• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interfacial properties of g-C3N4/TiO2 heterostructures studied by DFT calculations*

    2021-01-21 02:08:20ChenShanPeng彭春山YongDongZhou周永東SuiShuanZhang張雖栓andZongYanZhao趙宗彥
    Chinese Physics B 2021年1期

    Chen-Shan Peng(彭春山), Yong-Dong Zhou(周永東), Sui-Shuan Zhang(張雖栓), and Zong-Yan Zhao(趙宗彥),?

    1Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China

    2Department of Architectural Engineering,Henan Quality Polytechnic,Pingdingshan 467000,China

    Keywords: photocatalysis,g-C3N4,TiO2,heterostructures,interfacial states

    1. Introduction

    Since Wang et al. reported the photocatalytic hydrogen production of g-C3N4,[1]the g-C3N4has received extensive attention from researchers due to its excellent performance.For example, g-C3N4has the advantages of reasonable electronic band structure (band gap 2.70 eV), non-toxicity, low cost, long-term stability, and convenient preparation.[2–8]Although its photocatalytic activity has been confirmed in previous research, most of the reported photocatalytic efficiencies of the pure g-C3N4are limited by the high recombination rate of its photo-generated electron–hole pairs.[9–11]Accordingly, it has become an important research direction to explore high-efficiency g-C3N4-based photocatalysts with better separation/transfer efficiency of photo-generated electron–hole pairs. In order to solve this problem, many attempts have been made to improve its photocatalytic properties,such as non-metal doping,[12,13]metal doping,[14,15]noble metal loading,[16]heterostructure constructing,[17]etc.Among these methods,the heterostructures coupled with another photocatalyst can reduce the recombination rate of the photo-generated electron–hole pairs,and many kinds of photocatalysts,such as TiO2, WO3, ZnO, etc.,[18–22]have been adopted to construct the g-C3N4-based heterostructures.

    In the latest development of g-C3N4-based photocatalysts, the TiO2-constructed heterostructure has become a research hotspot due to its feasibility and effectiveness for the spatial separation of photo-generated electron–hole pairs. The TiO2is the most popular photocatalyst and combining TiO2with other semiconductors to build heterojunction has several obvious advantages in enhancing the electron–hole pair separation.[23,24]Therefore, the g-C3N4/TiO2heterostructure has been extensively studied to further enhance the visible light catalytic activity.[25–27]Different kinds of g-C3N4/TiO2composite photocatalysts with heterostructure have been prepared by various strategies in previous studies. For instance,g-C3N4/TiO2nanocomposites were successfully prepared by a solid-state method through using urea and commercial TiO2as precursors, showing that the absorption and photocatalytic properties in visible-light region are enhanced.[28]Ren et al.synthesized the g-C3N4/TiO2heterojunction by in situ synthesis, which showed good photodegradation towards Orange II.[29]Liu et al.[30]and Tan et al.[31]used a one-step method to synthesize a hetero-structured g-C3N4/TiO2composite,which can rapidly degrade pollutants with visible-light irradiated.[30,31]

    Although many experimental researches indicated that the g-C3N4/TiO2heterostructure can enhance photocatalytic performance, the corresponding intrinsic and essential mechanism has rarely been explained in depth.[32–34]In this paper, the supercell models for g-C3N4/TiO2heterostructure formed by monolayer g-C3N4and TiO2(001)surface are constructed at first. The structural and electronic properties of these models are further calculated by density functional theory(DFT).Based on these results,the underlying mechanism of g-C3N4/TiO2heterostructure to enhance the photocatalytic performance is proposed.

    2. Computational methods and models

    All calculations in the present work were performed through the Cambridge Serial Total Energy Package (short as CASTEP) codes.[35]The core electrons were treated by the ultrasoft pseudopotential;[36]and the exchange–correlation functional in the generalized gradient approximation (GGA)was described by using the PBE.[37]In order to accurately describe the nonbonding van der Waals interaction along the caxis, the DFT-D of van der Waals dispersion corrections was used.[38]In the present work,a“fine”quality setting was used to achieve a good compromise between speed and accuracy,which is suitable for most of calculations. The Monkhorst–Pack scheme K-points grid sampling was set to be 1×1×1 for the irreducible Brillouin zone. A 54×32×256 mesh was used for fast Fourier transformation. An energy cutoff of 340 eV was used for expanding the Kohn–Sham wave functions. The minimization algorithm chosen was the Broyden–Fletcher–Goldfarb–Shanno scheme.[39]The convergence criteria for optimizing all model geometric structures were set to be 1×10-6eV per atom for the self-consistent field tolerance,0.03 eV·?A-1for the maximum force, 0.05 GPa for the maximum stress tolerance,1×10-3?A for the maximum displacement tolerance,1×10-5eV per atom for the maximal energy change. Then, the optimized structures were further used to investigate the electronic structures and other properties.

