• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ab initio study on crystal structure and phase stability of ZrC2 under high pressure*

    2021-01-21 02:12:36YongLiangGuo郭永亮JunHongWei韋俊紅XiaoLiu劉瀟XueZhiKe柯學志andZhaoYongJiao焦照勇
    Chinese Physics B 2021年1期

    Yong-Liang Guo(郭永亮), Jun-Hong Wei(韋俊紅), Xiao Liu(劉瀟),Xue-Zhi Ke(柯學志), and Zhao-Yong Jiao(焦照勇)

    1School of Science and Henan Key Laboratory of Wire and Cable Structures and Materials,Henan Institute of Technology,Xinxiang 453003,China

    2School of Physics,Henan Normal University,Xinxiang 453007,China

    3School of Physics and Electronic Science,East China Normal University,Shanghai 200241,China

    Keywords: crystal structure,phase transition,mechanical property,electronic band,first-principles calculation

    1. Introduction

    Transition metal carbides (TMCs), which comprise an interesting mixture of ionic, covalent and metallic bonding,have attracted considerable attention. These materials have been utilized in machining tools, the hard-coating industry, and aerospace applications owing to their extreme hardness, good thermal shock resistance, good chemical stability, high temperature mechanical strength, and high melting temperature.[1–4]As a TMC,zirconium carbide(ZrC)demonstrates potential for the application as a coating material for tri-isotropic (TRISO) nuclear fuel owing to its corrosion resistance against fission products, good thermal stability, better fission product retention capability, and neutron irradiation resistance.[5–9]Therefore, it can be used as an alternative to or supplemented with the currently used silicon carbide(SiC).[5,6]

    Generally, ZrC exhibits cubic symmetry in the form of the B1 structure(space group: Fmm). Additionally, the Zr–C system appears to exhibit some amount, and often a large amount, of non-stoichiometry,[10]because the stoichiometric ZrC is represented in a narrow range, where even slight variations in processing parameters,such as temperature,reactant mass flow, or fluidizing gas flow rate, could result in either hypo- or hyper-stoichiometric compositions.[11]With the development of advanced computational methodologies, many non-stoichiometric compounds have been identified and provided new insights into the phase equilibria of this system.Recently, several studies[12–15]have investigated the stability of the hypo-stoichiometric Zr–C system(carbon deficient;C/Zr <1.0) using order-parameter functional (OPF), cluster expansion(CE)and evolutionary algorithm(EA)methods.Although their conclusions are varying in degree,it is found that Zr7C6(R), Zr4C3(C2/c), Zr3C2(Fddd) and Zr2C (Fdm)are stable hypo-stoichiometric phases of zirconium carbides.Moreover, the Zr–C system forms hyper-stoichiometric compounds (carbon rich; C/Zr >1.0).[8]Storms et al.[11]have reported that the material has both ZrC and C phases in the hyper-stoichiometric range. Vasudevamurthy et al.[8]have fabricated the carbon-rich sample, which has a hyperstoichiometric composition of C/Zr ~1.4. Are there any perfect hyper-stoichiometric Zr–C compounds such as Zr2C3and ZrC2? It is crucial to understand the microstructure of these materials,which is expected to have significant effects on the material properties. However, the research on these components is scarce.

    Understanding the structural information and stability of various stoichiometric components of the Zr–C system is essential for the safe operation of a TRISO fuel in a nuclear reactor.In this study,we focus on the hyper-stoichiometric compound ZrC2,which is less studied. First,the crystal structures of ZrC2under ambient and high-pressure conditions are determined by performing an extensive structure search using firstprinciples calculations in combination with the particle-swarm optimization(PSO)algorithm.[16]Then,the thermodynamical and dynamical stabilities are investigated.The phase order and critical pressures with the pressure increasing are determined.Finally, the mechanical and electronic properties are studied comprehensively.

