• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Glass formation and physical properties of Sb2S3–CuI chalcogenide system*

    2021-01-21 02:08:06QilinYe葉旗林DanChen陳旦andChangguiLin林常規(guī)
    Chinese Physics B 2021年1期
    關鍵詞:常規(guī)

    Qilin Ye(葉旗林), Dan Chen(陳旦), and Changgui Lin(林常規(guī)),?

    1Laboratory of IR Materials and Devices,The Research Institute of Advanced Technologies,Ningbo University,Ningbo 315211,China

    2Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province,Ningbo University,Ningbo 315211,China

    Keywords: chalcogenide glass,infrared(IR)transparency,Sb2S3,SbSI,Raman spectra

    1. Introduction

    Chalcogenide glass (ChG) is well known for its feature properties, including wide infrared (IR) transmission window, low phonon energy, fast ionic conduction, and large linear/nonlinear optical refractive index.[1,2]To facilitate the glass-forming ability of ChG, the incorporation of halogens is an efficient and feasible method and produces a new kind of glass,i.e.,chalcohalide glass.Compared to ChG,chalcohalide glass not only retains the excellent IR-transmitting property of ChG, but also possesses better thermal stability, higher rareearth ion solubility, and stronger glass-forming ability.[3–5]Various chalcohalide glasses have been investigated extensively, including As–Sb–S–I,[6]GeS2–Sb2S3–CsCl,[7]Ge–Te–Ga–CuI glass,[8]etc. The glass network of ternary or quasi-ternary systems are very complicated, which was difficult to clarify the effect of halides on the structural and physical properties of ChGs. It requires a simple glass system for clarifying the role of halogens in ChGs.

    Amorphous Sb2S3composed by the basic structural units of [SbS3] pyramids, has received a remarkable technological and theoretical interest because of its intriguing photophysical properties.[9,10]Amorphous Sb2S3is normally obtained through film deposition.[11,12]Sb2S3acts as intermediate phase in glassy network,and cannot form as glass through traditional melt-quenching.[13,14]It is essential to introduce trivalent or tetra-valent atoms, such as Ge and Ga, which act as glassy network former and increase the dimensionality of the structure and the glass forming ability of the Sb2S3.[8,15]Alloying with halides is another strategy to obtain Sb2S3-based chalcohalide glass.[6,14]Halogen (Cl, Br, I) in glass systems is monovalent, which forms non-bridging structural motif with the free electrons.[16,17]High atomic-mass halogens bonding with Sb increases the complexity and randomness of the network connectivity, thus inhibiting the crystal formation of Sb2S3. Consequently,stable bulk glasses of Sb–S–I system can be fabricated, whose microstructure is built by a weak interaction among [SbS3], [SbS3-xIx], and [SbI3]pyramids.[16,18]Nevertheless, iodine sublimation occurs easily during glass preparation, especially in vacuum extraction process,which would destroy the vacuum pump. Thus,metal iodide is a good choice for exploring the role of halogens in ChGs.

    In this work,we report novel ChGs based on Sb2S3–CuI system. CuI was introduced to facilitate the glass formation of Sb2S3. The present work aims to study the effect of CuI on the glass-forming and physical properties of Sb2S3-based glasses, and to explore the role of halogens in chalcogenide glassy structure. In addition,fast Cu-ion conduction was also investigated in this glassy system,which is of guiding significance for future designing solid glassy electrolytes.[19–22]

    2. Experimental

    The samples of (100-x)Sb2S3–xCuI (x = 20, 30, 40,45, 50, and 55 mol%) were prepared by traditional meltquenching method. High-purity Sb,S,and CuI were weighed and placed into silica tubes that sealed under ~10-3Pa,the inner diameter of the quartz tube is 9 mm,and the wall thickness is 2 mm.After melting at 920?C for 6 h,rod samples were obtained by quenching the melts into cold water 3 seconds. The as-quenched samples were annealed at 150?C for 2 hours.The rods were cut and polished to obtain Φ9 mm×2 mm disks.

    All samples were analyzed by x-ray diffraction (XRD,Bruker D2 Phaser, DE) to identify the amorphous nature of samples or the presence of crystalline phases. Glass characteristic temperatures,including glass transition temperature(Tg)and crystallization temperature(Tx), were measured by using DSC (TA Q2000, USA) by heating 10-mg powdered sample at a rate of 10?C/min. Density was measured according to Archimedes principle which consists in comparing the difference of sample weights in air and alcohol. Vickers hardness(Hv) was determined by Hengyi MH-3 micro-indenter with a static load of 50 g. IR transmission spectra were obtained through using a Nicolet 381 FTIR spectrometer. Visible and near-IR spectra were recorded using a PerkinElmer Lambda 950 spectrophotometer. A Renishaw InVia Raman spectrometer equipped with an excitation wavelength at 785 nm was employed to obtain Raman spectra. Gold films were sputtered on the surfaces of the studied samples as electrodes for electrical measurements. Electrical conductivity was measured using complex impedance technique with electrochemical platform (Shanghai Chenhua CHI800D series). Ac impedance was measured from 30?C to 200?C.