    For the construction of heterostructure,an important factor is crystal lattice matching. An ideal heterostructure requires the lattice constants of the two components to match with each other as much as possible. If the crystal lattice mismatch is too large, the interface is unstable due to the large interfacial stress. Consequently, in the present work, in the case of g-C3N4/TiO2–H heterostructure(“H”refers to g-C3N4combined horizontally with TiO2as shown in Fig. 1(a)), a four-layer TiO2(001) slab was chosen as a substrate with a 3×2 supercell (11.35 ?A×7.57 ?A). This supercell can match well with a 1×1 unit cell of g-C3N4(12.35 ?A×7.13 ?A).The degree of mismatching crystal lattice is u=8.44% and Δv=5.99%. If the lattice mismatch at the interface is less than 10%,then such an interface is considered to be capable of forming composite materials with heterostructure. More importantly, for two-dimensional material (i.e., g-C3N4) loaded on the surface of three-dimensional material(i.e.,g-TiO2),the interface stress generated by lattice mismatch can be further released through the deformation of two-dimensional material along the normal direction of the interface (i.e., [001] direction). Therefore, the lattice mismatch mentioned above can be accepted for the experimental feasibility. In the case of g-C3N4/TiO2–V heterostructure(“V”denotes g-C3N4combined vertically with TiO2), two different kinds of models were considered: g-C3N4/TiO–VC and g-C3N4/TiO–VN.Between them,the interface of g-C3N4/TiO2–VC heterostructure has C atoms of g-C3N4as the contact point as shown in Fig. 2(a),while the interface of g-C3N4/TiO–VN heterostructure has N atoms of g-C3N4as the contact point as shown in Fig.3(a).For all models,the atoms in the two first layers that are close to the interface are allowed to be freely relaxed, while the atoms in the other two layers that are on the other side of the slab are fixed to mimic the bulk effect. To eliminate the interaction between two neighboring images along the normal direction,the thickness of vacuum layer was set to be 20 ?A.

    Fig.1.(a)Side view of g-C3N4/TiO2–H interface model,(b)average electrostatic potential,and(c)difference in average electron density along interfacial normal direction.

    Fig.2. (a)Side view of g-C3N4/TiO2–VC interface model,(b)average electrostatic potential,and(c)difference in average electron density along interfacial normal direction.

    Fig.3. (a)Side view of g-C3N4/TiO2–VN interface model,(b)average electrostatic potential, (c) difference in average electron density along interfacial normal direction.

    3. Results and discussion

    3.1. Interfacial structures and interfacial energy

    To investigate the stabilities of g-C3N4/TiO2heterostructures,the structural parameters including interface formation energy, interface spacing, and lay spacing expansion are calculated and the results are listed in Table 1. The interface spacing of the g-C3N4/TiO2–H heterostructure is 2.106 ?A;the interface spacing of the g-C3N4/TiO2–VC heterostructure is 1.945 ?A; the interface spacing of the g-C3N4/TiO2–VN heterostructure is 2.251 ?A. The interfacial spacing of the g-C3N4/TiO2–VC heterostructure is found to be minimal,which is closely related to the interface atomic composition. For example, when g-C3N4contacts the TiO2in a vertical manner,since g-C3N4contacts the TiO2, C atoms, and N atoms, respectively, at the interface, there is a difference in interface spacing or interface energy. Therefore, the interface spacing of g-C3N4/TiO2–VC heterostructure is smaller than that of g-C3N4/TiO2–VN heterostructure. At the same time, the interfacial spacing of g-C3N4/TiO2–H heterostructure is found to be between the interfacial spacing of g-C3N4/TiO2–VC heterostructure and that of g-C3N4/TiO2–VN heterostructure.This is caused by the formation of different bonds when the interfaces interact,because the g-C3N4/TiO2–H heterostructure interface bonds are mainly van der Waals bonds. The layer spacing expansion represents the local relaxation: positive value denotes widened spacing.Comparing these three heterostructures, the first atomic TiO2layer in the g-C3N4/TiO2–H heterostructure is inward relaxed, while the first atomic TiO2layer in the g-C3N4/TiO2–VC heterostructure and the g-C3N4/TiO2–VN heterostructure are outward relaxed. The value of layer spacing gradually decreases from L1 to L3,approaching to the value of bulk spacing. These different phenomena indicate that the g-C3N4has different effects on the substrate when placed in different ways to construct the heterostructure.

    Table 1. Calculated interfacial parameters of relaxed heterostructures: interface spacing, expansion of lay spacing, and interface formation energy(γint)in units of meV/?A2.

    The stability and realizability of interfaces are usually evaluated by the interface formation energy (γint). In the present work,the interface formation energy is calculated from the following formula:

    in which ETiO2-surface, Eg-C3N4, and Eg-C3N4/TiO2-interfaceare the total energy of the models of TiO2surface,g-C3N4molecular layer, and g-C3N4/TiO2interface; S is the area of the interface. The interface formation energy of g-C3N4/TiO2–H heterostructure is smallest, and its value is 3.967 meV/?A2,which is obviously smaller than those of other two vertical heterostructures (6.518 meV/?A2for g-C3N4/TiO2–VC, and 7.943 meV/?A2for g-C3N4/TiO2–VC).The interface formation energy of g-C3N4/TiO2–VC heterostructure is very large,implying the strong interaction between g-C3N4and TiO2. The strong interface formation can represent strong interface interaction, and vice versa. By combining the calculation results of interfacial spacing,the g-C3N4/TiO2–VC heterostructure can be determined to have a tight interface, while the g-C3N4/TiO2–H heterostructure possesses a van der Waals weak interface.