    2. Theoretical methods

    In this study, all calculations were performed within the density-functional-theory (DFT) framework with the projector augmented wave(PAW)scheme[17,18]using the Vienna ab initio simulation package (VASP).[19,20]To solve the Kohn–Sham equations,the exchange-correlation functional with the generalized gradient approximation (GGA) of the Perdew–Burke–Ernzerhof (PBE) scheme[21]was adopted. The kinetic energy cutoff was set to 800 eV. The structural predications of the global free energy minimization of ZrC2were performed using the CALYPSO code[22]based on the PSO methodology,[16]which has been proved to be effective in predicting the structure of various materials.[23–29]The ionic position,volume and shape of the structure cell were allowed to vary in their structural relaxations. The Brillouin-zone (BZ)of P21/c,P42/nmc,Immm,P6/mmm,Cmc21and Cmmm was sampled by k-point meshes of dimensions 6×12×6,8×8×12,12×12×12,16×16×16,20×4×8 and 12×12×16,respectively, generated via the Monkhorst–Pack scheme[30]for the primitive cell of ZrC2.The forces on each ion convergence standard and the total energy convergence threshold were set to 0.001 eV/?A and 10-7eV/atom,respectively.

    The phonon dispersions were calculated using a supercell approach[31]as implemented in the PHONOPY code[32]to evaluate the dynamical stability of the crystal structures of various phases of ZrC2. The principle of constructing supercells is based on the fact that the interaction force between two adjacent atoms moving with a small displacement in the cell is negligible. Therefore,the lattice constants a,b,and c in three directions of the constructed supercell were generally not less than 10 ?A for each phase of ZrC2. The BZ integration was performed using a 2×2×2 k-point mesh. The symmetry nonequivalent zirconium atoms and carbon atoms were displaced from their equilibrium positions by the amplitude of 0.02 ?A to construct the system dynamical matrix D(k). The forces induced by the small displacements were calculated within the VASP code.

    3. Results and discussions

    3.1. Thermodynamically stable phases and structural properties

    To obtain the possible phases of ZrC2under ambient and high pressure conditions, we determined its lower enthalpy structures based on the PSO methodology[16]in combination with the VASP package[19,20]with system sizes ranging from 1 to 8 chemical formula units(f.u.) per simulation cell at 0,50,100, 150 and 200 GPa. Further analysis of the enthalpy and stability leads to six possible stable or metastable structures up to 300 GPa,as illustrated in Fig.1,namely,the P21/c,Cmmm,Cmc21,P42/nmc,Immm and P6/mmm phases.The calculated total energy per chemical f.u. versus the volume relations of the selected phases and the obtained results fitted by the thirdorder Birch–Murnaghan equation are plotted in Fig. 2. The enthalpies per chemical f.u. versus pressure are indicated in the inset of Fig.2.

    Fig. 1. Predicted crystal structures of ZrC2 for (a) P21/c, (b)Cmmm, (c)Cmc21, (d), (d’) P42/nmc, (e), (e’) Immm and (f), (f’) P6/mmm phases. The green and brown balls represent the zirconium and carbon atoms,respectively.

    Fig. 2. Total energy versus volume results for the P21/c, P42/nmc,Cmc21, Cmmm, Immm and P4/mmm phases of ZrC2. The inset depicts the calculated enthalpies versus pressure for the P21/c,P42/nmc,Cmc21, Cmmm, Immm and P4/mmm phases. The enthalpy of the Cmmm phase is chosen as zero reference.

    The formation energy was calculated to investigate the thermodynamic stability of ZrC2. The hcp-Zr and graphite were used to calculate the energy of pure elements. The formation energies of ZrxCywere calculated by using the following equation:

    The calculated formation energy of the P21/c phase of ZrC2was -0.092 eV/atom. The negative formation energy of the P21/c phase of ZrC2indicates that it is thermodynamically stable at ambient pressure and can be synthesized by experiment. Furthermore, we determined the formation energy of fcc ZrC,an experimentally synthesized material,to be-0.821 eV/atom. The formation energy of the P21/c phase of ZrC2was higher than that of fcc ZrC,but lower than zero,indicating that the P21/c phase is a metastable structure under ambient conditions. According to further enthalpy calculations,we obtained that the P42/nmc phase of ZrC2is on the formation enthalpies covex hull for the stable phases of Zr–C system at 50 GPa,as shown in Fig.S1 in the Supporting Information,indicating that the ZrC2may be synthesized experimentally under high pressure.

