• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties*

    2021-01-21 02:08:06QiChen陳啟XinjianLi李欣健YaoWang王遙LijieChang常立杰JianWang王健YuewenZhang張躍文HonganMa馬紅安andXiaopengJia賈曉鵬
    Chinese Physics B 2021年1期
    關(guān)鍵詞:紅安王健

    Qi Chen(陳啟), Xinjian Li(李欣健), Yao Wang(王遙), Lijie Chang(常立杰), Jian Wang(王健),Yuewen Zhang(張躍文), Hongan Ma(馬紅安),?, and Xiaopeng Jia(賈曉鵬)

    1State Key Laboratory of Superhard Materials,College of Physics,Jilin University,Changchun 130012,China

    2Key Laboratory of Material Physics of Ministry of Education,School of Physics and Microeletronics,Zhengzhou University,Zhengzhou 450052,China

    Keywords: high pressure and high temperature,,icrostructure,Al-doped ZnO,thermoelectric

    1. Introduction

    With increasing global attention on energy and environmental issues, thermoelectric materials have attracted extensive attention because they can directly convert waste thermal energy into electrical energy without producing pollution.[1]The core of this technology lies in the choice of thermoelectric materials, which are strong lightweight materials that do not release harmful gases during utilizing. Some traditional thermoelectric materials contain intermetallic compounds such as Bi2Te3and PbTe, and have shown improved thermoelectric properties.[2–5]However, they are also toxic, expensive, and thermally unstable. In recent years, oxide-based thermoelectric materials have been investigated because most traditional thermoelectric materials are easily oxidized and fail at hightemperatures (≥800 K). Zinc oxides are abundant, inexpensive, and environmentally friendly materials that have been investigated as alternative thermoelectric materials for hightemperature applications because of their excellent thermal and chemical stability in air.[6]

    The performance of thermoelectric materials is measured by the dimensionless figure of merit, zT =S2σT/κ, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature,and κ is the thermal conductivity.High-performance thermoelectric materials have a high power factor (S2σ) and low thermal conductivity (κ).[7,8]However,these parameters are closely related to each other so that it is difficult to integrate good electrical properties and low thermal conductivity in a single material.[9,10]This universal principle has become a bottleneck preventing further improvements in thermoelectric materials.

    Many studies have focused on decreasing the thermal conductivity of ZnO-based thermoelectric materials,[11,12]while increasing the power factor can also optimize zT values. The thermoelectric material ZnO exhibits a high Seebeck coefficient (~340 V·K-1), whereas its electrical conductivity(~10 S·m-1)is still too low for practical applications.[13]Synthesis at atmospheric pressure is complicated and relatively long and can produce low-density samples, and the donor dopant (such as Al) has limited solubility in ZnO matrixes.[14,15]These factors limit the electrical conductivity and power factor of ZnO-based thermoelectric materials.High-pressure high-temperature (HPHT) methods can accelerate synthesis by using pressure to improve the solubility of the donor dopant in ZnO and to increase the density of the sample.[16]

    Many efforts have been devoted to studying the thermoelectric properties of ZnO.[17,18]Tanaka et al. used ZnO ceramics sintered by hot-pressing and obtained a power factor of 4.5 μW·cm-1·K-2at 900 K.[19]Guilmeau et al. sintered Al-doped ZnO in air and obtained a maximum power factor of 4.0 μW·cm-1·K-2at 1000 K.[20]Colder et al. synthesized Zn1-xNixO through a liquid route and reached a maximum power factor of 5.6 μW·cm-1·K-2at 900 K.[21]Cai et al.synthesized ZnO by sol-gel processing and reached a maximum power factor of 1.0 μW·m-1·K-2at 773 K.[22]The above literature shows that the thermoelectric properties of ZnO are greatly affected by the synthesis conditions, microstructure,and density of the sample.

    ZnO has poor electrical conductivity, and increasing its power factor is key to making it an excellent thermoelectric material. The utilizing of high pressures may improve its electrical properties by forming a polycrystalline structure, changing the lattice structure, or increasing the oxygen vacancies.[23]Grain refinement can reduce the thermal conductivity at high pressures. Bulk nanomaterials scatter phonons with short mean free paths but have little effect on long-range phonons. However,multi-scale hierarchical structures can scatter full-spectrum phonons, which reduces the thermal conductivity. At the same time, doping can produce enough inherent defects to improve the electrical and thermal properties of ZnO.

    Here,we employ a high-pressure technique to investigate the effect of different synthesis temperatures on the thermoelectric properties, morphologies, and structures of Al-doped ZnO.

    2. Materials and methods

    Commercially available ZnO(99.99%,50 nm)and Al2O3(99.99%,30 nm,α-phase)powders were weighed and mixed in a stoichiometric ratio of Zn0.98Al0.02O. The accuracy of the balance was 0.0001 g. The obtained powders were cold-pressed into 10.5×6 mm cylinders and then wrapped in molybdenum foil to prevent contamination. Before synthesis,the cylinders were assembled in chambers. The synthesis was conducted with a large-volume cubic high-pressure apparatus(CHPA,SPD-6×1200)at different synthesis temperatures(973 K, 1023 K, 1073 K, and 1123 K) at the same pressure(3 GPa)for 30 min. The samples obtained at 973 K,1023 K,1073 K, and 1123 K were denoted as Zn0.98Al0.02O-973,Zn0.98Al0.02O-1023, Zn0.98Al0.02O-1073, and Zn0.98Al0.02O-1123, respectively. Platinum-rhodium thermocouples were placed in the chamber to measure the temperature and changes of resistance in comparison with the standard materials, calibrated with temperature. The chamber was quickly quenched to room temperature at high pressure before unloading the pressure. Figure 1 presents a schematic diagram of the chamber.