    3.2. Electronic structures

    To investigate the underlying mechanism of the high activity of g-C3N4/TiO2composite photocatalyst, the local and partial densities of states of g-C3N4/TiO2interfaces were calculated and depicted in Figs. 4–6. When g-C3N4and TiO2are combined to form a g-C3N4/TiO2–H heterostructure, the Fermi level(EF)is relatively shifted in the forbidden band,indicating the variation of the band alignment in different kinds of the g-C3N4/TiO2interfaces. The N-2p,N-2s, Ti-3d, C-2p,and O-2p states contribute considerably to the top of valence band(VB),in which the contribution of N-2p states and O-2p states are predominant. The bottom of VB is mainly composed of the C-2p and N-2p states. The bottom of conduction band (CB) is made up of C-2p, N-2p, Ti-3d, and O-2p states, and has a slightly hybridized state, in which the Ti-3d state is dominant. The density of states of the g-C3N4/TiO2–VC and g-C3N4/TiO2–VN interfaces are identical to that of g-C3N4/TiO2–H interface. However, the top of CB split into many peaks, implying that more obvious delocalization phenomena occur. At the same time, it is observed that the g-C3N4/TiO2–VC and g-C3N4/TiO2–VN interfaces produce obvious interface states that are caused by N-2p and C-2p state in the forbidden band.The interface state of g-C3N4/TiO2–VC interface is most obvious,which presents outstanding metallic properties. Combined with the analysis of interface formation energy and interface spacing in the previous section,the interfacial spacing of g-C3N4/TiO2–VC heterostructures is shown to be minimal. That is to say, the interface state appearing in the forbidden band presents metallic properties and contributes to the transfer of photo-generated electrons and holes, which can effectively improve the photocatalytic performance of g-C3N4/TiO2heterostructure.

    Fig.4. Local and partial densities of states for g-C3N4/TiO2–H heterostructure at interface.

    Fig. 5. Local and partial densities of states for g-C3N4/TiO2–VC heterostructure at interface.

    To investigate the charge transfer and separation at the interface,the Mulliken population analysis of the plane-wave pseudopotential calculation is performed on the three heterostructures and is the results are depicted in Fig.7. In order to compare the monolayer g-C3N4with the bulk of TiO2,the results of the Mulliken charge are also calculated in which the C and N atom have a Mulliken charge of 0.480 e and-0.380 e,respectively. The Ti and O atoms have a Mulliken charge of 1.330 e and-0.670 e, respectively. From Fig.7(a), it can be found that the O atom has a Mulliken charge of-0.660 e and-0.620 e at the interface of the g-C3N4/TiO2–H heterostructure, compared with that of TiO2bulk, the change of the O atom is not very obvious. At the interface,the number of Mulliken charges for the Ti atom is 1.350 e,which is slightly larger than that of the TiO2bulk phase of 1.330 e. In general, the change in the number of Mulliken charges carried by the O and Ti atoms in the TiO2layer near the interface is not significant as compared with that in the TiO2bulk. For g-C3N4,the number of Mulliken charges for the C atom at the interface is 0.450 e,and the number of Mulliken charges for the N atom is-0.390 e and-0.410 e,which means that the C atom loses very few electrons,compared with that of monolayer g-C3N4,while the N atom gains electrons. It is indicated that a slight charge transfer occurs along the direction from g-C3N4to TiO2at the interface.

    Fig.6.Local and partial densities of states for g-C3N4/TiO2–VN heterostructure at interface.

    For the g-C3N4/TiO2–VC heterostructure as shown in Fig.7(b),the Mulliken charge number of the O atom and the Ti atom in the TiO2layer at the interface are-0.660 e(-0.640 e)and 1.320 e, respectively. This is in contrast to the values of the bulk phase of TiO2(-0.670 e and 1.330 e),where both the Ti and O atom lose some electrons. At the interface,the number of Mulliken charges for the C atom in the g-C3N4layer is 0.390 e, which indicates that the C atom is electron-accepted compared with the g-C3N4bulk phase (0.480 e) and N atom loses electrons.It is shown that a slight transfer of charge from the TiO2layer to the g-C3N4layer occurs at the interface. For the g-C3N4/TiO2–VN heterostructure as shown in Fig. 7(c),the O atom in the TiO2layer loses electrons, the N atom in the g-C3N4layer gains electrons, and the electron transfer at the interface is the same as that for the g-C3N4/TiO2–VC heterostructure.

    Fig.7. Mulliken population analysis of(a)g-C3N4/TiO2–H heterostructure,(b)g-C3N4/TiO2–VC heterostructure,and(c)g-C3N4/TiO2–VN heterostructure.

