• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy

    2021-01-21 02:08:20SurendarGeethaRajanandAlaazim
    Chinese Physics B 2021年1期

    A Surendar, K Geetha, C Rajan, and M Alaazim

    1Department of Pharmacology,Saveetha Dental College and Hospital,Saveetha Institute of Medical and Technical Sciences,Chennai,India

    2CSE,Excel Engineering College,Pallakapalayam,Komarapalayam,637303,India

    3IT,K S Rangasamy College of Technology Tiruchengode,Namakkal,Tamil Nadu 637215,India

    4Faculty of Engineering,Universitas Muhammadiyah Surakarta(UMS),Indonesia

    Keywords: bulk metallic glass,materials design,crystallization kinetics,glass forming ability

    1. Introduction

    Due to their acceptable corrosion resistance and high mechanical properties,ZrCo-based bulk metallic glasses(BMGs)are potential candidates for application in a wide range of engineered structures.[1–4]Among several developed ZrCo-based alloys, ZrCoAl ternary system shows a good glass forming ability (GFA).[6]However, there exists a long path to make usable this type of alloys in the industrial applications. Unlike crystalline alloys, metallic glass formers show restricted ductility,especially at room temperature,so that it is necessary to use advanced fabrication methods to achieve BMGs with eligible shapes and configurations.[7]Hence, understanding the thermal stability and crystallization kinetics of BMG alloys for optimization of crucial variables in the production process seems very important.

    In general, the isothermal and non-isothermal analyses have been employed to evaluate the crystallization kinetics in the BMGs.[8–11]The similarity between non-isothermal analysis and devitrification processes makes the athermal condition more favorable in the kinetic study of MG alloys. To explain the crystallization kinetic evolution,the thermo-analytical approaches,including kinetic parameters,have been used;[12,13]however,Gibbs free energy changes(ΔGsl)from super-cooled liquid to crystallization of amorphous phase may also be able to interpret the crystallization events in the BMGs.[14]Due to the difficult experimentations for measuring Gibbs energy variations, some theoretical expressions such as KN and TS equations have been presented.[15]For example, a novel expression was proposed, in which the Gibbs energy was accurately estimated in multicomponent Zr-based BMGs.[16,17]In this regard,the nucleation rate exponentially relies on the activation barrier,which is inversely correlated with ΔGslso that the higher GFA and better thermal stability strongly depends on the low ΔGslvalue.[18]The fragility parameter (m) is another factor describing the GFA and thermal stability of amorphous alloys with the reflection of deviation degree of a supercooled liquid from the Arrhenius trend beyond the glass transition temperature.[19–21]When a liquid is cooled in the range of glass transition temperature, the viscosity is dramatically intensified by more than 12 orders in magnitude.[22]The concept of liquid fragility defines the accelerated process in the viscosity. Under the super-cooling event,the liquid may experience the increment of viscosity in an Arrhenius-like fashion,while the viscosity trend may be in the form of non-Arrhenius scaling. Hence, the m parameter is a criterion, in which the viscosity changes is characterized as function of temperature gradient.[22]According to standard definition, it is suggested that the deviation degree defines the GFA with three types of fragile, intermediate and strong liquids. The fragile liquids exhibit a considerable deviation from the Arrhenius trend(m ≤70)leading to a loose-packed structure with lower energy barrier for nucleation. On the other side, the strong liquids with m values of 16–30 tend to create dense-packed atomic arrangements, which result in more difficult nucleation and growth,higher GFA and better thermal stability Moreover,liquids with intermediate fragile features have m values of 30–70 with inherent characteristics between pure fragile and strong liquids.

    As mentioned in literature,it is very crucial to understand the inherent feature of metallic glass formers to be able to design and fabricate the desired amorphous alloys with exceptional properties. Hence,in this work we tried to develop new BMGs with chemical compositions of Zr5(Co33Ag2)Al10Ni5,Zr5(Co31Ag4)Al10Ni5, and Zr5(Co29Ag6)Al10Ni5to identify the role of Ag minor addition on the crystallization kinetics and GFA.There are some works showing the biocompatibility,corrosion resistance and mechanical properties of Ag addition in Zr-based BMGs;[23–25]however, there is a need to evaluate fundamental features, such as thermal stability and GFA,for achieving ZrCo BMGs capable to be used in engineering structures.