    The phase structure was measured by an x-ray diffractometry (XRD, Rigaku D/Max 2550V/PC, Japan Cu-Kα radiation, λ = 0.15418 nm) with 2θ range from 30?to 70?.Rietveld refinement was performed on the XRD data to obtain the lattice parameters. The cross-sectional morphologies and detailed microstructures were observed using a fieldemission scanning electron microscope(FESEM;JEOL JSM-6700F) and a high-resolution transmission electron microscope(HRTEM;JEOL JEM-2200FS),respectively. The samples in dimensions 3×3×6 mm were cut into two pieces by an STX-202A wire cutter. One piece was measured with a Namicro-III L (JouleYacht, China) thermoelectric test system to measure the electrical conductivity σ and Seebeck coefficient from 323 K to 973 K. The other sample was measured with the LFA-427 (Germany, NETZSCH) laser flash method to test the thermal diffusion coefficient κ in the same temperature range. Using the relation κ =λCpD to calculate the thermal conductivity(the heat capacity Cpof the sample was calculated by the Dulong–Petit law,and the sample density D was measured by an AE124J electronic balance via Archimedes’principle). All the samples were measured by an HMS-5500(Hall Effect Measurement System)to determine the Hall coefficient RH,carrier concentration n,and carrier mobility μ.

    Fig.1. Schematic of HPHT reactive sintering chamber for Zn0.98Al0.02O.

    3. Analysis and discussion

    We compared the electrical conductivity of ZnO and Zn0.98Al0.02O obtained using the same synthesis parameters(Fig. 2) and found that Al-doped ZnO shows a much higher electrical conductivity because the Al dopant produces electrons via the following reaction:[14,24]

    Fig. 2. The electrical conductivity of Zn0.98Al0.02O and ZnO sintered at 973 K.

    Fig. 3. Temperature dependences of the (a) electrical conductivity and (b)Seebeck coefficient of samples obtained at different synthesis temperatures.HPHT sintering temperature effect on the (c) Hall coefficient RH, carrier concentration n,and carrier mobility μ of Zn0.98Al0.02O synthesized at different synthesis temperatures.

    Figure 3 shows the changes in the electrical properties of the samples with temperature. Figure 3(a) illustrates that the electrical conductivity increases with the temperature before beginning to slowly decrease. At about 453 K, the electrical conductivity of the samples sharply increases. The sample shows metallic behavior at test temperatures higher than 500 K,which is consistent with the previously reported trends.We speculate that this change may arise from the modulation of energy bands by high pressure and high temperature.[26]The electrical conductivity of all the samples reaches a maximum between 400 K and 500 K, and the highest electrical conductivity is obtained in the sample synthesized at 1123 K.At 373 K, the electrical conductivity of Zn0.98Al0.02O-1123 increases from 552 S/m to 6×104S/m as the sintering temperature increases. Figure 3(b) shows that the absolute value of the Seebeck coefficient gradually increases with the test temperature. The Seebeck coefficients of all the samples are negative, which shows that electrical transmission proceeds mainly via electron conduction. At the same test temperature,the absolute value of the Seebeck coefficient decreases at higher sintering temperatures. In addition,Hall measurement was conducted to understand the carrier transport. Figure 3(c)shows that increasing the sintering temperature will increase oxygen deficiency(the carrier concentration of Zn0.98Al0.02O-1123 reaches 6.16×1019cm-3).

    Figure 4 shows that the power factor of Zn0.98Al0.02O-1123 increases significantly with the test temperature, and a maximum power factor of 6.42 μW·cm-1·K-2is obtained at 973 K.The power factor does not appear to be saturated,suggesting that it can continue to increase at temperatures higher than 1000 K.

    Fig. 4. Temperature dependence of the power factor during the optimization of HPHT temperature.

    Figure 5(a) presents the temperature dependences of the sample’s total thermal conductivity(κtot),which is contributed by both the electronic thermal conductivity κeand the lattice thermal conductivity κlat,where κeis proportional to the electrical conductivity, κe= σLT (the Wiedemann–Franz law).Here,L is the Lorentz number(2.45×10-8V2·K-2).[27]Subtracting κefrom κtotwe obtain κlat,as plotted in Fig.5(b). The results show that the total thermal conductivity κtotand lattice thermal conductivity κlatof the sample remain small as the HPHT sintering temperature increases.

    Fig.5. (a)Total thermal conductivity and(b)lattice thermal conductivity of Zn0.98Al0.02O versus temperature.