    3.3. Built-in electric fields

    The calculated electronic potential and planar-averaged charge density difference along the normal direction of the interface are depicted in Figs.1–3. For the g-C3N4/TiO2–H heterostructure, as shown in Fig. 1(b), the average potential of TiO2is -15.73 eV, which is significantly lower than that of g-C3N4(-11.20 eV).At the interface,the electronic potential has a mutation along the normal direction of the interface due to the crystal lattices of the atoms arranged on both sides being not consistent. In addition, the relaxation of the position of the interface atoms causes the arrangement of atoms in the interface to be different from that of the lattice lattices on both sides. Therefore,the electrostatic potential in the interface region is also different from the potential distribution on both sides. It is found that there is a significant mutation in the average electrostatic potential at the interface,and an interfacial electric field is formed in a narrow interval, and the direction of the electric field is directed from TiO2to g-C3N4. Under the action of the electric field, the carriers are each drifted in the direction of the applied electric field force. This is advantageous for improving photocatalytic performance. As shown in Fig.1(c),it is found that the electron density of the g-C3N4at the interface decreases, and the charge density in the TiO2layer increases, which indicates that there is a charge transfer along the direction from g-C3N4to TiO2. This result is consistent with the analysis of the Mulliken population above.In other words,a dipole moment is generated at the interface.That is to say, the generation of the dipole moment at the interface creates a built-in electric field, which is advantageous for improving the separation efficiency of carriers at the interface and suppressing the recombination of photo-generated electron–hole pairs.Moreover,the situation that the charge depletion and accumulation mainly occur between the TiO2slab and the g-C3N4slab also demonstrates that the interaction between TiO2and g-C3N4is very weak, which means that the g-C3N4/TiO2–H possesses a vdW heterostructure.

    The electrostatic potential along the interfacial normal direction of g-C3N4/TiO2–VC heterostructure is illustrated in Fig. 2(b). The obvious feature is that the potential of TiO2layer (with an average potential of -18.8 eV) is lower than that of g-C3N4layer(with an average potential of-1.72 eV).When the g-C3N4and TiO2contact each other and form a vertical hetero-structure,at the interface,the average electrostatic potential has a very obvious mutation,and a strong interfacial electric field is formed in a narrow interval,which contributes to the separation of electrons and holes.The difference in average electron density along the normal direction of the interface is shown in Fig. 2(c). It is found that the accumulation layer of electrons is formed on the TiO2side,and a depletion layer is formed on the g-C3N4side at the interface. This indicates that a small quantity of charge transfer from the TiO2layer to the g-C3N4layer at the interface,which is consistent with the result of the Mulliken population analysis above.

    For the g-C3N4/TiO2–VN heterostructure as shown in Figs. 3(b) and 3(c), the accumulation region of charge at the interface is close to the g-C3N4layer and some peaks appear,and the charge dispersion region is close to the TiO2layer,which is the opposite to the scenario for g-C3N4/TiO2–VC.This shows that this has a weakening effect on the built-in electric field produced at the interface. However, the situation of the potential in the normal direction along the interface is the same as that of the g-C3N4/TiO2–VC heterostructure. A dipole moment is generated at the interface, and the built-in electric field thus caused contributes to enhancing photocatalytic performance.

    Based on the above analysis, in the cases of g-C3N4/TiO2–H and g-C3N4/TiO2–VC heterostructures, the electrons accumulate in the center of interfacial region,while in the case of g-C3N4/TiO2–VN heterostructure,the electrons accumulate on the side of g-C3N4layer. The electrons’transfer and accumulation will generate an additional electric field.In the former two cases, these additional electric fields can weaken the interfacial built-in electric field, which is generated by the lattice potential. In summary, the built-in interfacial electric field is directed from TiO2(001)layer to g-C3N4layer.Moreover,the additional electric field produced by electron transfer in the case of g-C3N4/TiO2–VN heterostructure will obviously enhance this electric field. On the other hand,the calculated results of electronic structures indicate that the photo-generated electrons will be transferred from the CB of g-C3N4layer to the CB of TiO2layer, which is consistent with recent experimental observations.[40–44]Thus,the photogenerated electron transfer process will be accelerated under the action of interfacial electric field. Therefore, the forming of the interface between g-C3N4and TiO2is conducive to the separation of photo-generated electron–hole pairs,and the improvement of the performance of g-C3N4and TiO2composite photocatalyst,which is found in recent experiments.[40–44]

    4. Conclusions

    Three kinds of g-C3N4/TiO2heterstructures are considered and compared in the present work. When g-C3N4combines horizontally with TiO2to form a heterostructure, they are combined through van der Waals interaction. The spacing between two layers is larger and the interface formation energy is smaller. Although there is an electric field built into the interface between the two components, it is difficult to transfer electrons between them due to the large spatial hindrance. However, the interfacial van der Waals interaction can regulate the electronic structure on both sides of the interface, so that the photocatalytic reaction can be carried out independently on both sides of the interface, which can promote the improvement of photocatalytic performance. When g-C3N4combines vertically with TiO2to form a heterostructure through C atoms, they have strong covalent interaction.The spacing between two layers is smaller and the interface formation energy is larger. There is a built-in electric field between the two components,and the atoms are bonded to each other, making it very easy for electrons to transport between them. At the same time,the interfacial interaction can further regulate the electronic structure on both sides,so that the photocatalytic reaction can be carried out independently on both sides of the interface,which can significantly enhance the photocatalytic performance. The latter g-C3N4/TiO2heterostructure is relatively difficult to synthesize in experiment,but it is worth trying. These findings provide some helpful guidances in developing the g-C3N4/TiO2heterostructure-based photocatalysts.

