天添夜夜摸| 国产探花极品一区二区| 2018国产大陆天天弄谢| 久久精品国产a三级三级三级| 天天操日日干夜夜撸| 两个人看的免费小视频| 国产乱人偷精品视频| 天天躁夜夜躁狠狠久久av| 日日爽夜夜爽网站| 亚洲精华国产精华液的使用体验| 18禁裸乳无遮挡动漫免费视频| 久久女婷五月综合色啪小说| 国产高清国产精品国产三级| 国产精品久久久av美女十八| 91国产中文字幕| 一区二区三区四区激情视频| 中文字幕亚洲精品专区| 人人妻人人添人人爽欧美一区卜| 国产国拍精品亚洲av在线观看| 一区二区av电影网| 久久午夜综合久久蜜桃| 久久 成人 亚洲| 国产精品国产三级国产专区5o| 国产又色又爽无遮挡免| 极品人妻少妇av视频| 97精品久久久久久久久久精品| 亚洲国产日韩一区二区| 色哟哟·www| 在线亚洲精品国产二区图片欧美| 亚洲av日韩在线播放| 日本爱情动作片www.在线观看| 国产成人精品一,二区| 91aial.com中文字幕在线观看| 午夜福利影视在线免费观看| 少妇高潮的动态图| 精品第一国产精品| av在线老鸭窝| 亚洲欧美成人综合另类久久久| 国产精品99久久99久久久不卡 | 极品少妇高潮喷水抽搐| 亚洲精品久久久久久婷婷小说| 久久精品国产综合久久久 | 亚洲,一卡二卡三卡| 国产成人精品一,二区| 亚洲天堂av无毛| 女性被躁到高潮视频| 国产欧美亚洲国产| 国产亚洲最大av| 高清在线视频一区二区三区| 国产熟女午夜一区二区三区| 少妇熟女欧美另类| 午夜福利网站1000一区二区三区| 9191精品国产免费久久| 91精品三级在线观看| 亚洲国产欧美在线一区| 国产精品国产三级国产专区5o| 欧美激情 高清一区二区三区| 久久久久久人人人人人| 日韩欧美一区视频在线观看| 男女下面插进去视频免费观看 | 国产精品 国内视频| 男女边吃奶边做爰视频| 丰满饥渴人妻一区二区三| 久久女婷五月综合色啪小说| 日本猛色少妇xxxxx猛交久久| 热re99久久精品国产66热6| 国产高清不卡午夜福利| 伦理电影免费视频| 黑人巨大精品欧美一区二区蜜桃 | 国产成人aa在线观看| 日韩,欧美,国产一区二区三区| 精品午夜福利在线看| 性色av一级| 国产熟女欧美一区二区| 午夜激情久久久久久久| 欧美日韩视频高清一区二区三区二| 国产日韩欧美视频二区| 天天躁夜夜躁狠狠躁躁| 最近最新中文字幕大全免费视频 | 亚洲国产精品一区三区| 国产片特级美女逼逼视频| 国产色婷婷99| 亚洲精品自拍成人| 综合色丁香网| 国产精品蜜桃在线观看| 伦理电影大哥的女人| 欧美日韩精品成人综合77777| 啦啦啦视频在线资源免费观看| 欧美精品亚洲一区二区| 国产精品人妻久久久久久| 街头女战士在线观看网站| 欧美性感艳星| 久久精品久久久久久久性| 久久久久久久久久成人| av免费观看日本| 免费观看无遮挡的男女| 国产一级毛片在线| av有码第一页| 美女国产视频在线观看| 99九九在线精品视频| 久久久a久久爽久久v久久| 国产成人精品无人区| 精品国产一区二区久久| 国产高清不卡午夜福利| 一区二区av电影网| 一级毛片电影观看| a级毛色黄片| 欧美激情国产日韩精品一区| 欧美精品一区二区免费开放| 久久午夜综合久久蜜桃| 热re99久久精品国产66热6| 久久av网站| 国产精品 国内视频| 亚洲综合色网址| 婷婷色综合www| 中文字幕免费在线视频6| 不卡视频在线观看欧美| 亚洲精品自拍成人| 成人漫画全彩无遮挡| 晚上一个人看的免费电影| 大陆偷拍与自拍| 色视频在线一区二区三区| 赤兔流量卡办理| 在线观看三级黄色| 丁香六月天网| 亚洲美女视频黄频| 国产深夜福利视频在线观看| 久久久久精品久久久久真实原创| 成人二区视频| 亚洲美女黄色视频免费看| 最近2019中文字幕mv第一页| 交换朋友夫妻互换小说| 国产精品久久久久久精品电影小说| 国产熟女欧美一区二区| 热re99久久国产66热| 日韩,欧美,国产一区二区三区| 久久影院123| 久久久精品免费免费高清| 亚洲一级一片aⅴ在线观看| 丝瓜视频免费看黄片| 观看av在线不卡| 麻豆乱淫一区二区| 国产精品 国内视频| 日本欧美国产在线视频| 全区人妻精品视频| 