    The electrical and thermal properties of zinc oxide thermoelectric materials can be optimized by adjusting the pressure and temperature during HPHT.The dimensionless figures of merit of our samples as a function of temperature, zT, are depicted in Fig.6. Here zT greatly increases as the electrical performance of zinc oxide is improved, whereas zT does not appear to become saturated as the test temperature increases,suggesting that zT will continue to increase above 1000 K.In general,the zT value increases with the sintering temperature,showing that the HPHT sintering temperature plays a dominant role in the thermoelectric performance of the sample.

    Fig.6. Temperature dependences of the zT values of Zn0.98Al0.02O.

    3.1. Relative density and band structure

    Figure 7 shows the XRD pattern of the sample optimized by HPHT. No impurity peaks were detected in the XRD pattern, indicating that Al was completely doped into ZnO. It is also shown that HPHT improved the solubility of Al in ZnO.[28]Within the range of 2θ (30?–70?),the peak positions of all the samples are consistent with hexagonal ZnO (space group P63mc,PDF No.80-75). This indicates that hexagonal ZnO was sintered within 30 min(the structure model of ZnO on the left side of the label in Fig.7). Conventional synthesis methods often require more than 12 hours, which means that the utilizing of a high pressure greatly improved the synthesis efficiency.The peak intensity of the XRD pattern gradually increases with the synthesis temperature. It can be inferred that high temperature can promote the synthesis of Zn0.98Al0.02O.

    Fig. 7. XRD patterns of Zn0.98Al0.02O synthesized at 3 GPa and at different temperatures.

    To study the effect of the synthesis temperature under high pressure on the relative density of Zn0.98Al0.02O,we obtained the Rietveld structural refinement from the XRD data using GSAS (general structure analysis system). Figure 8(a)shows the refined curves of the sample synthesized at 1123 K and 3 GPa. The lattice constants of the sample synthesized at 3 GPa were obtained from the refined results(a=b=3.245 ?A;c=5.198 ?A).The lattice structure of ZnO was changed(ambient pressure a=b=3.25 ?A;c=5.2 ?A).All other samples were refined in the same way,and the XRD refinement results were inserted into the following formula to calculate the theoretical density(TD):[29]

    where MZn0.98Al0.02Ois the relative molecular mass of Zn0.98Al0.02O,Vunitis the unit cell volume of the sample,and NAis Avogadro’s number. Archimedes’principle was used to obtain the true density of the sample (ρ). Figure 8(b) shows that the relative density (RD) of the samples (RD=ρ/TD)increases at higher sintering temperatures.[30,31]

    Fig. 8. (a) X-ray Rietveld refinement profile of Zn0.98Al0.02O synthesized at 1123 K. (b) Relative density of samples at different synthesis temperatures.

    The refinement results were used to calculate the band structures using CASTEP software package. The band gap was underestimated using density functional theory(local density approximation). We found that the energy band structure at high pressure underwent tremendous changes(ambient pressure band gap=3.2 eV),possibly due to changes in its lattice structure. The band structure details at 3 GPa are shown in Fig.9,and the results at different pressures show a similar trend. Both the conduction band minimum(CBM)and the valence band maximum(VBM)are located at vector G in Fig.9,which means that ZnO synthesized at high pressures(3 GPa)is a direct band gap semiconductor.[32]

    Fig.9. Band structure at 3 GPa.

    3.2. Microstructure and morphological characterization

    To optimize the HPHT temperature and determine its effects on the micro morphology (Fig. 10) of the samples, the fracture surfaces of the samples were characterized by scanning electron microscopy (SEM). Figures 10(a)–10(d) give the low-magnification SEM images showing the sample morphologies. Regardless of the sintering temperature, all the samples were covered with deposits of various sizes, which decrease the thermal conductivity. From Figs. 10(a)–10(d),the grain size generally coarsens, and the crystallinity of the sample is improved at higher synthesis temperatures,with increasingly fewer pores between grains. Figures 10(e)–10(h)show the high-magnification SEM images of the sample morphologies.Nanoscale grains of various sizes are randomly distributed between the sample surface and the crystal surface due to grain refinement at 3 GPa.

    HPHT synthesis methods provide more freedom for adjusting the synthesis pressure, which can be used to tune the thermoelectric properties of a material.[33]The micromorphologies of samples synthesized using HPHT change at different temperatures, and the ideal ZnO morphology could be obtained by changing the pressure and temperature during HPHT synthesis.

    The micromorphology of Zn0.98Al0.02O-1123 was characterized by TEM(Fig.11).Figure 11(a)shows fringes(black areas), along with particles of various shapes and sizes. Figure 11(d) presents the medium-magnification TEM image,which also shows fringes in the sample. Figure 11(f) gives the localized electron diffraction pattern of the yellow rectangular frame in Fig. 11(d) and shows that HPHT is useful for manufacturing polycrystalline structures. Figure 11(b)shows the presence of many lattice defects (white circles) and dislocations (red circles). The small image on the upper left of Fig.11(b)is the IFFT transform of the red area,which makes changes in the fringes more obvious. Figures 11(c)and 11(e)show many lattice defects(white circles)and crystal shear defects (green circles). The small graph on the upper left of Fig.11(c)is the FFT of the white circle area. The distribution of the frequency domain corresponding to defects is helpful for analyzing the defects. Figures 11(b),11(c),and 11(e)contain fringes with different pitches. These fringes belong to the(102)crystal plane detected by XRD.The slight change in the interplanar spacing is caused by the application of a pressure of 3 GPa.