    2. Experimental procedure

    High purity elements of Zr, Co, Al, Ni, and Ag were used to prepare master alloy ingots with nominal compositions of Zr50(Co33Ag2)Al10Ni5, Zr5(Co31Ag4)Al10Ni5, and Zr5(Co29Ag6)Al10Ni5. The above-mentioned compositions are coded as A1,A2,and A3 in this paper. The arc re-melting technique under Ti-gettered high purity argon was applied for alloying process. The master alloys were re-melted four times to convince elemental homogeneity in the ingots. The BMG rods with length of 4 cm and minimum diameter of 3 mm were produced using a copper mold suction casting technique equipped with a water-cooled system for subsequent analyses.Moreover,rods with different diameters,from 3 mm to 6 mm,were cast to identify the critical thicknesses.

    After rod fabrication,the structure of specimens were analyzed with x-ray diffraction (XRD) using Cu Kα radiation.To explore the thermal characteristics of specimens,differential scanning calorimeter(DSC)was employed. The DSC instrument was calibrated with pure indium sample. For DSC experiment, the samples with 1-mm thickness were cut from the reference rods and kept in the Al2O3pans under argon environment. The cooling/heating rates of 5, 10, 15, and 20 K/min were considered for the DSC experiment.

    3. Results and discussion

    Figure 1 shows the XRD patterns of samples with different chemical compositions. All the patterns indicate a broad hump intensified at the 2θ ~=38?and there are no sharp peaks implying the lack of crystalline phases in the cast samples.Hence, the XRD patterns justify that the samples are inherently fully amorphous. Non-isothermal DSC analysis with different heating rates was used to evaluate the thermal characteristics of amorphous samples.

    Fig.1. XRD patterns for samples A1,A2,and A3.

    As given in Fig. 2, the endothermic event in the DSC curves determines the glass transition phenomenon under the heating process. The glass transition is accompanied with a sharp exothermic event related to the primitive crystallization process. It is also found that all the samples can be thermally stable up to temperature of ~775 K at 20 K/min heating rate,while at the higher temperature the crystallization event is activated in the amorphous structure. It is should be noted that all the specimens have two sharp crystallization peaks in the DSC curves showing that the crystallization event occurs in two main stages. In other words, at least two dominant crystalline phases may be formed during the heating stage in the DSC experiment. Based on detailed results of DSC experiment in 20 K/min(see Table 1),it is revealed that the Ag addition significantly decreases the melting point of ZrCo-based alloys.

    Table 1. The thermal characteristics of samples at the heating rate of 20 K/min.

    According to the DSC analysis, the rise in heating rate leads to the shift of crystallization event and glass transition to the higher temperatures, which means that mentioned processes are inherently thermally activated. Considering this feature, it is possible to study the kinetics of glass transition and crystallization using varied kinetic approaches. As a most well-known kinetic approach,the Kissinger model can describe the thermally evolution of crystallization events in the solid-state reaction.[26]With a following equation,one can estimate the activation energy of crystallization(Ex)in the amorphous alloys:

    Fig.2. DSC curves for samples(a)A1,(b)A2,and(c)A3.

    where C is a constant, R is the gas constant, and Txdefines the characteristic temperature, i.e., glass transition temperature(Tg)or crystallization temperature(Tc),obtained from the DSC results. Following the mentioned equation, the linear fit of 1/Txversus ln(β/T2x) can define the activation energy value.

    Figure 3 illustrates the fitted plots of Kissinger model for all the specimens corresponding to both of crystallization and glass transition events. At the first glance, one can see that the incline of fitted plots for Tgcurves is higher than the Tcones,which means the Egis higher than the Ec. Moreover,it is found that the Ag addition may increase the Eg, while the Ecvalues decreases with Ag dopant in the glassy alloy. Nevertheless, the studies indicate that the Kissinger model is not applicable in explaining the crystallization kinetics of metallic glasses for all the situations.[18]Hence it is required to consider other approaches for more investigations.

    Fig. 3. Kissinger fitted plots for (a) glass transition and (b) crystallization event.Flynne Walle Ozawa(FWO)is another model especially proposed for estimating the activation energy of crystallization event in the metallic glasses.[18] Considering Eq.(2),the FWO method relates the 1/Tc to ln(β)in order to calculate the effective activation energy:

    The FWO crystallization plots of samples A1,A2,and A3 are illustrated in Fig. 4(a). To have an accurate comparison, the calculated activation energy values for the crystallization event based on FWO and Kissinger approaches are simultaneously given in Fig.5. One can see that both approaches confirm the activation energy (Ec) enhancement with the rise in Ag content; however,the Kissinger method shows slightly higher Ecvalues in comparison with the FWO. The increasing trend of Ecdemonstrated that the silver addition changes the atomic arrangement of structure somehow to make difficult primary nucleation and subsequent crystallization.