    3. Results and discussion

    According to previous investigations of Sb2S3-based glass systems,[12,14,23]pure Sb2S3is difficult to form glass.CuI here acts as network modifier to improve the glassforming ability. Figure 1 shows the XRD patterns of (100-x)Sb2S3–xCuI samples. Glassy samples were obtained when CuI content (x) are 30 mol% and 40 mol%. Sharp and different diffraction were observed in 80Sb2S3·20CuI samples,the main diffraction peaks belonging to Sb2S3(JCPDS card No. 73-0393) and the several indistinct diffraction peaks (as marked by dotted frame) belonging to SbSI (JCPDS card No. 74-2246). It indicates that Sb2S3crystallites would be formed spontaneously at a low CuI content (x <20 mol%),together with SbSI. The increasing CuI improves their glass forming ability when 30 mol%<x <40 mol%. With the further addition of CuI, iodine-related crystal phase of SbSI was phase-separated out. Thus, the glass formation region of (100-x)Sb2S3–xCuI is ranging from x = 30 mol% to 40 mol%.

    Figure 2 presents the transmission spectra of 70Sb2S3·30CuI and 60Sb2S3·40CuI glasses. Although Sb2S3–CuI glasses are black and visible opaque as displayed by the inset photos in Fig.2,they possess a wide transmission window ranging from near-IR(0.8 μm)to mid-IR(~14 μm),which normally can not be achieved in sulfide glasses. IR absorption bands at about 2.9,4.1,and 6.1 μm are assigned to the OH-,S–H,and H2O impurities,respectively.[24]Glass distillation purification is needed to eliminate these hydroxide contaminations. The maximum transmittance of 70Sb2S3·30CuI and 60Sb2S3·40CuI is about 70%and 40%,respectively. The transmission drop might be due to the occurrence of amorphous phase separation in 60Sb2S3·40CuI glass.[5]

    Fig. 1. XRD patterns of (100-x)Sb2S3–xCuI (x =20, 30, 40, 50, and 55 mol%)samples. The standard JCPDS cards of No. 79-0393 Sb2S3 and No.74-2246 SbSI are also included for comparison.

    Fig. 2. Transmission spectra of (100-x)Sb2S3–xCuI glasses. The inset shows the sample photos.

    The scanning electron microscope (SEM) was employed to observe the microstructure of the Sb2S3–CuI samples. As shown in Fig. 3(a), the freshly cracked surfaces of 60Sb2S3·40CuI as-prepared sample present a clean and smooth structure. After etching in 10% NaOH solution for 3 s, irregular particles were formed on its surface(Fig.3(b)).Due to the different solubility of the Sb2S3and SbSI phases in the NaOH solution,protrusions with different heights were formed during the etching process. It suggests amorphous phase separation occurs in the 60Sb2S3·40CuI sample,which might be responsible for the nearly 30%drop of transmittance as shown in Fig. 2. A large number of unevenly distributed crystal particles appeared in the SEM image of 45Sb2S3·55CuI(Fig.3(c)), with sizes between 50 nm–150 nm. According to the XRD pattern(Fig.1),these particles are belonging to SbSI crystal phase. Interestingly, the crystal grains show a phenomenon of regional aggregation, further indicating the possible amorphous phase separation. Such large phase-separated structure results in that the 45Sb2S3·55CuI sample is opaque.

    Fig. 3. The SEM image of 60Sb2S3·40CuI (a), etched samples by 10%NaOH solution(b),and 45Sb2S3·55CuI(c).

    The detailed Vickers hardness(Hv),density(ρ),and glass characteristic temperatures of (100-x)Sb2S3–xCuI samples are enumerated in Table 1. The density (ρ) values increase as CuI content increases. It is easy to understand the evolution of density because CuI has a relatively large atomic mass. The typical DSC analysis curves of (100-x)Sb2S3–xCuI samples are displayed in Fig. 4. Notably, since several samples were crystallized as shown in Fig. 1, the Tgof these samples were actually the measurement results of the residual glass matrix.[2]For the Sb2S3–CuI system, the Tgvalues are ranging from 185?C to 209?C, showing a negative correlation with CuI concentration as shown in the inset of Fig. 4.The iodine acts as a non-bridging modifier in Sb2S3–CuI system, which would impair the glass network connectivity of glass networks in ChGs.[5,8,22]For the same reason, the Hvalso decreases with the increasing CuI as listed in Table 1.The crystallization temperature(Tx)also shows a negative correlation with CuI content, except for the 80Sb2S3·20CuI sample.It could be attributed the 80Sb2S3·20CuI sample was nearly ceramic-like.[25]A large number of Sb2S3crystals were precipitated in the 80Sb2S3·20CuI sample,which makes the sample network structure loose. Thus, it leads to the decrease of the Hvof 80Sb2S3·20CuI sample.[7,26]

    Fig. 4. DSC curves of (100-x)Sb2S3–xCuI (x=20, 30, 40, 45, 50, and 55 mol%) samples. The inset presents the function of Tg as a function of CuI content.