    The utilizing of high pressure can form many lattice defects, and high-pressure quenching promotes the growth of nanoscale grains. The defects improve the thermoelectric properties of the material,suggesting that HPHT can be used to obtain desired morphologies.[34]

    The HPHT sintering temperature greatly affects the electrical properties of Zn0.98Al0.02O, showing that the electrical properties of the sample are improved due to changes in the microstructure and morphology of the material.

    Fig. 10. (a)–(d) Low-magnification SEM images of the sample morphologies used to optimize the temperature during HPHT synthesis and(e)–(h) high-magnification SEM images of the same samples: (a) and (e) Zn0.98Al0.02O-973; (b) and (f) Zn0.98Al0.02O-1023; (c) and (g)Zn0.98Al0.02O-1073;(d)and(h)Zn0.98Al0.02O-1123.

    Fig.11. (a)and(d)Low-magnification TEM images taken from a representative Zn0.98Al0.02O-1123 sample;(b),(c)and(e)HRTEM images of this sample showing the presence of multiple microstructures;(f)the electron diffraction pattern of the yellow selection in(d).

    In conventionally sintered thermoelectric materials, the thermal conductivity increases at higher temperatures, which does not help increase the zT of thermoelectric materials because the relative density decreases at higher synthesis temperatures. Although the thermal conductivity of a sample can be effectively reduced at lower densities,the electrical properties are also greatly reduced. However,the utilizing of HPHT increases the degrees of freedom of the pressure compared with conventional methods, allowing the electrical and thermal properties of thermoelectric materials to be adjusted.

    The thermal conductivity of the sample decreases monotonously as the test temperature increases, possibly due to grain refinement at a high pressure.

    There is a well-known relationship between phonon relaxation time τ and lattice thermal conductivity κlat

    where CV, v, and l are the constant-volume specific heat,phonon velocity,and phonon mean-free path,respectively.[35]For a particular material,CVand v are different.The relaxation time of phonon scattering can be written as

    where τp, τn, τme, τmi, and τuare the relaxation times corresponding to point defect phonon scattering, nanoscale scattering agents, mesoscale scattering agents, micrometer-scale grain boundaries,and Umklapp scattering,respectively.[36]

    The XRD data show that HPHT changes the ZnO lattice structure, and the SEM and TEM images show that HPHT makes a multi-scale hierarchical structure form and defects serve as phonon scattering sources. Phonon scattering mechanisms are affected by the size scale of the media,[36]but all size scales can hinder phonon propagation and increase scattering. The samples exhibit low thermal conductivity because the multi-scale hierarchical structure induces full-spectrum phonons scattering. Finally, the phonon propagation in samples obtained at high temperatures is dominated by highfrequency phonons with short and medium length scales. The shorter lattice thermal conductivity at a high temperature occurs mainly because of high-frequency phonons scattering by point defects and Umklapp scattering. Increasing the test temperature enhances all scattering effects, which explains why the lattice thermal conductivity of our samples decreases at higher test temperatures.

    4. Conclusion

    To improve the electrical properties of ZnO while maintaining a low thermal conductivity, the temperature in the HPHT synthesis is optimized. As the synthesis temperature increases at 3 GPa, the band gap of ZnO greatly decreases,and its microporosity gradually decreases. HPHT increases the electrical conductivity of Zn0.98Al0.02O to 6×104S/m at 373 K,and its power factor increases to 6.42 μW·cm-1·K-2at 973 K.The electrical properties are greatly improved because HPHT changes the band structure and increases the relative density of the zinc oxide. Grain refinement and the production of a multi-scale hierarchical structure at high pressure are the main factors for retaining zinc oxide’s low thermal conductivity. Finally, improved zT values(0.09 at 973 K)are obtained in Zn0.98Al0.02O-1123.