    欧美性猛交╳xxx乱大交人| 欧美+亚洲+日韩+国产| 我要搜黄色片| 婷婷色综合大香蕉| 男女啪啪激烈高潮av片| 久久精品91蜜桃| 伦理电影大哥的女人| 午夜免费男女啪啪视频观看| 免费一级毛片在线播放高清视频| 性欧美人与动物交配| 亚洲欧美清纯卡通| 卡戴珊不雅视频在线播放| 国产精品精品国产色婷婷| 亚洲国产欧美人成| 一边亲一边摸免费视频| 精品午夜福利在线看| 97超视频在线观看视频| 久久久成人免费电影| 欧美bdsm另类| 久久国产乱子免费精品| 中文字幕av成人在线电影| 波野结衣二区三区在线| 欧美高清成人免费视频www| 国产又黄又爽又无遮挡在线| 内地一区二区视频在线| 免费黄网站久久成人精品| 欧美丝袜亚洲另类| 成人av在线播放网站| 国内精品宾馆在线| 日韩欧美精品免费久久| 男插女下体视频免费在线播放| 日日干狠狠操夜夜爽| 黄片wwwwww| 色噜噜av男人的天堂激情| 菩萨蛮人人尽说江南好唐韦庄 | 97在线视频观看| 久久99热这里只有精品18| 成人欧美大片| 国产精品久久电影中文字幕| 老司机福利观看| 91精品国产九色| 精品久久久久久成人av| 久久人人爽人人片av| 最近2019中文字幕mv第一页| 热99re8久久精品国产| 亚洲国产色片| 偷拍熟女少妇极品色| 超碰av人人做人人爽久久| 国产一区二区三区在线臀色熟女| 精品久久国产蜜桃| 久久中文看片网| 久久久久久久久久黄片| 国产精品免费一区二区三区在线| 中文精品一卡2卡3卡4更新| 国产精品国产三级国产av玫瑰| 国产精品,欧美在线| 成人三级黄色视频| 亚洲精品日韩在线中文字幕 | 青青草视频在线视频观看| 久久久精品94久久精品| 久久久久久国产a免费观看| 精品午夜福利在线看| 国产成年人精品一区二区| 亚洲av成人av| 九色成人免费人妻av| 99在线人妻在线中文字幕| 一边亲一边摸免费视频| 色哟哟·www| 舔av片在线| 中国国产av一级| 卡戴珊不雅视频在线播放| 久久国内精品自在自线图片| 久久久久网色| 欧美色欧美亚洲另类二区| 久久精品久久久久久久性| 亚洲av电影不卡..在线观看| 成年av动漫网址| 日本在线视频免费播放| 免费观看精品视频网站| 大又大粗又爽又黄少妇毛片口| 国产高清三级在线| 小蜜桃在线观看免费完整版高清| 欧美一级a爱片免费观看看| 国产伦在线观看视频一区| 婷婷亚洲欧美| 婷婷亚洲欧美| 免费观看在线日韩| 日韩欧美 国产精品| 黄片无遮挡物在线观看| 亚洲av免费在线观看| 久久99热这里只有精品18| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 在线观看66精品国产| 亚洲电影在线观看av| 日韩人妻高清精品专区| 欧美日韩精品成人综合77777| 亚洲av男天堂| 哪里可以看免费的av片| 久久综合国产亚洲精品| 午夜福利视频1000在线观看| 99国产精品一区二区蜜桃av| 一进一出抽搐gif免费好疼| 欧美精品一区二区大全| 亚洲乱码一区二区免费版| 九九久久精品国产亚洲av麻豆| 深夜精品福利| 国产一区二区亚洲精品在线观看| 狂野欧美激情性xxxx在线观看| 狠狠狠狠99中文字幕| 少妇猛男粗大的猛烈进出视频 | 亚洲成人久久爱视频| 久久久久性生活片| 国内久久婷婷六月综合欲色啪| 高清毛片免费看| 精品久久久久久久久久免费视频| 美女被艹到高潮喷水动态| 午夜精品一区二区三区免费看| 国产又黄又爽又无遮挡在线| 一级毛片aaaaaa免费看小| 久久久久久久久中文| 看免费成人av毛片| 人妻制服诱惑在线中文字幕| 国产精品久久久久久久电影| 寂寞人妻少妇视频99o| 身体一侧抽搐| 免费看a级黄色片| 久久精品国产清高在天天线| av又黄又爽大尺度在线免费看 | 欧美日韩在线观看h| 亚洲自拍偷在线| 哪个播放器可以免费观看大片| 亚洲欧美精品专区久久| 亚洲欧美日韩高清在线视频| 中文在线观看免费www的网站| 真实男女啪啪啪动态图| 久久人妻av系列| 欧美潮喷喷水| 黄色欧美视频在线观看| 真实男女啪啪啪动态图| 啦啦啦韩国在线观看视频| kizo精华| 黄色一级大片看看| 你懂的网址亚洲精品在线观看 | 赤兔流量卡办理| 久久久久免费精品人妻一区二区| 亚洲在久久综合| 成人亚洲欧美一区二区av| 成人毛片a级毛片在线播放| 国产精品久久久久久亚洲av鲁大| 日本与韩国留学比较| 一区福利在线观看| 国产亚洲91精品色在线| 久久久久久久午夜电影| 