    To evaluate the crystallization evolution, the samples were annealed at their 1.2Tgtemperatures and analyzed with the XRD experiment(see Fig.6). According to the crystalline peaks, the B2-ZrCo and Zr6CoAl2metallic phases are dominant in the microstructure, which were also shown in other works.[6]Regarding the structural relaxation event, a novel approach was developed by Moynihan et al.[27]relating the activation energy to the glass transition

    Considering Eq. (3), the linear fit of 1/Tgand lnβ can explain the activation energy value for the glass transition phenomenon. Figure 4(b)presents the Moynihan plots,compared to the FWO results.

    Fig.4. (a)The FWO plot for crystallization and(b)Moynihan plot for glass transition.

    Figure 5 also shows how the Ag addition may affect the Egtrend for samples A1,A2,and A3,respectively. According to the results, both Moynihan and Kissinger methods present similar Egvalues. It is also found that the Ag addition leads to a significant decrease in activation energy of glass transition. Hence, it is concluded that the sample A1 with lower Ag content has the stronger interactive metallic bonds leading to a higher activation energy. Moreover, figure 5 indicates that Ecis lower than Egvalues for all the specimens.This outcome was also reported for Zr-based BMGs in other works.[18]In general, the structural relaxation occurs at the temperature range much lower than the crystallization temperature. Hence, the atomic mobility at the glass transition temperature is considerably less than the crystallization process and consequently,the energy barrier for atomic rearrangement may be high leading to a more activation energy in the glass transition event.

    Fig. 5. The activated energy for glass transition and crystallization event based on the Kissinger,FWO,and Moynihan models.

    Fig. 6. The XRD patterns of samples A1, A2, and A3 after 2-h annealing treatment at 1.2Tg.

    Besides the mentioned approaches, Johnson–Mehl–Avrami approximation can be applied for explaining the crystallization kinetics in metallic glasses.[28]According to Eq. (4), the time dependence of crystallization volume fraction can be described as follows:

    where n is the kinetic exponent used to define the crystallization morphology. Moreover, equation (5) is employed to describe α parameter as a function of temperature at the nonisothermal situation:[28]

    In this equation,φ defines the heat flux and T and Tfshow the lower and upper temperatures that the crystallization occurs.It should be noted that T and Tfwere considered at the beginning and the end of first crystallization peak in each DSC curve.Considering Eq.(5),α changes as a function of temperature for samples A1,A2,and A3 are demonstrated in Fig.7.

    Fig.7. The crystalline fraction as a function of the temperature for(a)A1,(b)A2,(c)A3.

    The results show that the α–T plots are in the form of sigmoidal curves. This type of trend is conventional for glassy alloys under non-isothermal situations.[29]It should be noted that there are two peaks in the crystallization region and a fitting procedure was used to provide sigmoidal curves.The various heating rate (VHR) method is one of the recent thermo-analytical models explaining the crystallization kinetics of glassy materials based on JMA transformation approach,given in Eq.(4).[30]According to VHR method,the n exponent is averaged over whole completion of crystallization as a function of heating rates. To obtain the n value, it is necessary to consider two different times and temperatures for two diverse α1and α2at a certain heating rate:[30]

    The calculations were done and the n values for the samples are presented in Fig. 8. As shown clearly, n values are in the range of 1.85–2.45 indicating the three-dimensional crystalline growth with a decline in nucleation rate. Although,this event is common in all the samples,n values are reduced with the increment of silver content. So it is concluded that the silver can play an important role in the inhibition of nucleation and growth of crystalline metallic phases.

    Fig.8. Avrami exponent values for different situations.