欧美人与性动交α欧美软件 | av在线播放精品| 精品一区二区三卡| 91aial.com中文字幕在线观看| 卡戴珊不雅视频在线播放| 赤兔流量卡办理| 国产欧美日韩综合在线一区二区| 欧美日韩国产mv在线观看视频| 久久久精品免费免费高清| 亚洲美女黄色视频免费看| 国产免费一区二区三区四区乱码| 中文字幕免费在线视频6| 久久女婷五月综合色啪小说| 亚洲精品乱久久久久久| 在线 av 中文字幕| 免费黄频网站在线观看国产| 国产女主播在线喷水免费视频网站| 国产男女内射视频| 热re99久久精品国产66热6| 伦理电影大哥的女人| 爱豆传媒免费全集在线观看| a级毛片黄视频| 免费在线观看完整版高清| 男人操女人黄网站| 老司机影院成人| 欧美激情国产日韩精品一区| 国产亚洲最大av| 日韩欧美一区视频在线观看| 伦理电影免费视频| 免费在线观看完整版高清| av播播在线观看一区| 日本爱情动作片www.在线观看| 欧美+日韩+精品| 制服人妻中文乱码| 亚洲久久久国产精品| 成人18禁高潮啪啪吃奶动态图| 久久毛片免费看一区二区三区| 欧美另类一区| 久久亚洲国产成人精品v| 亚洲精品国产色婷婷电影| 精品人妻在线不人妻| 高清av免费在线| 精品视频人人做人人爽| av一本久久久久| 80岁老熟妇乱子伦牲交| 亚洲国产精品一区三区| 十八禁网站网址无遮挡| 国产免费视频播放在线视频| 国产高清不卡午夜福利| 久久国内精品自在自线图片| 男女下面插进去视频免费观看 | 91国产中文字幕| 丰满饥渴人妻一区二区三| 国产黄频视频在线观看| 18禁动态无遮挡网站| 26uuu在线亚洲综合色| 久久久久久久国产电影| 亚洲av男天堂| 成人综合一区亚洲| av一本久久久久| 国产精品不卡视频一区二区| 精品少妇久久久久久888优播| 国产精品人妻久久久久久| 国产高清国产精品国产三级| 亚洲在久久综合| 免费观看性生交大片5| 欧美日本中文国产一区发布| 精品少妇内射三级| 精品国产露脸久久av麻豆| 亚洲欧美清纯卡通| 边亲边吃奶的免费视频| 国产日韩欧美视频二区| 免费观看a级毛片全部| 18禁动态无遮挡网站| 26uuu在线亚洲综合色| 高清毛片免费看| 国产成人91sexporn| 久久久a久久爽久久v久久| 精品久久蜜臀av无| 国产av一区二区精品久久| 国产高清国产精品国产三级| 捣出白浆h1v1| 9191精品国产免费久久| 在线天堂中文资源库| 搡老乐熟女国产| 久热这里只有精品99| 日日撸夜夜添| 女的被弄到高潮叫床怎么办| 一级片免费观看大全| 一级毛片我不卡| 日韩精品免费视频一区二区三区 | 王馨瑶露胸无遮挡在线观看| 成人综合一区亚洲| 久久精品久久久久久噜噜老黄| 日日爽夜夜爽网站| 考比视频在线观看| 一区二区av电影网| 三级国产精品片| 免费观看在线日韩| 午夜免费鲁丝| 十八禁高潮呻吟视频| 中文天堂在线官网| 国语对白做爰xxxⅹ性视频网站| 国产色婷婷99| 国产欧美日韩综合在线一区二区| 日韩免费高清中文字幕av| 免费人成在线观看视频色| 制服诱惑二区| 一区二区三区乱码不卡18| 久久毛片免费看一区二区三区| 观看av在线不卡| 久久久精品区二区三区| 日韩av不卡免费在线播放| 狂野欧美激情性bbbbbb| 两性夫妻黄色片 | 国产精品成人在线| 亚洲精品国产av蜜桃| 亚洲av.av天堂| 夜夜爽夜夜爽视频| 两个人看的免费小视频| 国产免费现黄频在线看| 老司机亚洲免费影院| 亚洲精品自拍成人| 国产欧美日韩一区二区三区在线| 18禁裸乳无遮挡动漫免费视频| 精品一品国产午夜福利视频| 观看美女的网站| 色94色欧美一区二区| 大香蕉97超碰在线| 国产极品天堂在线| 欧美成人午夜免费资源| 高清av免费在线| 国产伦理片在线播放av一区| 插逼视频在线观看| 一本大道久久a久久精品| 国产成人精品无人区| 久久久久国产精品人妻一区二区| 观看av在线不卡| 十八禁高潮呻吟视频| 少妇的逼好多水| 午夜福利,免费看| 91精品伊人久久大香线蕉| 中文字幕人妻丝袜制服| 欧美成人午夜精品| 日韩伦理黄色片| 国产精品麻豆人妻色哟哟久久| 日韩av免费高清视频| 少妇的逼水好多| 观看美女的网站| 