    Table 1. Physical properties of(100-x)Sb2S3–xCuI(x=20,30,40,45,50,and 55 mol%)samples.

    Figures 5(a) and 5(b) display the typical Nyquist plot of bulk 70Sb2S3·30CuI and 45Sb2S3·55CuI sample at 30?C,respectively. The intersection point (Z′0) with the real axis is considered to be the specific value of the bulk resistance.[22,27]The resistance values of the 70Sb2S3·30CuI sample is 4.79×107Ω,and the resistance values of 45Sb2S3·55CuI samples is decreasing two orders of magnitude (8.45×105Ω).Conductivity of (100-x)Sb2S3–xCuI samples can be calculated according to σ = L/(SZ′0) (L: the thickness of asprepared samples; S: electrolyte–electrode surface area; Z′0:specific value of the bulk resistance).[21,22]Figure 5(c)shows the temperature-dependence (between 30?C to 200?C) of conductivities for the(100-x)Sb2S3–xCuI samples.The conductivity of glass ceramics is dependent on the composition and structure of glass ceramics. For example,45Sb2S3·55CuI glass ceramics contain SbSI crystal which with an high electronic conductivity at room temperature.[28]The SEM of the 45Sb2S3·55CuI sample is shown in Fig. 3(c), and the SbSI crystal size is in a range of 50 nm–150 nm. However, SbSI crystal does not contribute the ionic conductivity of the studied samples. The glass matrix still acts as the ion transport channel in the Sb2S3–CuI system.[29,30]Therefore(100-x)Sb2S3–xCuI sample ion conductance behavior shows a typical glass conduction behavior. According to the corresponding Arrhenius plots the room-temperature ionic conductivities (30?C)and activation energy of (100-x)Sb2S3–xCuI samples were listed in Table 2. The highest ionic conductivity (σ) of glasses and glass–ceramics calculated from the total resistance is σ =3.68×10-4mS/cm at 30?C, which shows obvious Cu+ion conducting behavior.[31–33]In addition,Cu has two chemical valences. CuI is stable in the Cu+oxidation state, while in other halide salts of copper, the Cu2+oxidation state is favored.[34]Therefore, it is reasonable that Cu+plays a dominant role in the Sb2S3–CuI system. The linear dependence of logσ versus (1/T) follows the Arrhenius law and indicates phase stability over the given temperature range.[20,27]The ionic conductivity of 45Sb2S3·55CuI glassceramic is more than two order of magnitude higher than that of 70Sb2S3·30CuI glass. Activation energy(Ea)of Cu+conduction was determined by using the Arrhenius equation and listed in Table 2. Eaincreased with the increase of Cu+ions concentration. Yet,the Eaof 45Sb2S3·55CuI sample is lower than that of 50Sb2S3·50CuI.It can be attributed the SbSI crystal were precipitated in the 45Sb2S3·55CuI sample,which hindered the transportation of Cu+ions.

    Fig.5. (a)and(b)Representative Nyquist plots at 30 ?C of 70Sb2S3·30CuI sample and 45Sb2S3·55CuI sample. (c) (100-x)Sb2S3–xCuI (x=30, 40,45,50,and 55)ionic conductivity from 30 ?C to 200 ?C.

    Table 2. Activation energy of ion conduction and ionic conductivities at room temperature(30 ?C)of(100-x)Sb2S3–xCuI(x=30, 40, 45,50,and 55)samples.

    To further get insight into the evolution of structural modifications, the Raman spectra of (100-x)Sb2S3–xCuI samples were obtained at room temperature as shown in Fig. 6.The most intense peaks 280 and 310 cm-1–319 cm-1could be assigned to the asymmetric stretching vibrations of[SbS3]pyramids and Sb-I stretching vibrations of [SbSI] pyramid units,[16,22,35,36]the ascription of other Raman bands have been marked in Fig.6.[35,37–39]When the CuI incorporated of 20 mol%,the several sharp Raman bands and small bump situated at 310 cm-1were observable in the 80Sb2S3·20CuI sample. Combine with the XRD result(Fig.1), excessive[SbS3]units caused a large number of Sb2S3crystals uncontrolled precipitated,and the[SbSI]units were disconnected from the glass network, and the continuous aggregation led to the nucleation and crystallization of SbSI crystals.

    Fig.6. Raman spectra of(100-x)Sb2S3–xCuI(x=20,30,40,45,50,and 55 mol%)at room temperature.