    Fragility is another parameter describing the inherent features of metallic glasses. In general,the glass relaxation in the BMGs follows Vogel–Fulcher–Tammann (VFT) equation or the Arrhenius equation. According to the Arrhenius behavior, the fragility can be studied in the relation to the effective activation energy:[31]

    Table 2 gives mEvalues obtained from the samples heated with rate of 20 K/min. As observed, the calculated values are in the range of 33–41 for all the specimens. This indicates that our BMG alloys are classified in the“intermediatefragile-strength” metallic glasses. The results also show that mEvalue declines with the rise in Ag content. Hence, it is concluded that the Ag-rich BMG composition with lower mE

    value has the higher GFA and better thermodynamic stability. To confirm this conclusion, it is also required to evaluate the characteristic temperatures such as γ and Trgparameters describing the GFA in the glassy materials.[32]Based on calculated values in Table 2,the Ag addition leads to the increase in γ and Trgparameters. The GFA parameter is also correlated to the critical diameter so that with Ag minor addition the critical thickness was significantly enhanced. It should be noted that metallic glass formers with better GFA are needed a lower driving force to thermodynamically create crystallization phase in the microstructure.[33]In other words,the silver addition declines the driving force for crystallization and defines a lower activation barrier for crystallization. Hence, the sample A3 has the lowest driving force, which is also confirmed by Ec calculation from the FWO and Kissinger equations.

    Table 2. The basic parameters attained from the DSC results at the heating rate of 20 K/min.

    4. Conclusions

    This work aims to show that how the minor addition of Ag influences the thermal stability,GFA and activation energy of glass transition and crystallization kinetics in the ZrCoAgAlNi BMGs. It was revealed that the rise in Ag content led to the decrease in activation energy for glass transition,while the activation energy for crystallization increased. The results also showed that the Avrami exponent is in the range of 2.1–2.7 for all the specimens;however,it declined with rise in Ag content. This event affected the crystallization kinetics and repressed the nucleation and growth. Evaluating fragility parameter, it was shown that all the samples were classified in the intermediate strength BMG alloys. Finally, it was found that the Ag addition improved the GFA and thermal stability through the small changes in the structural arrangements.