    Table 1. Calculated lattice parameters of P21/c,P42/nmc,Immm,P6/mmm,Cmc21 and Cmmm phases of ZrC2 under ambient conditions.

    3.2. Dynamical stabilities

    The phonon dispersion of a crystal is one of the fundamental subjects when considering the phase dynamical stability of a crystalline material. The dynamical instability of a crystal is associated with soft phonon modes that have imaginary frequencies.[33]To investigate the dynamical stabilities of the predicted phases, the phonon dispersion curves under ambient conditions were calculated and are depicted in Fig.3.The phonon spectra reveal that the P21/c,P42/nmc and Cmc21phases of ZrC2exhibit no imaginary frequencies,indicating that these three phases are dynamically stable under ambient conditions. However, the longitudinal acoustic branch of the Cmmm phase exhibits a small imaginary frequency at the high-symmetry point Y (0.5, 0.5, 0.0) in BZ, as depicted in Fig. 3(d). The Immm phase exhibits some imaginary frequency,located between the high-symmetry points Γ (0,0,0)and X (0.5,-0.5,0.5),as depicted in Fig.3(e). The P6/mmm phase exhibits significant imaginary frequency throughout BZ,as illustrated in Fig.3(e),indicating that the phase is unstable under ambient conditions. Fortunately, further calculations reveal that the phonons of the Cmmm, Immm and P6/mmm phases have no imaginary frequencies at the selected highpressure points corresponding to the structural phase transitions,as depicted in Figs.4(d)–4(f).These results indicate that the Cmmm, Immm and P6/mmm phases are dynamically stable at the phase transition pressure. Additionally, the phonon dispersions of the phases P21/c and P42/nmc,which are part of the phase transition sequence,exhibit no imaginary modes.The absence of phonon imaginary modes in the entire pressure range in this study demonstrates that the pressure-induced phase transitions of ZrC2are all driven by the energetics(i.e.,the relative enthalpy change).

    Fig.3. Phonon dispersion curves for(a)P21/c,(b)P42/nmc,(c)Cmc21,(d)Cmmm,(e)Immm and(f)P6/mmm phases of ZrC2 under ambient conditions.

    3.3. Mechanical properties

    Fig.4. Phonon dispersion curves for(a)P21/c,(b)P42/nmc,(c)Immm,(d)P6/mmm,(e)Cmc21 and(f)Cmmm phases of ZrC2 at 5.8,76.5,76.5,253.6,75 and 75 GPa,respectively.

    Table 2. Calculated elastic constants Cij for P21/c,P42/nmc,Cmc21,Cmmm,Immm and P6/mmm phases of ZrC2 (in units of GPa).

    Modulus is a fundamental parameter for characterizing the mechanical properties of materials. In terms of the Voigt–Reuss–Hill approximations,[39–41]the bulk modulus B, shear modulus G, Young’s modulus E, Possion’s ratio ν, Pugh’s ratio (B/G) and log-Euclidean anisotropy index (AL) of the phases of ZrC2are calculated based on the elastic constants,as listed in Table 3. For comparison, the previous reported elastic constants[42,43]of ZrC are listed in Table 3. From Table 3, we can determine that the ZrC2-P21/c phase is easier to be compressed than the ZrC-Fm3m phase under hydrostatic pressure, because the bulk modulus B of the former(153.8 GPa) is smaller than that of the latter (223 GPa[42]).The high pressure phase P42/nmc of ZrC2exhibits approximately the same resistance to compression as the ZrC-Fmm phase, as the bulk modulus B of the two phases are approximately the same. Other high pressure phases of ZrC2exhibit high B. However, we cannot indicate that these phases are difficult to be compressed because the data are calculated at nonequilibrium volume.Overall,the stiffness of ZrC2is lower than that of ZrC, because the B, G and E of the P21/c and P42/nmc phases for ZrC2are lower than those of ZrC-Fmm at zero pressure.