    According to the previous studies,the sulfur in structural units is readily replaced by iodine,[21,22]thus the[SbSI]units were easily formed. It results in the sustained increasing of Raman peaks at 110 cm-1and 138 cm-1as CuI concentration increases. On the other hand, a large amount of [SbSI] units were formed to impair the connectivity of glass network structure, which is responsible for the decreasing of Tg(Fig. 4).Meanwhile, the [SbSI] units would act as the structural similarity for the nucleation and growth of SbSI crystals.[6,25]Thus, the SbSI crystallites were precipitated when CuI concentration reached 55 mol%. The network structure of the Sb2S3–CuI system should be composed mainly by[SbS3]and[SbSI] pyramids, and Cu+ions dispersed randomly among those structural units.[20,22]Therefore, the conductivity increases linearly with the increasing CuI content. In addition,the Raman peaks located at 165 cm-1was vanished, which might belong to [SbI3] units or Sb–I bonds.[15,40]In a word,the introduction of iodine with a suitable content (30 mol%–40 mol%) could transform the [SbS3] pyramids into [SbSI]units,improving the glass-forming ability of Sb2S3–CuI.

    4. Conclusions

    We alloyed simple binary ChG system of Sb2S3–CuI to investigate the effect of halogen on their glass formation and physical properties. XRD results indicate the glass formation region of Sb2S3–CuI glass ranges from x=30 mol% to 40 mol%. All glassy samples have a wide IR optical transmitting window from 0.8 μm to 14 μm, which is the rare wide transparency range obtained in sulfide glass. Moreover,45Sb2S3·55CuI sample exhibits a high ionic conductivity of 3.68×10-4mS/cm at room temperature.The structural results suggest that the introduction of appropriate iodine(30 mol%–40 mol%) could facilitate the formation of [SbSI] units, improving the glass-forming ability of Sb2S3–CuI. These findings would offer important guidance to further development of novel ChG for IR transmitting materials and high-performance solid electrolytes.