    高清av免费在线| 国产精品蜜桃在线观看| 久久久久久久久中文| 成年女人看的毛片在线观看| 九九久久精品国产亚洲av麻豆| a级毛片免费高清观看在线播放| 插阴视频在线观看视频| 亚洲图色成人| 亚洲色图av天堂| 日韩欧美精品v在线| 成年女人永久免费观看视频| 国产黄色视频一区二区在线观看 | 汤姆久久久久久久影院中文字幕 | 免费大片18禁| 水蜜桃什么品种好| 日韩一区二区视频免费看| 三级经典国产精品| 精品一区二区免费观看| 日韩欧美精品免费久久| 尤物成人国产欧美一区二区三区| 久久久久久久久久久免费av| 亚洲伊人久久精品综合 | 丝袜喷水一区| 亚洲中文字幕一区二区三区有码在线看| 九九久久精品国产亚洲av麻豆| 丝袜美腿在线中文| 欧美另类亚洲清纯唯美| 国产精品一区二区在线观看99 | 亚州av有码| 一边摸一边抽搐一进一小说| 一级爰片在线观看| 欧美精品一区二区大全| 精品久久国产蜜桃| 乱系列少妇在线播放| 中文字幕久久专区| 日韩精品青青久久久久久| 麻豆国产97在线/欧美| 亚洲av免费高清在线观看| 国产又黄又爽又无遮挡在线| 人体艺术视频欧美日本| 久久久久久久久久黄片| 18禁在线无遮挡免费观看视频| 欧美色视频一区免费| 久久久久久久亚洲中文字幕| 中文天堂在线官网| 欧美性猛交黑人性爽| 国产成人aa在线观看| 免费人成在线观看视频色| 三级国产精品欧美在线观看| 国产精品三级大全| 韩国av在线不卡| 看黄色毛片网站| 在线观看av片永久免费下载| 男女边吃奶边做爰视频| 久99久视频精品免费| 夜夜爽夜夜爽视频| 久久久亚洲精品成人影院| 国产国拍精品亚洲av在线观看| 一本久久精品| 可以在线观看毛片的网站| 中文亚洲av片在线观看爽| 日产精品乱码卡一卡2卡三| 少妇丰满av| 日本爱情动作片www.在线观看| 国产单亲对白刺激| 91精品一卡2卡3卡4卡| 日韩精品青青久久久久久| 久久久久久国产a免费观看| 午夜爱爱视频在线播放| 成人一区二区视频在线观看| 久久久久久九九精品二区国产| 国产av不卡久久| 国产亚洲av嫩草精品影院| 精品人妻一区二区三区麻豆| 久久精品91蜜桃| 亚洲自偷自拍三级| 最近2019中文字幕mv第一页| 18+在线观看网站| 波多野结衣高清无吗| 男女国产视频网站| 三级国产精品片| 高清视频免费观看一区二区 | 国产精品女同一区二区软件| 美女高潮的动态| 久久精品国产亚洲av涩爱| 亚洲成人精品中文字幕电影| 国产精品久久久久久av不卡| 国产免费又黄又爽又色| 汤姆久久久久久久影院中文字幕 | 日韩欧美精品免费久久| av专区在线播放| 在线观看av片永久免费下载| 免费观看性生交大片5| 国产v大片淫在线免费观看| 亚洲在久久综合| 色噜噜av男人的天堂激情| av卡一久久| 国产精品永久免费网站| 国产极品精品免费视频能看的| 欧美精品国产亚洲| 国产美女午夜福利| 日韩在线高清观看一区二区三区| 国产午夜精品久久久久久一区二区三区| 深爱激情五月婷婷| 九九爱精品视频在线观看| 黄色日韩在线| 亚洲内射少妇av| 国产精品一区www在线观看| 欧美变态另类bdsm刘玥| 日本色播在线视频| 欧美成人一区二区免费高清观看| 99热精品在线国产| 91aial.com中文字幕在线观看| 我要搜黄色片| 久久久久久久久久久丰满| 小说图片视频综合网站| 又粗又硬又长又爽又黄的视频| 精品人妻熟女av久视频| 国产免费男女视频| 亚洲怡红院男人天堂| 最后的刺客免费高清国语| 国产一区有黄有色的免费视频 | 国产成人精品一,二区| 国产精品一区二区性色av| 亚洲欧洲日产国产| 国产v大片淫在线免费观看| 免费无遮挡裸体视频| 色综合亚洲欧美另类图片| 插阴视频在线观看视频| 免费观看精品视频网站| 精品人妻视频免费看| 一个人免费在线观看电影| 熟女人妻精品中文字幕| 精品人妻熟女av久视频| av在线观看视频网站免费| 午夜a级毛片| 亚洲精品国产成人久久av| 久久国内精品自在自线图片| 精品久久久久久久末码| 久久精品国产亚洲av天美| 在线观看66精品国产| 少妇人妻一区二区三区视频| 国产老妇女一区| 少妇熟女aⅴ在线视频| 老司机影院毛片| 寂寞人妻少妇视频99o| 免费电影在线观看免费观看| 午夜福利在线在线| 插逼视频在线观看| 国产精品99久久久久久久久| 高清视频免费观看一区二区 | 亚洲欧美日韩东京热| 免费人成在线观看视频色| 精品久久久噜噜| 久久精品国产鲁丝片午夜精品| 免费观看精品视频网站| 