    猜你喜歡
    紅安王健
    王健
    美聯(lián)儲(chǔ)的艱難選擇:穩(wěn)通脹還是穩(wěn)金融市場(chǎng)
    Exact solution of an integrable quantum spin chain with competing interactions?
    Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility*
    新疆天椒紅安農(nóng)業(yè)科技有限責(zé)任公司
    辣椒雜志(2021年4期)2021-04-14 08:28:12
    紅安脫貧摘帽喜賦
    “王健扇藝展”
    Synthesis of diamonds in Fe C systems using nitrogen and hydrogen co-doped impurities under HPHT?
    紅安民間傳統(tǒng)文化的保護(hù)與發(fā)展
    學(xué)習(xí)紅安精神 提升教師素質(zhì)
    www.熟女人妻精品国产| 午夜福利一区二区在线看| 99国产精品99久久久久| 久久久久久久久免费视频了| 国产人伦9x9x在线观看| 成人18禁在线播放| 久久伊人香网站| 欧美丝袜亚洲另类 | 黄色毛片三级朝国网站| 可以在线观看毛片的网站| 99精品在免费线老司机午夜| 精品第一国产精品| 精品久久久久久久久久免费视频| 人妻丰满熟妇av一区二区三区| 国产激情欧美一区二区| 18美女黄网站色大片免费观看| 日韩国内少妇激情av| 欧美乱码精品一区二区三区| 亚洲最大成人中文| 香蕉久久夜色| 国产精品一区二区精品视频观看| 一边摸一边做爽爽视频免费| 日本黄色视频三级网站网址| 亚洲国产欧美日韩在线播放| 国产精品影院久久| 男女下面进入的视频免费午夜 | 日本 欧美在线| tocl精华| 黄色片一级片一级黄色片| 在线看三级毛片| 99热这里只有精品一区 | 人人妻人人澡欧美一区二区| 午夜a级毛片| 国产精品一区二区三区四区久久 | 国产日本99.免费观看| 国产成人欧美在线观看| 高清在线国产一区| 级片在线观看| 美女国产高潮福利片在线看| 美女 人体艺术 gogo| 国产日本99.免费观看| 色av中文字幕| 丰满人妻熟妇乱又伦精品不卡| 色尼玛亚洲综合影院| 中文字幕久久专区| 欧美日本视频| 免费无遮挡裸体视频| 国产高清视频在线播放一区| 亚洲精品在线观看二区| 日韩欧美一区视频在线观看| 国产精品一区二区三区四区久久 | 久久草成人影院| 最新美女视频免费是黄的| 怎么达到女性高潮| 欧美乱色亚洲激情| 又紧又爽又黄一区二区| 国语自产精品视频在线第100页| 亚洲电影在线观看av| 日本免费一区二区三区高清不卡| 欧美av亚洲av综合av国产av| 日本 av在线| 亚洲精品粉嫩美女一区| 久久中文字幕一级| 人成视频在线观看免费观看| 禁无遮挡网站| 亚洲一区高清亚洲精品| 观看免费一级毛片| 日日夜夜操网爽| 国产熟女xx| 成人特级黄色片久久久久久久| 久久婷婷成人综合色麻豆| 搡老岳熟女国产| 国产又色又爽无遮挡免费看| 免费在线观看日本一区| 亚洲专区字幕在线| 999久久久精品免费观看国产| 女人高潮潮喷娇喘18禁视频| 少妇被粗大的猛进出69影院| 欧美日韩中文字幕国产精品一区二区三区| 亚洲久久久国产精品| 日本免费a在线| av视频在线观看入口| 香蕉国产在线看| 欧美黄色淫秽网站| 50天的宝宝边吃奶边哭怎么回事| 国产成人av激情在线播放| 真人做人爱边吃奶动态| 搞女人的毛片| 日本黄色视频三级网站网址| 91成人精品电影| 1024香蕉在线观看| 亚洲成av片中文字幕在线观看| 国产精品九九99| videosex国产| 99久久无色码亚洲精品果冻| 99久久国产精品久久久| 国产片内射在线| 中文资源天堂在线| 亚洲熟女毛片儿| 久久精品人妻少妇| 成人三级黄色视频| 欧美午夜高清在线| 黄色视频,在线免费观看| 国产精品 国内视频| 嫁个100分男人电影在线观看| 欧美日韩福利视频一区二区| 正在播放国产对白刺激| 熟妇人妻久久中文字幕3abv| 国产一级毛片七仙女欲春2 | 淫秽高清视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 最近最新免费中文字幕在线| 在线观看日韩欧美| 国产激情久久老熟女| 可以在线观看毛片的网站| 精品福利观看| 国产一区二区三区视频了| www日本黄色视频网| 免费电影在线观看免费观看| 成人亚洲精品一区在线观看| 久久久精品欧美日韩精品| 男女视频在线观看网站免费 | 一夜夜www| 亚洲色图 男人天堂 中文字幕| 久久久久久亚洲精品国产蜜桃av| 