国产精品一区二区三区四区久久| 听说在线观看完整版免费高清| 夜夜爽天天搞| 色播亚洲综合网| 99riav亚洲国产免费| 国产亚洲av嫩草精品影院| 成年av动漫网址| 国产激情偷乱视频一区二区| 久久久久久久久久久免费av| 国内精品美女久久久久久| 国内揄拍国产精品人妻在线| 最近视频中文字幕2019在线8| 久久午夜福利片| 三级毛片av免费| 99热这里只有精品一区| 99热精品在线国产| 国产伦理片在线播放av一区 | 草草在线视频免费看| 成年女人永久免费观看视频| 一级二级三级毛片免费看| 国产成人影院久久av| 国产视频内射| 国产在视频线在精品| 成人永久免费在线观看视频| 你懂的网址亚洲精品在线观看 | 成人高潮视频无遮挡免费网站| 欧美日韩综合久久久久久| 少妇人妻一区二区三区视频| 久久精品国产亚洲av香蕉五月| 一级毛片电影观看 | 久久中文看片网| 99热这里只有精品一区| 国内精品久久久久精免费| 免费一级毛片在线播放高清视频| 国产精品乱码一区二三区的特点| 不卡视频在线观看欧美| 两个人的视频大全免费| 久久精品国产亚洲av香蕉五月| 欧美一区二区亚洲| 亚洲av免费高清在线观看| 特大巨黑吊av在线直播| 免费一级毛片在线播放高清视频| 女同久久另类99精品国产91| 国产精品无大码| or卡值多少钱| 男人和女人高潮做爰伦理| 一卡2卡三卡四卡精品乱码亚洲| 成人欧美大片| 国产精品国产高清国产av| 一个人看的www免费观看视频| 91久久精品电影网| 国产精品av视频在线免费观看| 97在线视频观看| 免费人成视频x8x8入口观看| 丰满乱子伦码专区| 99久久成人亚洲精品观看| 夜夜夜夜夜久久久久| 波多野结衣高清无吗| 国产日韩欧美在线精品| 久久这里有精品视频免费| 日本熟妇午夜| 1000部很黄的大片| 婷婷色综合大香蕉| 久久精品综合一区二区三区| 一级毛片我不卡| 国产精品蜜桃在线观看 | 国产毛片a区久久久久| 2021天堂中文幕一二区在线观| 久久精品影院6| 禁无遮挡网站| 久久草成人影院| 国产在线男女| av福利片在线观看| 亚洲激情五月婷婷啪啪| 免费电影在线观看免费观看| 国产精品久久久久久精品电影| 久久精品久久久久久噜噜老黄 | 97在线视频观看| 亚洲婷婷狠狠爱综合网| 国产亚洲欧美98| 黄色欧美视频在线观看| 欧美日韩综合久久久久久| 久久99蜜桃精品久久| 亚洲av免费在线观看| 欧美zozozo另类| 免费在线观看成人毛片| 天堂网av新在线| 久久久久国产网址| 在线观看av片永久免费下载| 免费不卡的大黄色大毛片视频在线观看 | 国产男人的电影天堂91| 女人十人毛片免费观看3o分钟| 人妻少妇偷人精品九色| 日韩欧美国产在线观看| 国产精品乱码一区二三区的特点| 又粗又爽又猛毛片免费看| 高清日韩中文字幕在线| 狠狠狠狠99中文字幕| 国产视频内射| 国产av麻豆久久久久久久| 中文亚洲av片在线观看爽| 免费观看a级毛片全部| 久久精品国产清高在天天线| 久久6这里有精品| 国产精品蜜桃在线观看 | 国产乱人视频| 午夜a级毛片| 亚洲无线在线观看| 男插女下体视频免费在线播放| 久久久国产成人精品二区| 99精品在免费线老司机午夜| h日本视频在线播放| av天堂在线播放| 国产av不卡久久| 国产精品久久久久久av不卡| 成人鲁丝片一二三区免费| 青春草视频在线免费观看| 成人特级黄色片久久久久久久| 久久99蜜桃精品久久| 国产一区二区在线av高清观看| 亚洲精品国产av成人精品| 极品教师在线视频| 免费av观看视频| 天堂中文最新版在线下载 | 成人高潮视频无遮挡免费网站| 久久人人精品亚洲av| 青春草亚洲视频在线观看| 简卡轻食公司| 亚洲丝袜综合中文字幕| 悠悠久久av| 长腿黑丝高跟| 午夜福利在线观看吧| 特大巨黑吊av在线直播| 久久精品国产亚洲av涩爱 | or卡值多少钱| 日本爱情动作片www.