国产久久久一区二区三区| 精品人妻一区二区三区麻豆| 久久久久性生活片| 一级av片app| 小蜜桃在线观看免费完整版高清| 亚洲国产高清在线一区二区三| 日本色播在线视频| 久久久精品欧美日韩精品| 国产麻豆成人av免费视频| 久久精品国产鲁丝片午夜精品| 少妇的逼水好多| 精品熟女少妇av免费看| 国产成人免费观看mmmm| 亚洲欧美日韩卡通动漫| 97在线视频观看| 日韩中字成人| 日本黄色视频三级网站网址| kizo精华| 真实男女啪啪啪动态图| 中文字幕久久专区| 国产精品一区二区三区四区免费观看| 亚洲av中文av极速乱| 尾随美女入室| 国产精品永久免费网站| 婷婷色av中文字幕| 亚洲欧美一区二区三区国产| 乱码一卡2卡4卡精品| 成人av在线播放网站| 搡老妇女老女人老熟妇| av国产久精品久网站免费入址| 99热全是精品| 亚洲国产精品国产精品| 两性午夜刺激爽爽歪歪视频在线观看| 欧美最新免费一区二区三区| 欧美精品一区二区大全| 免费不卡的大黄色大毛片视频在线观看 | 欧美一区二区亚洲| 亚洲人成网站高清观看| 2021天堂中文幕一二区在线观| 成人午夜高清在线视频| 成人午夜精彩视频在线观看| 精品国产三级普通话版| 狂野欧美白嫩少妇大欣赏| 不卡视频在线观看欧美| 国产国拍精品亚洲av在线观看| 国产69精品久久久久777片| 亚洲成色77777| 一边亲一边摸免费视频| 国产精品永久免费网站| 在线观看av片永久免费下载| 嫩草影院新地址| 男女那种视频在线观看| 美女大奶头视频| 最后的刺客免费高清国语| 国产精品野战在线观看| 国产精品av视频在线免费观看| 亚洲国产精品成人久久小说| 网址你懂的国产日韩在线| 亚洲内射少妇av| 久热久热在线精品观看| 亚洲精品aⅴ在线观看| 我要搜黄色片| 成人一区二区视频在线观看| 久久久成人免费电影| 国产淫片久久久久久久久| 特级一级黄色大片| 又粗又硬又长又爽又黄的视频| 成人二区视频| 天堂中文最新版在线下载 | 国产 一区精品| 国模一区二区三区四区视频| 两性午夜刺激爽爽歪歪视频在线观看| 九九热线精品视视频播放| 中文字幕免费在线视频6| 国产一级毛片七仙女欲春2| 舔av片在线| 亚洲人成网站在线播| 人妻夜夜爽99麻豆av| 一夜夜www| 日韩视频在线欧美| 国产私拍福利视频在线观看| 欧美极品一区二区三区四区| 亚洲自拍偷在线| 久久久色成人| 精品国产露脸久久av麻豆 | 大香蕉97超碰在线| 91午夜精品亚洲一区二区三区| 欧美性猛交黑人性爽| av线在线观看网站| 国产真实伦视频高清在线观看| 免费观看的影片在线观看| 秋霞伦理黄片| 亚洲一级一片aⅴ在线观看| 欧美3d第一页| 两个人的视频大全免费| 美女内射精品一级片tv| 看免费成人av毛片| 成人漫画全彩无遮挡| 国产精品麻豆人妻色哟哟久久 | 欧美激情在线99| 看片在线看免费视频| 国产伦精品一区二区三区视频9| 国产精品国产三级国产专区5o | 久99久视频精品免费| av福利片在线观看| 我要搜黄色片| 久久亚洲国产成人精品v| 久久久久久久久久黄片| 国产在线一区二区三区精 | 熟女人妻精品中文字幕| 日本黄大片高清| 欧美zozozo另类| 97超碰精品成人国产| av免费在线看不卡| 欧美成人午夜免费资源| 亚洲精品日韩av片在线观看| 简卡轻食公司| 高清视频免费观看一区二区 | 国产精品女同一区二区软件| 国产老妇伦熟女老妇高清| 国产成人a区在线观看| 1000部很黄的大片| 亚州av有码| 亚洲四区av| 午夜视频国产福利| 亚洲精品久久久久久婷婷小说 | 一卡2卡三卡四卡精品乱码亚洲| 你懂的网址亚洲精品在线观看 | 联通29元200g的流量卡| 亚洲在久久综合| 国产精品久久久久久精品电影| 嫩草影院入口| 成人综合一区亚洲| 只有这里有精品99| 亚洲精品国产成人久久av| 国产黄色视频一区二区在线观看 | 免费电影在线观看免费观看| 最近手机中文字幕大全| 欧美一级a爱片免费观看看| 欧美精品一区二区大全| 亚洲欧洲日产国产| 久久精品国产亚洲网站| 伊人久久精品亚洲午夜| 在线观看一区二区三区| 亚洲高清免费不卡视频| 老师上课跳d突然被开到最大视频| 国产午夜福利久久久久久| 久久久久久国产a免费观看| 韩国高清视频一区二区三区| 特级一级黄色大片| 黄片wwwwww| 亚洲综合精品二区| 看十八女毛片水多多多| 91在线精品国自产拍蜜月| 精品久久久久久久人妻蜜臀av| 色吧在线观看| 欧美成人午夜免费资源| 婷婷色综合大香蕉| 