    猜你喜歡
    常規(guī)
    常規(guī)作息
    科教新報(2024年43期)2024-12-31 00:00:00
    “立足常規(guī),著眼新奇”的何澤慧
    常規(guī)之外
    探討常規(guī)課的高效課堂
    活力(2019年15期)2019-09-25 07:23:12
    緊急避孕不是常規(guī)避孕
    對于一道普通常規(guī)解析幾何題目的解法多樣性的探討
    別受限于常規(guī)
    淺談110kV常規(guī)變電站接地地網(wǎng)
    冠狀動脈狹窄診斷中應用256層CT與常規(guī)冠狀動脈造影的效果比較
    常規(guī)培養(yǎng)在幼兒教育中的作用
    西藏科技(2015年3期)2015-09-26 12:11:06
    黄色丝袜av网址大全| 久久亚洲精品不卡| 国产探花极品一区二区| 精品人妻一区二区三区麻豆 | 欧美日本亚洲视频在线播放| 一级黄色大片毛片| 国产伦在线观看视频一区| 免费观看精品视频网站| 熟女少妇亚洲综合色aaa.| xxxwww97欧美| 女警被强在线播放| 亚洲五月天丁香| 他把我摸到了高潮在线观看| 日韩成人在线观看一区二区三区| 国产一区二区三区视频了| 天天一区二区日本电影三级| 天堂av国产一区二区熟女人妻| 亚洲不卡免费看| 国产成人aa在线观看| 久久久久九九精品影院| 91久久精品国产一区二区成人 | 久久久久国内视频| 听说在线观看完整版免费高清| 精品乱码久久久久久99久播| 国产精品一及| 女人高潮潮喷娇喘18禁视频| 亚洲专区中文字幕在线| 亚洲成人免费电影在线观看| 欧美精品啪啪一区二区三区| 在线国产一区二区在线| 脱女人内裤的视频| 观看免费一级毛片| 亚洲精品乱码久久久v下载方式 | 日韩欧美 国产精品| 国产老妇女一区| 亚洲av五月六月丁香网| 成人永久免费在线观看视频| 午夜精品一区二区三区免费看| 亚洲国产精品久久男人天堂| 国产v大片淫在线免费观看| 国产麻豆成人av免费视频| 国产亚洲精品久久久com| 欧美黑人巨大hd| 在线观看午夜福利视频| tocl精华| 狠狠狠狠99中文字幕| 久久久精品欧美日韩精品| 亚洲精品美女久久久久99蜜臀| 日韩欧美一区二区三区在线观看| 国产精品久久久久久久电影 | 久久亚洲精品不卡| 日韩 欧美 亚洲 中文字幕| 亚洲av成人不卡在线观看播放网| 免费在线观看影片大全网站| 黄色成人免费大全| 老司机在亚洲福利影院| 国产免费男女视频| 免费看光身美女| 国产精品亚洲美女久久久| 午夜日韩欧美国产| 窝窝影院91人妻| 精品久久久久久久久久免费视频| 亚洲国产中文字幕在线视频| 久久精品国产99精品国产亚洲性色| 午夜精品久久久久久毛片777| 在线观看午夜福利视频| 一本久久中文字幕| 久久天躁狠狠躁夜夜2o2o| 狠狠狠狠99中文字幕| 日日干狠狠操夜夜爽| 亚洲av一区综合| 天天添夜夜摸| 免费看美女性在线毛片视频| 18禁在线播放成人免费| 99在线人妻在线中文字幕| 日韩欧美三级三区| 亚洲,欧美精品.| 免费电影在线观看免费观看| 哪里可以看免费的av片| 欧美黑人欧美精品刺激| 久久久成人免费电影| 国产伦精品一区二区三区视频9 | 国产精品女同一区二区软件 | 国产精品永久免费网站| 又爽又黄无遮挡网站| 国内精品久久久久久久电影| 亚洲成人久久爱视频| 久99久视频精品免费| 十八禁网站免费在线| 国产一级毛片七仙女欲春2| 免费无遮挡裸体视频| 欧美日韩瑟瑟在线播放| 日本一本二区三区精品| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 男女做爰动态图高潮gif福利片| 亚洲成人中文字幕在线播放| 成人国产一区最新在线观看| 老汉色∧v一级毛片| 成人午夜高清在线视频| a级毛片a级免费在线| 国产一区二区三区在线臀色熟女| 国产精品精品国产色婷婷| 偷拍熟女少妇极品色| 听说在线观看完整版免费高清| 九九热线精品视视频播放| 亚洲精品粉嫩美女一区| 国产一区二区激情短视频| 女生性感内裤真人,穿戴方法视频| 丰满乱子伦码专区| 欧美性猛交黑人性爽| 欧美日韩中文字幕国产精品一区二区三区| 综合色av麻豆| 欧美日韩乱码在线| av视频在线观看入口| 两个人视频免费观看高清| 日本 欧美在线| 日本一二三区视频观看| tocl精华| 热99re8久久精品国产| 桃色一区二区三区在线观看| 精品午夜福利视频在线观看一区| 老司机福利观看| 内地一区二区视频在线| 欧美大码av| 亚洲在线自拍视频| 真人做人爱边吃奶动态| 中文字幕高清在线视频| 亚洲国产日韩欧美精品在线观看 | 