    Table 3. Calculated bulk modulus B (GPa), shear modulus G (GPa), Young’s modulus E (GPa), Possion’s ratio ν, Pugh’s ratio (B/G) and log-Euclidean anisotropy index(AL)for ZrC2 and ZrC.

    Poisson’s ratio ν is a measure of a material tending to expand in directions perpendicular to the direction of compression, which usually ranges from -1 to 0.5. The larger the value of Poisson’s ratio, the better the plasticity of the material.For example,most steels when utilized within their design limits(before yield)exhibit values of approximately 0.3, and rubber exhibits a Poisson’s ratio of approximately 0.5. The ZrC-Fmm exhibits a Poisson’s ratio of 0.18,[43]demonstrating slight lateral expansion when compressed. The P21/c and P6/mmm phases of ZrC2exhibit approximately the same plasticity with steel,as their Poisson ratios are close to 0.3. Conversely,Poisson’s ratio can further indicate the bonding type of a material,i.e.,the value of ν for ionic and metallic materials is 0.25–0.33, and the covalent materials have smaller values of ν.[44]As presented in Table 3, the values of the phases of ZrC2are between 0.231 and 0.307, indicating that the compounds are expected to be ionic crystals.

    Pugh’s ratio(B/G)is often applied to evaluate the plastic behavior of a material, with 1.75 being the critical value.[45]A material will be ductile if B/G >1.75, otherwise, it will be brittle.[46]As presented in Table 3, the calculated B/G’s of P21/c and P6/mmm are 2.101 and 2.251, respectively, indicating that both of them are ductile in nature. Conversely,the P42/nmc and Immm are slightly brittle in nature as their B/G’s are 1.521 and 1.543 (<1.75), respectively. The other two phases of Cmc21and Cmmm are between ductile and brittle because their B/G’s are approximately 1.75. However,the B/G of ZrC-Fmm is 1.312,which is lower than that of all the phases of ZrC2, suggesting that high content of carbon may lead to more ductile nature of Zr–C compounds.

    The log-Euclidean anisotropic index ALproposed by Christopher M. Kube provides an absolute measure of anisotropy in crystalline materials, which is valid for all the crystallite symmetries. Furthermore,it is generally used to describe the anisotropy of material.[47]It is calculated as

    where BVand BRare the Voigt and Reuss bulk moduli, and GVand GRare the Voigt and Reuss shear moduli, respectively. If AL=0, it refers to a locally isotropic single crystal, and a larger ALimplies a more pronounced anisotropic.From Table 3,we observe that the ALof ZrC-Fm3m is 0.012,which is significantly close to zero,indicating that it is almost isotropic. For ZrC2, the P21/c phase exhibits the highest degree of anisotropy, as its ALequals 1.348, which is far away from zero. The P6/mmm,Cmc21and Cmmm phases exhibit weaker anisotropy,and the P42/nmc and Immm phases exhibit an almost isotropic nature.

    3.4. Electronic and bonding properties

    Fig.5. Electronic band structures for(a)P21/c,(b)P42/nmc,(c)Immm,(d)P6/mmm,(e)Cmc21 and(f)Cmmm phases of ZrC2 at 0,0,76.5,253.6,75 and 75 GPa,respectively.

    Fig.6. Electronic density of states(DOS)for(a)P21/c,(b)P42/nmc,(c)Immm,(d)P6/mmm,(e)Cmc21 and(f)Cmmm phases of ZrC2 under 0,0,76.5,253.6,75 and 75 GPa,respectively.