一级黄片播放器| 精品熟女少妇av免费看| 丰满少妇做爰视频| 欧美最新免费一区二区三区| 亚洲欧美日韩卡通动漫| 精品少妇黑人巨大在线播放 | 免费av观看视频| 国产精品久久久久久精品电影| 久久精品久久久久久久性| av福利片在线观看| 亚洲国产精品sss在线观看| 熟女人妻精品中文字幕| 欧美一区二区精品小视频在线| 精品久久久久久久末码| 伦理电影大哥的女人| 国产高清国产精品国产三级 | 免费不卡的大黄色大毛片视频在线观看 | 中文字幕亚洲精品专区| 亚洲欧美精品专区久久| 51国产日韩欧美| 精品国产露脸久久av麻豆 | 国语对白做爰xxxⅹ性视频网站| 一个人看视频在线观看www免费| 亚洲av男天堂| 一级av片app| 久久久亚洲精品成人影院| 18禁在线无遮挡免费观看视频| 人人妻人人看人人澡| 国产av在哪里看| 精品人妻熟女av久视频| 日韩av在线免费看完整版不卡| 99在线视频只有这里精品首页| 三级男女做爰猛烈吃奶摸视频| 日韩av在线大香蕉| 亚洲经典国产精华液单| 成人无遮挡网站| 中文字幕av在线有码专区| 久久精品影院6| 国产在视频线在精品| 午夜a级毛片| 久久久久久久国产电影| 婷婷六月久久综合丁香| 亚洲av电影不卡..在线观看| 自拍偷自拍亚洲精品老妇| 水蜜桃什么品种好| 亚洲中文字幕日韩| 大香蕉97超碰在线| 我的老师免费观看完整版| 亚洲四区av| 九九在线视频观看精品| 97热精品久久久久久| av福利片在线观看| 亚洲精品国产av成人精品| 精品国产露脸久久av麻豆 | 午夜精品在线福利| 国产极品精品免费视频能看的| 春色校园在线视频观看| 日本-黄色视频高清免费观看| 午夜免费激情av| 色网站视频免费| 亚洲aⅴ乱码一区二区在线播放| 看免费成人av毛片| av卡一久久| 国产精品国产高清国产av| 69人妻影院| 国产成人freesex在线| 少妇裸体淫交视频免费看高清| 在线播放无遮挡| 七月丁香在线播放| 高清毛片免费看| www日本黄色视频网| 亚洲四区av| 欧美三级亚洲精品| 国产亚洲精品久久久com| 国产熟女欧美一区二区| 插阴视频在线观看视频| 免费观看在线日韩| 1024手机看黄色片| 亚洲精品亚洲一区二区| 国产中年淑女户外野战色| 2022亚洲国产成人精品| 国产精品国产三级专区第一集| 99久国产av精品国产电影| 亚洲中文字幕日韩| 午夜精品在线福利| 久久久亚洲精品成人影院| 成人性生交大片免费视频hd| 久久久久久久久久久免费av| 一区二区三区四区激情视频| 欧美激情久久久久久爽电影| 国产成人福利小说| 欧美潮喷喷水| 久久精品综合一区二区三区| 中文资源天堂在线| 久久99热这里只频精品6学生 | av又黄又爽大尺度在线免费看 | av免费观看日本| 欧美3d第一页| av免费观看日本| 女的被弄到高潮叫床怎么办| 久久这里只有精品中国| 欧美xxxx性猛交bbbb| 边亲边吃奶的免费视频| videossex国产| 老司机影院毛片| 最后的刺客免费高清国语| 精品不卡国产一区二区三区| 一边摸一边抽搐一进一小说| 亚洲第一区二区三区不卡| 日日干狠狠操夜夜爽| 一级爰片在线观看| 亚洲欧洲国产日韩| 国产精品国产三级国产专区5o | 99热这里只有是精品在线观看| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩高清专用| 男人舔奶头视频| 啦啦啦啦在线视频资源| 91av网一区二区| 亚洲久久久久久中文字幕| 国内揄拍国产精品人妻在线| av线在线观看网站| 国产精品一区二区三区四区久久| 久久久欧美国产精品| 噜噜噜噜噜久久久久久91| 久久久久久久亚洲中文字幕| 久久精品久久久久久噜噜老黄 | 91av网一区二区| 国产69精品久久久久777片| 国产真实伦视频高清在线观看| 极品教师在线视频| 一边亲一边摸免费视频| 精品国内亚洲2022精品成人| 淫秽高清视频在线观看| 国产精品乱码一区二三区的特点| 一区二区三区免费毛片| 国产免费福利视频在线观看| 少妇熟女欧美另类| 亚洲精品成人久久久久久| 国产久久久一区二区三区| 高清日韩中文字幕在线| 久久久精品大字幕| 成人特级av手机在线观看| 高清视频免费观看一区二区 | 韩国av在线不卡| 亚洲成人精品中文字幕电影| 免费看日本二区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人成网站在线播| 成人三级黄色视频| 九九爱精品视频在线观看| 