在线观看| 精品人妻熟女av久视频| 男女那种视频在线观看| 婷婷亚洲欧美| 久久精品国产亚洲av香蕉五月| 99国产精品一区二区蜜桃av| 国产精品伦人一区二区| av在线亚洲专区| 久久热精品热| 床上黄色一级片| av女优亚洲男人天堂| 免费观看精品视频网站| 高清午夜精品一区二区三区 | 51国产日韩欧美| 国产伦精品一区二区三区四那| 91午夜精品亚洲一区二区三区| 欧美性猛交黑人性爽| 久久久久网色| 天堂影院成人在线观看| 在线观看免费视频日本深夜| 一区二区三区高清视频在线| 国产男人的电影天堂91| 亚洲欧美清纯卡通| 免费一级毛片在线播放高清视频| 日韩一本色道免费dvd| 久久久久久久久久成人| 大型黄色视频在线免费观看| АⅤ资源中文在线天堂| 久99久视频精品免费| 欧美潮喷喷水| 99久久久亚洲精品蜜臀av| 国产一区二区在线av高清观看| 国产黄色视频一区二区在线观看 | 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| 99久久精品热视频| 插阴视频在线观看视频| 又爽又黄a免费视频| 精品熟女少妇av免费看| 国产成人精品婷婷| 最近的中文字幕免费完整| 久久久a久久爽久久v久久| 欧美区成人在线视频| 国产精品国产三级国产av玫瑰| 中国美女看黄片| 亚洲人成网站高清观看| 精品一区二区三区人妻视频| 国产男人的电影天堂91| 日韩 亚洲 欧美在线| 亚洲丝袜综合中文字幕| 日日啪夜夜撸| 一级毛片久久久久久久久女| 极品教师在线视频| 日本成人三级电影网站| 亚洲熟妇中文字幕五十中出| 可以在线观看的亚洲视频| 国产午夜精品论理片| 此物有八面人人有两片| 久久这里只有精品中国| 一区二区三区免费毛片| 一本精品99久久精品77| 亚洲一区二区三区色噜噜| 久久国产乱子免费精品| 最近视频中文字幕2019在线8| 国产亚洲精品久久久com| 日本三级黄在线观看| 亚洲电影在线观看av| 欧美一区二区国产精品久久精品| 亚洲国产精品成人久久小说 | 国产亚洲91精品色在线| 国产成人影院久久av| 99热精品在线国产| 神马国产精品三级电影在线观看| 国产黄色小视频在线观看| 亚洲图色成人| 不卡一级毛片| 麻豆国产97在线/欧美| 麻豆精品久久久久久蜜桃| 亚洲国产精品合色在线| 美女黄网站色视频| 久久国内精品自在自线图片| 欧美潮喷喷水| 国产三级在线视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲图色成人| 身体一侧抽搐| 激情 狠狠 欧美| 久久精品国产亚洲av天美| 亚洲中文字幕一区二区三区有码在线看| 国产精品三级大全| 久久久国产成人精品二区| 亚洲经典国产精华液单| 亚洲18禁久久av| 热99re8久久精品国产| 成人午夜高清在线视频| 成人亚洲精品av一区二区| 亚洲人成网站在线播放欧美日韩| 麻豆国产97在线/欧美| 免费看日本二区| 亚洲av二区三区四区| 又粗又硬又长又爽又黄的视频 | 国产91av在线免费观看| 美女脱内裤让男人舔精品视频 | 久久久色成人| 午夜视频国产福利| 亚洲真实伦在线观看| 精品久久久久久成人av| 女同久久另类99精品国产91| 成年女人永久免费观看视频| 亚洲人成网站在线播| 91久久精品电影网| 在线观看美女被高潮喷水网站| 九九爱精品视频在线观看| av.在线天堂| 午夜亚洲福利在线播放| 又爽又黄a免费视频| 欧美+亚洲+日韩+国产| 美女内射精品一级片tv| 中文字幕久久专区| 亚洲真实伦在线观看| 国产成人影院久久av| 亚洲无线观看免费| eeuss影院久久| 欧美xxxx黑人xx丫x性爽| 国产伦精品一区二区三区四那| 久久精品夜夜夜夜夜久久蜜豆| 国产老妇伦熟女老妇高清| 国产免费男女视频| 国产精品一区二区三区四区久久| 人妻系列 视频| 成年免费大片在线观看| 不卡视频在线观看欧美| 丰满人妻一区二区三区视频av| 亚洲国产精品成人久久小说 | 99在线人妻在线中文字幕| 啦啦啦啦在线视频资源| 婷婷亚洲欧美| 天堂√8在线中文| 啦啦啦啦在线视频资源| 你懂的网址亚洲精品在线观看 | 一边亲一边摸免费视频| 人妻系列 视频| 亚洲成人av在线免费| 亚洲自偷自拍三级| 国产v大片淫在线免费观看| av福利片在线观看| 国产一区二区三区在线臀色熟女| 一卡2卡三卡四卡精品乱码亚洲| 成人毛片60女人毛片免费| 噜噜噜噜噜久久久久久91| 午夜福利成人在线免费观看| 99久久久亚洲精品蜜臀av| 免费人成视频x8x8入口观看| 精品久久久噜噜| 久久99精品国语久久久| 一个人观看的视频www高清免费观看| 成人一区二区视频在线观看| 日本色播在线视频| 日韩亚洲欧美综合| 看黄色毛片网站| 国产伦精品一区二区三区视频9| 人妻少妇偷人精品九色| av福利片在线观看| 一级毛片久久久久久久久女| 国产综合懂色| 美女大奶头视频| 99久国产av精品国产电影| 在线国产一区二区在线| 国产精品1区2区在线观看.