大陆偷拍与自拍| 久久久久网色| 午夜av观看不卡| 久久精品国产鲁丝片午夜精品| 午夜激情久久久久久久| 在线精品无人区一区二区三| 美国免费a级毛片| 精品人妻偷拍中文字幕| 中文字幕制服av| 免费不卡的大黄色大毛片视频在线观看| 一区二区日韩欧美中文字幕 | 国产精品久久久av美女十八| 亚洲精品乱久久久久久| 老女人水多毛片| 七月丁香在线播放| 97在线人人人人妻| 亚洲国产精品专区欧美| 老熟女久久久| av免费在线看不卡| av在线app专区| 我的女老师完整版在线观看| 日韩制服丝袜自拍偷拍| 少妇人妻 视频| 久久人人97超碰香蕉20202| 91aial.com中文字幕在线观看| 水蜜桃什么品种好| 亚洲av日韩在线播放| 久久青草综合色| 国产男人的电影天堂91| 久久久久久人人人人人| 91国产中文字幕| 午夜福利影视在线免费观看| 岛国毛片在线播放| 国产成人av激情在线播放| 国产又爽黄色视频| 69精品国产乱码久久久| 在线观看www视频免费| 一级,二级,三级黄色视频| 我要看黄色一级片免费的| 久久鲁丝午夜福利片| 久久久久久久精品精品| 精品人妻熟女毛片av久久网站| 国产片内射在线| 国产成人午夜福利电影在线观看| 男女高潮啪啪啪动态图| 赤兔流量卡办理| av天堂久久9| 深夜精品福利| 高清欧美精品videossex| 一区二区三区精品91| 亚洲av在线观看美女高潮| 国产精品三级大全| 亚洲中文av在线| 亚洲国产色片| 99热国产这里只有精品6| 国产淫语在线视频| 久久 成人 亚洲| 交换朋友夫妻互换小说| 中文字幕免费在线视频6| 亚洲内射少妇av| 欧美激情极品国产一区二区三区 | 亚洲精品视频女| 久久精品国产a三级三级三级| 欧美少妇被猛烈插入视频| 五月开心婷婷网| 9热在线视频观看99| 免费在线观看黄色视频的| 精品一品国产午夜福利视频| 国产1区2区3区精品| 男的添女的下面高潮视频| 国产爽快片一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产在线免费精品| 国产 精品1| 搡女人真爽免费视频火全软件| 免费少妇av软件| 啦啦啦中文免费视频观看日本| 国产福利在线免费观看视频| 在线亚洲精品国产二区图片欧美| 有码 亚洲区| 五月开心婷婷网| 最近2019中文字幕mv第一页| www.色视频.com| 欧美老熟妇乱子伦牲交| 一本久久精品| 国产 一区精品| 在线观看一区二区三区激情| 看免费av毛片| 人成视频在线观看免费观看| 高清毛片免费看| 国产片内射在线| 99视频精品全部免费 在线| 一边摸一边做爽爽视频免费| 十分钟在线观看高清视频www| 人人妻人人爽人人添夜夜欢视频| 欧美国产精品va在线观看不卡| 99香蕉大伊视频| 久热这里只有精品99| 精品国产国语对白av| 在线观看免费日韩欧美大片| 天天影视国产精品| 日日摸夜夜添夜夜爱| 男的添女的下面高潮视频| 老熟女久久久| 9色porny在线观看| 99精国产麻豆久久婷婷| 欧美日韩av久久| 大香蕉久久成人网| 99热6这里只有精品| 2022亚洲国产成人精品| 少妇人妻精品综合一区二区| 在线观看免费日韩欧美大片| 一二三四在线观看免费中文在 | 在线观看三级黄色| 国产免费又黄又爽又色| 大片电影免费在线观看免费| 日韩一区二区视频免费看| 精品第一国产精品| 五月开心婷婷网| 久久国内精品自在自线图片| 午夜福利网站1000一区二区三区| 一边摸一边做爽爽视频免费| 日韩中字成人| 一个人免费看片子| 精品一区在线观看国产| 成年人免费黄色播放视频| 成人无遮挡网站| av网站免费在线观看视频| 妹子高潮喷水视频| 人人妻人人澡人人看| 天天影视国产精品| 亚洲欧洲精品一区二区精品久久久 | 在线看a的网站| 免费黄色在线免费观看| 最黄视频免费看| 老女人水多毛片| 丰满乱子伦码专区| 国产一区二区三区综合在线观看 | 国产极品天堂在线| 亚洲第一av免费看| 丝袜美足系列| 亚洲美女黄色视频免费看| 午夜福利乱码中文字幕| 人妻人人澡人人爽人人| 69精品国产乱码久久久| 午夜免费男女啪啪视频观看| 99久国产av精品国产电影| 亚洲美女视频黄频|