国产精品一及| 国产乱来视频区| 国产午夜精品久久久久久一区二区三区| 三级国产精品片| av免费观看日本| av黄色大香蕉| 99在线人妻在线中文字幕| 久久久欧美国产精品| 91在线精品国自产拍蜜月| 老司机影院毛片| 99在线视频只有这里精品首页| 国产极品天堂在线| 韩国高清视频一区二区三区| 成人国产麻豆网| 久久人妻av系列| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站在线观看播放| 91在线精品国自产拍蜜月| av天堂中文字幕网| 午夜精品在线福利| 汤姆久久久久久久影院中文字幕 | 最近手机中文字幕大全| 91精品一卡2卡3卡4卡| 亚洲在线自拍视频| 男人狂女人下面高潮的视频| 欧美日本亚洲视频在线播放| 亚洲四区av| 成年女人看的毛片在线观看| 一夜夜www| 在线播放无遮挡| 免费不卡的大黄色大毛片视频在线观看 | 神马国产精品三级电影在线观看| 国产亚洲精品久久久com| 又黄又爽又刺激的免费视频.| 亚洲精品日韩av片在线观看| 国产69精品久久久久777片| 神马国产精品三级电影在线观看| 一本久久精品| 全区人妻精品视频| 久久久久九九精品影院| 精品国产露脸久久av麻豆 | 99在线人妻在线中文字幕| 久久精品国产亚洲av天美| 久久亚洲精品不卡| av线在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 成人亚洲精品av一区二区| 村上凉子中文字幕在线| 99热6这里只有精品| 网址你懂的国产日韩在线| 校园人妻丝袜中文字幕| 人人妻人人看人人澡| 国产成人91sexporn| 欧美成人午夜免费资源| 亚洲精品,欧美精品| 少妇人妻精品综合一区二区| 亚洲欧美日韩东京热| 一级二级三级毛片免费看| 亚洲精华国产精华液的使用体验| 国产不卡一卡二| 国产一级毛片在线| 欧美日韩在线观看h| 一级黄片播放器| 汤姆久久久久久久影院中文字幕 | 美女内射精品一级片tv| 一个人看视频在线观看www免费| 欧美性猛交╳xxx乱大交人| 啦啦啦观看免费观看视频高清| 亚洲av免费在线观看| 尤物成人国产欧美一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 黄色配什么色好看| 国产淫片久久久久久久久| av免费观看日本| 欧美97在线视频| 免费观看性生交大片5| 国产成人精品久久久久久| 成人二区视频| 五月玫瑰六月丁香| 麻豆成人av视频| 日本一二三区视频观看| 深夜a级毛片| 亚洲在线观看片| 免费看美女性在线毛片视频| av.在线天堂| 99热这里只有是精品在线观看| 国产成人免费观看mmmm| av在线亚洲专区| 99久久精品国产国产毛片| 久久99精品国语久久久| 国产色爽女视频免费观看| 超碰av人人做人人爽久久| 成年女人看的毛片在线观看| 国产v大片淫在线免费观看| 国产成人精品婷婷| 伊人久久精品亚洲午夜| 亚洲国产精品成人久久小说| 久久亚洲精品不卡| 午夜免费男女啪啪视频观看| 97热精品久久久久久| 国产极品天堂在线| 十八禁国产超污无遮挡网站| 一级毛片久久久久久久久女| 亚洲电影在线观看av| 日本黄色片子视频| 尾随美女入室| 大香蕉97超碰在线| 3wmmmm亚洲av在线观看| 国产精品野战在线观看| 欧美成人一区二区免费高清观看| 免费看a级黄色片| 乱码一卡2卡4卡精品| 观看美女的网站| 一区二区三区高清视频在线| 久久精品久久久久久久性| 午夜a级毛片| 丝袜喷水一区| 一个人看的www免费观看视频| 亚洲内射少妇av| 联通29元200g的流量卡| 有码 亚洲区| 久久这里有精品视频免费| 在线免费观看的www视频| 成人美女网站在线观看视频| 精品午夜福利在线看| 亚洲在线观看片| 九色成人免费人妻av| 亚洲成av人片在线播放无| 99九九线精品视频在线观看视频| 欧美日本视频| 日本av手机在线免费观看| 国产精品一区二区在线观看99 | 色综合亚洲欧美另类图片| 国产大屁股一区二区在线视频| 少妇的逼好多水| 欧美人与善性xxx| 欧美成人a在线观看| 夜夜看夜夜爽夜夜摸| 国产精品一区www在线观看| 亚洲国产精品sss在线观看| 日韩欧美国产在线观看| 久久久久久国产a免费观看| 不卡视频在线观看欧美| 午夜免费激情av| 波多野结衣高清无吗| 午夜精品国产一区二区电影 | 久久99热6这里只有精品| 亚洲精品成人久久久久久| 久久人妻av系列| 久久久久久久午夜电影|