国产精品一区二区三区四区久久| 亚洲内射少妇av| 亚洲av电影在线进入| 免费高清视频大片| 久久精品综合一区二区三区| 午夜福利免费观看在线| 最近视频中文字幕2019在线8| 日韩欧美免费精品| 51午夜福利影视在线观看| 国产精品久久久久久人妻精品电影| 91久久精品国产一区二区成人 | 老司机福利观看| 亚洲av成人精品一区久久| 少妇的逼水好多| 国产探花在线观看一区二区| 一区二区三区国产精品乱码| 国产成+人综合+亚洲专区| 亚洲色图av天堂| 黄色成人免费大全| 12—13女人毛片做爰片一| 99久久久亚洲精品蜜臀av| 国产99白浆流出| 亚洲乱码一区二区免费版| 国产男靠女视频免费网站| 亚洲一区二区三区色噜噜| 波多野结衣高清无吗| 亚洲av成人不卡在线观看播放网| 亚洲精品成人久久久久久| 欧美黄色片欧美黄色片| 69人妻影院| 欧美色欧美亚洲另类二区| 久久国产精品人妻蜜桃| 内射极品少妇av片p| 成人鲁丝片一二三区免费| aaaaa片日本免费| 亚洲黑人精品在线| 午夜老司机福利剧场| 麻豆国产av国片精品| 中文字幕精品亚洲无线码一区| 少妇的丰满在线观看| 制服人妻中文乱码| 中文字幕高清在线视频| 老司机深夜福利视频在线观看| 亚洲国产精品合色在线| 国产一区二区三区视频了| 欧美日本亚洲视频在线播放| 久久久久久久久大av| 国产av不卡久久| 淫秽高清视频在线观看| 性色av乱码一区二区三区2| 久久久久九九精品影院| 男人的好看免费观看在线视频| 午夜激情福利司机影院| 亚洲avbb在线观看| 99久久成人亚洲精品观看| 99精品在免费线老司机午夜| 人妻丰满熟妇av一区二区三区| 日日摸夜夜添夜夜添小说| 免费一级毛片在线播放高清视频| 内射极品少妇av片p| 国内精品美女久久久久久| 最好的美女福利视频网| 日本 av在线| 成年女人永久免费观看视频| 男女之事视频高清在线观看| 性色avwww在线观看| 亚洲人成伊人成综合网2020| 成人18禁在线播放| 免费人成在线观看视频色| 成人高潮视频无遮挡免费网站| 亚洲国产高清在线一区二区三| 精品人妻1区二区| 国产蜜桃级精品一区二区三区| 露出奶头的视频| 一边摸一边抽搐一进一小说| 欧美国产日韩亚洲一区| www.熟女人妻精品国产| 国产探花在线观看一区二区| 欧美日韩瑟瑟在线播放| 国产爱豆传媒在线观看| 日本 av在线| 丰满乱子伦码专区| 69av精品久久久久久| 久久性视频一级片| 欧美一级毛片孕妇| 一级毛片女人18水好多| 成人国产综合亚洲| 亚洲 国产 在线| 一a级毛片在线观看| 亚洲av免费在线观看| 深爱激情五月婷婷| 美女cb高潮喷水在线观看| 国产视频内射| 两个人看的免费小视频| 中文字幕高清在线视频| 国产亚洲精品久久久久久毛片| 人人妻人人澡欧美一区二区| 91麻豆精品激情在线观看国产| 久久久久久大精品| 久久精品91无色码中文字幕| 桃色一区二区三区在线观看| 夜夜躁狠狠躁天天躁| 激情在线观看视频在线高清| 亚洲av免费在线观看| 天天一区二区日本电影三级| 国产极品精品免费视频能看的| 国产午夜精品论理片| av在线蜜桃| 一区福利在线观看| 嫩草影院精品99| 亚洲精品粉嫩美女一区| 一区二区三区免费毛片| 国产中年淑女户外野战色| 亚洲人成网站高清观看| 伊人久久精品亚洲午夜| 99久久久亚洲精品蜜臀av| 国产一区二区在线观看日韩 | 在线观看午夜福利视频| 热99re8久久精品国产| 天堂影院成人在线观看| 亚洲无线观看免费| 亚洲精品在线美女| 久久亚洲精品不卡| 噜噜噜噜噜久久久久久91| 18美女黄网站色大片免费观看| 狂野欧美白嫩少妇大欣赏| 久久久久性生活片| 最近最新中文字幕大全电影3| 小蜜桃在线观看免费完整版高清| 国产99白浆流出| 一a级毛片在线观看| 国产精品精品国产色婷婷| 男人和女人高潮做爰伦理| 日本在线视频免费播放| 9191精品国产免费久久| 亚洲成人久久性| 男女做爰动态图高潮gif福利片| 国产精品一区二区三区四区久久| 欧美黑人巨大hd| 日韩欧美在线二视频| 国产精品乱码一区二三区的特点| 日韩精品青青久久久久久| 欧美黄色片欧美黄色片| 十八禁人妻一区二区| 国产aⅴ精品一区二区三区波| 黄色日韩在线| 少妇丰满av| 少妇裸体淫交视频免费看高清| 在线观看日韩欧美| 99热这里只有是精品50| 在线观看免费视频日本深夜| 午夜福利欧美成人| 国产伦人伦偷精品视频| av片东京热男人的天堂| 国产伦精品一区二区三区四那| 一级黄色大片毛片| 国产免费av片在线观看野外av| 观看美女的网站| 黄色片一级片一级黄色片| 中文字幕久久专区| 亚洲 欧美 日韩 在线 免费| 精品国产美女av久久久久小说| 舔av片在线| 黄色片一级片一级黄色片| 