| 又粗又硬又长又爽又黄的视频 | 91狼人影院| 丰满人妻一区二区三区视频av| a级毛色黄片| 欧美日韩一区二区视频在线观看视频在线 | 18+在线观看网站| 日本色播在线视频| 午夜爱爱视频在线播放| 黄色一级大片看看| 男女边吃奶边做爰视频| 亚洲美女搞黄在线观看| 精品一区二区三区人妻视频| 日日摸夜夜添夜夜爱| 亚洲成av人片在线播放无| 我的女老师完整版在线观看| 性欧美人与动物交配| 中文亚洲av片在线观看爽| 欧美一区二区亚洲| 成人综合一区亚洲| 91av网一区二区| 国产成人aa在线观看| 人体艺术视频欧美日本| 美女xxoo啪啪120秒动态图| 99久久人妻综合| 寂寞人妻少妇视频99o| 丰满乱子伦码专区| 欧美另类亚洲清纯唯美| 22中文网久久字幕| 男女视频在线观看网站免费| 亚洲欧美日韩高清在线视频| 精品国产三级普通话版| 亚洲欧美日韩高清专用| 国产伦一二天堂av在线观看| 亚洲欧洲日产国产| 特大巨黑吊av在线直播| 三级男女做爰猛烈吃奶摸视频| 欧美一区二区国产精品久久精品| 高清在线视频一区二区三区 | 一本精品99久久精品77| 美女大奶头视频| 热99re8久久精品国产| 两个人的视频大全免费| 男女视频在线观看网站免费| 久久久久久久久久成人| 一级毛片电影观看 | 国产亚洲精品久久久com| 网址你懂的国产日韩在线| 青春草亚洲视频在线观看| 国产成人精品一,二区 | 欧美丝袜亚洲另类| 精品一区二区三区人妻视频| 美女内射精品一级片tv| 伦精品一区二区三区| 久久人人爽人人爽人人片va| 亚洲精品乱码久久久v下载方式| av免费观看日本| 亚洲成a人片在线一区二区| 欧美+亚洲+日韩+国产| 亚洲四区av| 三级男女做爰猛烈吃奶摸视频| 女人十人毛片免费观看3o分钟| 18+在线观看网站| 国产成人精品婷婷| 久久久a久久爽久久v久久| 丰满人妻一区二区三区视频av| 内地一区二区视频在线| 亚洲欧美日韩无卡精品| 久久九九热精品免费| 三级经典国产精品| 少妇裸体淫交视频免费看高清| 成人午夜精彩视频在线观看| 亚州av有码| 亚洲av不卡在线观看| 久久99蜜桃精品久久| 国产精品一区www在线观看| 中文亚洲av片在线观看爽| 色播亚洲综合网| 亚洲性久久影院| 亚洲最大成人av| 欧美变态另类bdsm刘玥| 亚洲18禁久久av| 精品人妻一区二区三区麻豆| 只有这里有精品99| 国产精品一区www在线观看| 在线天堂最新版资源| 少妇人妻一区二区三区视频| 夜夜爽天天搞| 黄色一级大片看看| 成人漫画全彩无遮挡| 看黄色毛片网站| 床上黄色一级片| 在线播放国产精品三级| 欧美日韩精品成人综合77777| 成人二区视频| 亚洲自拍偷在线| 夜夜夜夜夜久久久久| 亚洲精品乱码久久久久久按摩| 久久久久九九精品影院| 国产精品一区二区三区四区免费观看| 69人妻影院| 特级一级黄色大片| 欧美性感艳星| 午夜视频国产福利| 变态另类丝袜制服| 亚洲三级黄色毛片| 亚洲一级一片aⅴ在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美成人综合另类久久久 | 国产片特级美女逼逼视频| 午夜福利在线观看免费完整高清在 | 国产成人aa在线观看| 亚洲第一区二区三区不卡| 亚洲va在线va天堂va国产| av.在线天堂| 国内精品宾馆在线| 日本-黄色视频高清免费观看| 亚洲精品国产av成人精品| 日本黄色视频三级网站网址| 99久久无色码亚洲精品果冻| 中国美白少妇内射xxxbb| a级毛片a级免费在线| 欧美变态另类bdsm刘玥| 色综合站精品国产| 日韩大尺度精品在线看网址| 少妇的逼好多水| 国产精品野战在线观看| 亚州av有码| 日韩大尺度精品在线看网址| 日韩三级伦理在线观看| 亚洲在线自拍视频| 哪里可以看免费的av片| 久久这里有精品视频免费| 久久精品影院6| 真实男女啪啪啪动态图| 亚州av有码| 国产日韩欧美在线精品| 长腿黑丝高跟| 99热这里只有是精品50| 爱豆传媒免费全集在线观看| 精品久久久噜噜| 久久久久久国产a免费观看| 看黄色毛片网站| 欧美日韩乱码在线| 伊人久久精品亚洲午夜| 国产高清有码在线观看视频| 精品少妇黑人巨大在线播放 | 亚洲国产精品成人综合色| 网址你懂的国产日韩在线| 最后的刺客免费高清国语| 成人特级黄色片久久久久久久| 一本一本综合久久| 天天躁夜夜躁狠狠久久av| 久久精品久久久久久久性| 18禁黄网站禁片免费观看直播| 亚洲人成网站在线播| 国产精品一及| 精品久久久噜噜| 国产精品爽爽va在线观看网站|