久久久久久久久免费视频了| 91在线观看av| 一级黄色大片毛片| 亚洲精品一区av在线观看| 国产一卡二卡三卡精品| 日韩视频一区二区在线观看| 99国产综合亚洲精品| 久久午夜亚洲精品久久| 国产单亲对白刺激| 国产成人av激情在线播放| 亚洲国产精品合色在线| 99国产极品粉嫩在线观看| 亚洲成av片中文字幕在线观看| 精品国产乱码久久久久久男人| 麻豆国产av国片精品| 亚洲欧美激情综合另类| 久久久久精品国产欧美久久久| 人人妻人人看人人澡| 夜夜看夜夜爽夜夜摸| 999久久久国产精品视频| xxx96com| 亚洲一区中文字幕在线| 日韩精品青青久久久久久| 久久狼人影院| 国产一区二区三区在线臀色熟女| 亚洲五月婷婷丁香| 夜夜夜夜夜久久久久| 欧美日韩亚洲国产一区二区在线观看| 久久午夜综合久久蜜桃| 女人爽到高潮嗷嗷叫在线视频| 中文亚洲av片在线观看爽| 亚洲国产毛片av蜜桃av| 中文字幕人妻丝袜一区二区| 亚洲国产精品成人综合色| 免费看美女性在线毛片视频| e午夜精品久久久久久久| 看免费av毛片| 久久久久久人人人人人| 97人妻精品一区二区三区麻豆 | 亚洲中文字幕日韩| 91国产中文字幕| 欧美黑人巨大hd| 精品一区二区三区av网在线观看| 狠狠狠狠99中文字幕| 哪里可以看免费的av片| 国产精品二区激情视频| 极品教师在线免费播放| 黄色视频,在线免费观看| 在线免费观看的www视频| 在线观看www视频免费| 成人特级黄色片久久久久久久| 久久人人精品亚洲av| 亚洲精品色激情综合| 又紧又爽又黄一区二区| 亚洲全国av大片| 国产不卡一卡二| 国产av一区二区精品久久| 国产精品爽爽va在线观看网站 | 激情在线观看视频在线高清| 国产三级在线视频| 国产成人系列免费观看| 亚洲av成人不卡在线观看播放网| 亚洲天堂国产精品一区在线| 91av网站免费观看| 精品免费久久久久久久清纯| 国产精品一区二区三区四区久久 | 性色av乱码一区二区三区2| 色综合站精品国产| 琪琪午夜伦伦电影理论片6080| 国产一区二区在线av高清观看| 色综合站精品国产| 丝袜美腿诱惑在线| 丝袜美腿诱惑在线| 大型av网站在线播放| 国产成人精品久久二区二区91| 欧美在线一区亚洲| 午夜福利在线观看吧| 国产欧美日韩一区二区精品| 自线自在国产av| 黄色 视频免费看| 国产精品久久久久久亚洲av鲁大| 国产爱豆传媒在线观看 | 色婷婷久久久亚洲欧美| 国产精品1区2区在线观看.| 熟女电影av网| 俺也久久电影网| 嫩草影院精品99| 男女床上黄色一级片免费看| 啦啦啦免费观看视频1| 人人妻,人人澡人人爽秒播| 99精品欧美一区二区三区四区| 日本 欧美在线| 99在线视频只有这里精品首页| 久久香蕉激情| 国产精品美女特级片免费视频播放器 | 日韩免费av在线播放| 欧美日韩黄片免| 亚洲精品一区av在线观看| 一级a爱片免费观看的视频| 国产精品久久久人人做人人爽| 国产高清激情床上av| 欧美激情 高清一区二区三区| АⅤ资源中文在线天堂| 一二三四社区在线视频社区8| 国产一区二区在线av高清观看| 日韩欧美免费精品| 久久亚洲真实| 久久午夜亚洲精品久久| 国产成人av教育| 亚洲免费av在线视频| 99热这里只有精品一区 | 欧美不卡视频在线免费观看 | 欧美乱色亚洲激情| 午夜福利在线在线| 国产一区二区在线av高清观看| 男人操女人黄网站| 我的亚洲天堂| 国产99白浆流出| 老司机靠b影院| 日本成人三级电影网站| 久久香蕉精品热| 天天躁狠狠躁夜夜躁狠狠躁| 88av欧美| 男女之事视频高清在线观看| 国产色视频综合| 国产精品亚洲av一区麻豆| 精品午夜福利视频在线观看一区| 成人18禁在线播放| 午夜激情av网站| 国产av一区二区精品久久| 中亚洲国语对白在线视频| 国内久久婷婷六月综合欲色啪| 精品高清国产在线一区| 看片在线看免费视频| 亚洲专区字幕在线| 动漫黄色视频在线观看| 久久久久亚洲av毛片大全| 久久天堂一区二区三区四区| or卡值多少钱| 桃红色精品国产亚洲av| 在线看三级毛片| 国产又黄又爽又无遮挡在线| 在线十欧美十亚洲十日本专区| 老汉色∧v一级毛片| 久久国产乱子伦精品免费另类| 久久精品国产清高在天天线| 国产精品爽爽va在线观看网站 | 别揉我奶头~嗯~啊~动态视频| 校园春色视频在线观看| a在线观看视频网站| 欧美日韩福利视频一区二区| 国产人伦9x9x在线观看| 国产亚洲av高清不卡| 搡老岳熟女国产| 18美女黄网站色大片免费观看| 亚洲国产中文字幕在线视频| 国产精品亚洲美女久久久| 午夜福利在线在线| 淫秽高清视频在线观看| videosex国产| 午夜福利在线观看吧| 中出人妻视频一区二区| 无限看片的www在线观看| 成人三级黄色视频| 69av精品久久久久久| 