欧美一级a爱片免费观看看| 亚洲人成网站在线播放欧美日韩| 成人三级黄色视频| 欧美一区二区亚洲| 日本撒尿小便嘘嘘汇集6| 美女被艹到高潮喷水动态| 日本黄大片高清| 他把我摸到了高潮在线观看| 色播亚洲综合网| 又爽又黄无遮挡网站| 亚洲成人中文字幕在线播放| 久久久久久久午夜电影| 精品一区二区三区视频在线 | 一a级毛片在线观看| 亚洲av第一区精品v没综合| 亚洲成a人片在线一区二区| 丁香六月欧美| 亚洲一区二区三区色噜噜| 国产精品一区二区三区四区久久| 欧美成人一区二区免费高清观看| 91麻豆av在线| 成人高潮视频无遮挡免费网站| 亚洲成人精品中文字幕电影| 国产精品日韩av在线免费观看| 熟女人妻精品中文字幕| 国产在线精品亚洲第一网站| av天堂中文字幕网| 1000部很黄的大片| 亚洲18禁久久av| av视频在线观看入口| 中出人妻视频一区二区| 亚洲成av人片在线播放无| 亚洲精品亚洲一区二区| 国产精品日韩av在线免费观看| 国产欧美日韩一区二区精品| 性欧美人与动物交配| 色综合婷婷激情| 男人舔奶头视频| 国产成人福利小说| 在线观看日韩欧美| 精品久久久久久久人妻蜜臀av| 欧美一区二区精品小视频在线| 亚洲av免费在线观看| 亚洲欧美日韩高清专用| 国产久久久一区二区三区| 色老头精品视频在线观看| 亚洲成人中文字幕在线播放| 性色av乱码一区二区三区2| 精品午夜福利视频在线观看一区| 欧美日韩瑟瑟在线播放| avwww免费| 狠狠狠狠99中文字幕| 亚洲国产中文字幕在线视频| h日本视频在线播放| 色综合亚洲欧美另类图片| 国产精品久久久久久人妻精品电影| 欧美成人免费av一区二区三区| 久久久久国产精品人妻aⅴ院| 国产真人三级小视频在线观看| 亚洲av熟女| 精品久久久久久成人av| 亚洲色图av天堂| 久久婷婷人人爽人人干人人爱| 色精品久久人妻99蜜桃| 日韩欧美国产在线观看| 亚洲中文字幕日韩| 免费电影在线观看免费观看| 精品欧美国产一区二区三| 中文字幕久久专区| 亚洲专区中文字幕在线| 午夜福利免费观看在线| 首页视频小说图片口味搜索| 国产免费男女视频| 丁香欧美五月| 性色av乱码一区二区三区2| 国产v大片淫在线免费观看| 一级a爱片免费观看的视频| 中亚洲国语对白在线视频| 精品久久久久久久久久久久久| 国产亚洲精品久久久久久毛片| 天堂动漫精品| 精品无人区乱码1区二区| www日本在线高清视频| 欧美bdsm另类| www.www免费av| 免费观看精品视频网站| 精品人妻1区二区| 观看美女的网站| 法律面前人人平等表现在哪些方面| 亚洲专区国产一区二区| 香蕉av资源在线| 麻豆成人午夜福利视频| 色综合婷婷激情| 亚洲美女黄片视频| av视频在线观看入口| 丰满人妻熟妇乱又伦精品不卡| 人妻夜夜爽99麻豆av| 露出奶头的视频| 性欧美人与动物交配| 国产精品99久久99久久久不卡| 亚洲激情在线av| 91久久精品国产一区二区成人 | 99久久九九国产精品国产免费| 日本 av在线| 欧美成狂野欧美在线观看| 国产欧美日韩精品一区二区| 精品人妻偷拍中文字幕| 嫩草影院精品99| 亚洲国产中文字幕在线视频| 亚洲成人免费电影在线观看| 九色成人免费人妻av| 欧美色欧美亚洲另类二区| 国产精品乱码一区二三区的特点| 久久精品国产亚洲av香蕉五月| 禁无遮挡网站| 一区二区三区国产精品乱码| 午夜影院日韩av| 啪啪无遮挡十八禁网站| 亚洲人成网站高清观看| 中文字幕av成人在线电影| 午夜亚洲福利在线播放| 尤物成人国产欧美一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 国产黄a三级三级三级人| 在线免费观看不下载黄p国产 | 色综合站精品国产| 免费看日本二区| 精品不卡国产一区二区三区| 变态另类丝袜制服| 性欧美人与动物交配| 99视频精品全部免费 在线| 久久久久久久午夜电影| 婷婷丁香在线五月| 成年女人看的毛片在线观看| 欧美一区二区国产精品久久精品| 国产亚洲欧美98| 女同久久另类99精品国产91| 床上黄色一级片| 狂野欧美激情性xxxx| 成人国产综合亚洲| 精品乱码久久久久久99久播| 桃色一区二区三区在线观看| av天堂中文字幕网| 久久久国产精品麻豆| 欧美另类亚洲清纯唯美| 18+在线观看网站| 欧美国产日韩亚洲一区| 国产爱豆传媒在线观看| 18禁在线播放成人免费| 成年女人毛片免费观看观看9| 麻豆成人av在线观看| 久久香蕉国产精品| 老司机福利观看| 老熟妇仑乱视频hdxx| 一个人免费在线观看电影| 亚洲av不卡在线观看| 麻豆久久精品国产亚洲av| 天天添夜夜摸| 法律面前人人平等表现在哪些方面| 久久精品91蜜桃| 