亚洲国产精品久久男人天堂| 久热爱精品视频在线9| 亚洲国产精品sss在线观看| 精品久久久久久久末码| 一本精品99久久精品77| 精品高清国产在线一区| 色老头精品视频在线观看| 欧美在线黄色| 亚洲精品久久国产高清桃花| 成熟少妇高潮喷水视频| 免费在线观看日本一区| 欧美三级亚洲精品| 亚洲精品美女久久av网站| 日本一区二区免费在线视频| 视频在线观看一区二区三区| 亚洲欧美精品综合久久99| 中国美女看黄片| 18禁黄网站禁片午夜丰满| 中文字幕高清在线视频| 婷婷精品国产亚洲av在线| 久久香蕉国产精品| 99在线视频只有这里精品首页| 久久国产亚洲av麻豆专区| av在线播放免费不卡| 18美女黄网站色大片免费观看| 日韩有码中文字幕| 久久久久久亚洲精品国产蜜桃av| 国产精品电影一区二区三区| 亚洲欧美精品综合一区二区三区| 亚洲精品一区av在线观看| 国产午夜精品久久久久久| 视频在线观看一区二区三区| 精品午夜福利视频在线观看一区| netflix在线观看网站| 999久久久国产精品视频| 亚洲精品色激情综合| 麻豆av在线久日| 国产v大片淫在线免费观看| 男男h啪啪无遮挡| 在线观看www视频免费| 国产av一区二区精品久久| 两个人视频免费观看高清| 中文字幕精品亚洲无线码一区 | 久久精品亚洲精品国产色婷小说| 亚洲专区中文字幕在线| 欧美黄色片欧美黄色片| 国产亚洲欧美在线一区二区| 久久久久九九精品影院| 亚洲精品国产一区二区精华液| 欧美乱色亚洲激情| av中文乱码字幕在线| videosex国产| 国产97色在线日韩免费| bbb黄色大片| 最近最新中文字幕大全电影3 | 欧美绝顶高潮抽搐喷水| 久久人人精品亚洲av| 男女做爰动态图高潮gif福利片| 精品久久久久久久末码| 在线国产一区二区在线| 国产不卡一卡二| 一区二区三区精品91| 夜夜躁狠狠躁天天躁| 亚洲国产精品久久男人天堂| 一级黄色大片毛片| 久久久久久久久久黄片| 男人的好看免费观看在线视频 | 夜夜夜夜夜久久久久| 午夜日韩欧美国产| 精品电影一区二区在线| 日本五十路高清| 久久久国产精品麻豆| 午夜老司机福利片| 日日摸夜夜添夜夜添小说| 不卡一级毛片| 精品国产美女av久久久久小说| 免费看十八禁软件| 午夜久久久久精精品| 色老头精品视频在线观看| 草草在线视频免费看| a级毛片a级免费在线| 狠狠狠狠99中文字幕| aaaaa片日本免费| 亚洲欧美精品综合一区二区三区| 国产一区二区在线av高清观看| 亚洲男人的天堂狠狠| 99国产极品粉嫩在线观看| 亚洲精品中文字幕一二三四区| 日韩大尺度精品在线看网址| 美女大奶头视频| 精品欧美国产一区二区三| 欧美国产精品va在线观看不卡| 国产主播在线观看一区二区| 亚洲精品美女久久av网站| 国产极品粉嫩免费观看在线| 国产伦在线观看视频一区| 一区二区日韩欧美中文字幕| 久久久久久久久久黄片| 亚洲成a人片在线一区二区| av免费在线观看网站| 一二三四社区在线视频社区8| 亚洲第一电影网av| 神马国产精品三级电影在线观看 | 一二三四社区在线视频社区8| 观看免费一级毛片| 国产主播在线观看一区二区| aaaaa片日本免费| 悠悠久久av| 欧美成人一区二区免费高清观看 | 欧美zozozo另类| 国产成人av激情在线播放| 国产蜜桃级精品一区二区三区| 十分钟在线观看高清视频www| 亚洲中文字幕一区二区三区有码在线看 | www.熟女人妻精品国产| 欧美乱色亚洲激情| 成人三级黄色视频| 国产精品久久久久久人妻精品电影| 日韩欧美在线二视频| 女同久久另类99精品国产91| 黄片小视频在线播放| 女警被强在线播放| 搞女人的毛片| 午夜免费观看网址| 麻豆成人午夜福利视频| netflix在线观看网站| 精品国产美女av久久久久小说| 可以在线观看的亚洲视频| 在线十欧美十亚洲十日本专区| 亚洲av电影在线进入| www.熟女人妻精品国产| 美女免费视频网站| 成人手机av| 欧美不卡视频在线免费观看 | 亚洲性夜色夜夜综合| 久久草成人影院| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区三区四区第35| 国产主播在线观看一区二区| 午夜激情福利司机影院| 亚洲自拍偷在线| 国产精品自产拍在线观看55亚洲| 色综合欧美亚洲国产小说| 女同久久另类99精品国产91| 变态另类丝袜制服| 十分钟在线观看高清视频www| 婷婷亚洲欧美| 中文字幕人妻丝袜一区二区| 一进一出抽搐动态| 午夜福利欧美成人| 日日干狠狠操夜夜爽| 99热这里只有精品一区 | 色综合亚洲欧美另类图片| 久久久国产成人免费| 国产av一区二区精品久久| 麻豆一二三区av精品| 国产又爽黄色视频| 18禁黄网站禁片午夜丰满| 亚洲欧美精品综合一区二区三区| 天天添夜夜摸| 免费在线观看日本一区| 男女下面进入的视频免费午夜 | 一本一本综合久久| 在线观看舔阴道视频| 丁香欧美五月| a在线观看视频网站| 人人妻人人看人人澡| 久久精品夜夜夜夜夜久久蜜豆 | 草草在线视频免费看| av福利片在线| 中文字幕精品免费在线观看视频| 亚洲激情在线av| 免费在线观看亚洲国产| 日韩精品中文字幕看吧| 老汉色av国产亚洲站长工具| 桃色一区二区三区在线观看| 国产成+人综合+亚洲专区| 在线免费观看的www视频| 亚洲国产中文字幕在线视频| 国产精品影院久久| 桃红色精品国产亚洲av| 在线十欧美十亚洲十日本专区| 国产精品日韩av在线免费观看| 午夜成年电影在线免费观看| 国产又爽黄色视频| 免费在线观看亚洲国产| 久久精品91蜜桃| 母亲3免费完整高清在线观看| 美国免费a级毛片| 免费看美女性在线毛片视频| 啦啦啦观看免费观看视频高清| 欧美激情 高清一区二区三区| 美女扒开内裤让男人捅视频| 亚洲自拍偷在线| 99精品久久久久人妻精品| 久久久久国产精品人妻aⅴ院| 亚洲狠狠婷婷综合久久图片| 久久人妻av系列| 婷婷六月久久综合丁香| 欧美一级毛片孕妇| 国产av在哪里看| a在线观看视频网站| 欧美 亚洲 国产 日韩一| 亚洲精品美女久久久久99蜜臀| 精品日产1卡2卡| 悠悠久久av| a级毛片在线看网站| 精品国产国语对白av| 99热只有精品国产| 亚洲成国产人片在线观看| 日韩精品青青久久久久久| 一进一出抽搐动态| 一区二区三区高清视频在线| 真人一进一出gif抽搐免费| 欧美国产精品va在线观看不卡| 一二三四社区在线视频社区8| 精品日产1卡2卡| 波多野结衣高清无吗| a在线观看视频网站| 欧美精品啪啪一区二区三区| 美女高潮到喷水免费观看| 国产av一区在线观看免费| 波多野结衣av一区二区av| 男人操女人黄网站| 国产精品98久久久久久宅男小说| 国产精品精品国产色婷婷| 亚洲一区高清亚洲精品| 国产精品免费视频内射| 免费观看人在逋| 日日摸夜夜添夜夜添小说| 18禁国产床啪视频网站| 99久久综合精品五月天人人| 久久久久久人人人人人| 久久久久国内视频| 亚洲一区中文字幕在线| 黑丝袜美女国产一区| 看免费av毛片| 91麻豆精品激情在线观看国产| 中出人妻视频一区二区| 久久久久亚洲av毛片大全| 男人操女人黄网站| 女同久久另类99精品国产91| 最近最新中文字幕大全免费视频| 精品卡一卡二卡四卡免费| 琪琪午夜伦伦电影理论片6080| 日韩大尺度精品在线看网址| 国产欧美日韩一区二区三| 成人三级做爰电影| 国产一区二区三区视频了| 久久精品91无色码中文字幕| av免费在线观看网站| 日本 欧美在线| 黄色成人免费大全| 中亚洲国语对白在线视频| 一级a爱视频在线免费观看| 18禁美女被吸乳视频| 香蕉久久夜色| 亚洲熟妇熟女久久| 欧美一级毛片孕妇| 午夜影院日韩av| x7x7x7水蜜桃| 成人国产一区最新在线观看| 国产欧美日韩一区二区精品| 黄网站色视频无遮挡免费观看| 免费看十八禁软件| 国产精品1区2区在线观看.| 免费人成视频x8x8入口观看| 国产精品乱码一区二三区的特点| 丝袜美腿诱惑在线| 欧美日本视频| 亚洲中文av在线| 日日夜夜操网爽| av在线播放免费不卡| 婷婷丁香在线五月| 成人三级黄色视频| 精品欧美一区二区三区在线| 久久99热这里只有精品18| 亚洲男人的天堂狠狠| 国产精品,欧美在线| 国产亚洲欧美精品永久| 两个人免费观看高清视频| 正在播放国产对白刺激| 国产精品免费一区二区三区在线| 国产久久久一区二区三区| 一a级毛片在线观看| aaaaa片日本免费| 国产精品影院久久| 中文字幕精品亚洲无线码一区 | 国产一区在线观看成人免费| 99热6这里只有精品| 久久久久久人人人人人| 国产真实乱freesex| 国产高清视频在线播放一区| 欧美色视频一区免费| 黑人巨大精品欧美一区二区mp4| 国产精品久久视频播放| 一级a爱视频在线免费观看| 亚洲国产欧美一区二区综合| 无限看片的www在线观看| 91av网站免费观看| 搞女人的毛片| а√天堂www在线а√下载| 欧美性长视频在线观看| 51午夜福利影视在线观看| 一本综合久久免费| 国产黄色小视频在线观看| 欧美 亚洲 国产 日韩一| 亚洲精品中文字幕一二三四区| 亚洲va日本ⅴa欧美va伊人久久| 国产精品自产拍在线观看55亚洲| 在线观看舔阴道视频| 91av网站免费观看| 免费在线观看视频国产中文字幕亚洲| 欧美日韩乱码在线| www日本在线高清视频| 亚洲精品中文字幕一二三四区| 欧美日韩瑟瑟在线播放| 亚洲av第一区精品v没综合| 又黄又粗又硬又大视频| 亚洲欧美一区二区三区黑人| 日韩精品中文字幕看吧| 亚洲五月天丁香| 亚洲成人免费电影在线观看| 成年人黄色毛片网站| 12—13女人毛片做爰片一|