超碰av人人做人人爽久久 | 制服人妻中文乱码| av中文乱码字幕在线| 色精品久久人妻99蜜桃| 午夜视频国产福利| 久久中文看片网| 人妻久久中文字幕网| 亚洲欧美日韩无卡精品| 一级作爱视频免费观看| 内射极品少妇av片p| 国产精品久久久久久精品电影| 国产欧美日韩一区二区精品| 国产伦在线观看视频一区| 国产精品久久久久久精品电影| 中文字幕精品亚洲无线码一区| 757午夜福利合集在线观看| 欧美黑人欧美精品刺激| 老司机福利观看| 国产乱人视频| 极品教师在线免费播放| 最近最新中文字幕大全电影3| 亚洲成人精品中文字幕电影| 午夜精品在线福利| 熟妇人妻久久中文字幕3abv| 久久久久久久久久黄片| 国产麻豆成人av免费视频| 99久久九九国产精品国产免费| 国产av不卡久久| 亚洲人成网站在线播| 欧美+亚洲+日韩+国产| 男女视频在线观看网站免费| 亚洲午夜理论影院| 久久精品国产清高在天天线| 免费看日本二区| 精品人妻偷拍中文字幕| 色播亚洲综合网| netflix在线观看网站| 国产高清激情床上av| 最新在线观看一区二区三区| 热99re8久久精品国产| 好看av亚洲va欧美ⅴa在| 搡女人真爽免费视频火全软件 | 色吧在线观看| 欧美3d第一页| 国产高清视频在线播放一区| 性色avwww在线观看| 天天添夜夜摸| 脱女人内裤的视频| 欧美午夜高清在线| 热99re8久久精品国产| 又紧又爽又黄一区二区| 国内毛片毛片毛片毛片毛片| xxx96com| 日韩 欧美 亚洲 中文字幕| 三级毛片av免费| 亚洲中文字幕日韩| 91在线精品国自产拍蜜月 | 黄片小视频在线播放| 亚洲第一欧美日韩一区二区三区| 12—13女人毛片做爰片一| 最近最新免费中文字幕在线| 亚洲国产欧美网| 国产国拍精品亚洲av在线观看 | 国产精品亚洲美女久久久| 哪里可以看免费的av片| 亚洲国产中文字幕在线视频| 亚洲精品亚洲一区二区| 欧美日韩一级在线毛片| 欧美区成人在线视频| 成人午夜高清在线视频| 中文资源天堂在线| 国产av不卡久久| 亚洲av成人精品一区久久| 亚洲片人在线观看| bbb黄色大片| 成人av一区二区三区在线看| 成人无遮挡网站| 国产精品乱码一区二三区的特点| 免费看美女性在线毛片视频| netflix在线观看网站| 亚洲av日韩精品久久久久久密| 99精品在免费线老司机午夜| 久久中文看片网| 欧美中文综合在线视频| 男人舔女人下体高潮全视频| 国产麻豆成人av免费视频| 日韩欧美 国产精品| 日韩亚洲欧美综合| 国产99白浆流出| 欧美乱妇无乱码| 一区二区三区激情视频| 亚洲精品久久国产高清桃花| 天天一区二区日本电影三级| 超碰av人人做人人爽久久 | 欧美日韩黄片免| 十八禁人妻一区二区| 国产精品99久久99久久久不卡| 亚洲黑人精品在线| 又黄又爽又免费观看的视频| 精品免费久久久久久久清纯| 91在线观看av| or卡值多少钱| 91在线观看av| 中文字幕熟女人妻在线| 午夜视频国产福利| 有码 亚洲区| 国产激情欧美一区二区| 18禁国产床啪视频网站| 欧美中文综合在线视频| 在线观看一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 午夜影院日韩av| 99久久精品国产亚洲精品| 精品人妻1区二区| 99久久精品国产亚洲精品| 亚洲精品在线观看二区| 日韩有码中文字幕| 麻豆久久精品国产亚洲av| 好男人在线观看高清免费视频| 身体一侧抽搐| av女优亚洲男人天堂| 999久久久精品免费观看国产| 男人和女人高潮做爰伦理| 亚洲成人免费电影在线观看| 午夜免费激情av| 老司机在亚洲福利影院| 亚洲五月天丁香| 在线a可以看的网站| 免费人成视频x8x8入口观看| 精品福利观看| 精品久久久久久久末码| 精品不卡国产一区二区三区| 免费看十八禁软件| 麻豆成人av在线观看| 一边摸一边抽搐一进一小说| 婷婷精品国产亚洲av| 一边摸一边抽搐一进一小说| 午夜两性在线视频| 亚洲av免费高清在线观看| 国产免费一级a男人的天堂| 我要搜黄色片| 在线十欧美十亚洲十日本专区| 18禁在线播放成人免费| 欧美乱码精品一区二区三区| 亚洲无线在线观看| 看黄色毛片网站| 国产一区二区三区在线臀色熟女| 久久久久免费精品人妻一区二区| 制服丝袜大香蕉在线| 国产精品一区二区三区四区免费观看 | 精品久久久久久成人av| 日韩成人在线观看一区二区三区| 欧美乱妇无乱码| 国产精品1区2区在线观看.| 最后的刺客免费高清国语| 亚洲精品在线美女| 欧美色视频一区免费| 在线天堂最新版资源| 麻豆成人午夜福利视频| 精品人妻偷拍中文字幕| 国产麻豆成人av免费视频| 日本免费一区二区三区高清不卡| 美女cb高潮喷水在线观看|