    To investigate the electronic properties of ZrC2,we calculate the electronic band structures of the phases at the selected pressure, as depicted in Fig. 5. The Fermi level is set at zero. From the figure, we can observe that the ground state phase P21/c and the metastable phase Cmc21exhibit a semimetal nature because they have an indirect negative band gap.Specifically, the conduction band minima lie lower than the valence band maxima. For the P21/c phase, the conduction band minima is approximately -0.144 eV, located between points B and D, and the valence band maxima is approximately 0.109 eV,located between points E and C,as depicted in Fig. 5(a). We further calculate the electronic band structure for P21/c phase using HSE06 hybrid functional,and the negative band gap for this phase at PBE level does not change to a positive band gap at HSE level, as shown in Fig. S2 in the Supporting Information. The semi-metallic nature of the P21/c phase is unlikely to be affected since the steep band crossing near the Fermi energy is insensitive to the choice of the functional used,and calculations using more accurate hybrid functionals do not open a band gap in this system. Therefore,we infer that the PBE functional can be expected to return accurate results for the electronic band structure calculations of semi-metal materials. For the Cmc21phase,the conduction band minima is approximately -1.002 eV, located between points S and X,and the valence band maxima is approximately 0.127 eV, located between points Γ and Z, as illustrated in Fig.5(e). The P42/nmc,Immm,P6/mmm and Cmmm phases exhibit metallic nature with the band crossing Fermi level. For the further investigation of the elemental contributions to the electronic structure of these phases, the projected density of states (PDOS) were calculated as depicted in Fig. 6. From the figures of DOS,we can observe that all the phases exhibit semi-metal or metallic nature because of their finite DOS at the Fermi level. The PDOSs are observed to be similar and suggest that the bands close to the Fermi level are mainly the Zr-d states of all the phases.

    Fig. 7. Charge density distribution of the selected plane for (a) P21/c, (b)P42/nmc,(c)Immm,(d)P6/mmm,(e)Cmc21 and(f)Cmmm phases of ZrC2 under 0,0,76.5,253.6,75 and 75 GPa,respectively. The selected planes are shown in Fig.S3 of the Supporting Information. The contour interval is 0.1 electrons/Bohr3.

    To explore the bonding character of ZrC2, we calculate the charge density distribution of the phases at the selected pressure, as shown in Fig. 7. It is well known that the near spherical distribution of electron density indicates an ionic character, and the electron density along the bond indicates a covalent character.[48]Our results demonstrate that the various phases of ZrC2have the similar charge density distribution, that is to say, the charge density is centered around Zr atoms and there is a small amount of charge density between Zr and C atoms,while a large amount of density is distributed along the C–C bond. It is indicated that the bond between the Zr and C has more ionic character,while the C–C bond has covalent character. Interestingly, the charge density distribution demonstrates that all of the phases have a stable and localized lone-pair(non-bonding state)at the external corner of the carbon chains or ribbons except the P6/mmm phase.

    4. Conclusion

    The phonon dispersion curves of P21/c, P42/nmc and Cmc21exhibit no imaginary modes in the entire BZ at zero pressure, and all the predicted phases exhibit no imaginary frequencies at the selected high-pressure points. These results indicate that all the predicted phases of ZrC2are dynamically stable at zero pressure or at the phase transition pressure. The calculated elastic constants Cijreveal that the phases of ZrC2are mechanically stable at zero or at selected pressures because their Cijsatisfy the Born–Huang mechanical stability criteria. Furthermore, the bulk modulus B, shear modulus G,Young’s modulus E,Possion’s ratio ν,Pugh’s ratio(B/G)and log-Euclidean anisotropy index(AL)are investigated based on the Voigt–Reuss–Hill approximations. The results indicate that the ground state ZrC2P21/c phase is easier to be compressed than the ZrC-Fmm phase under hydrostatic pressure. However,the high pressure phase P42/nmc of ZrC2demonstrates approximately the same resistance to compression as the ZrC-Fmm phase. Comparing Pugh’s ratios(B/G) of ZrC2and ZrC, we can realize that the high content of carbon may lead to the more ductile nature of the Zr–C compounds,because the B/G of ZrC-Fmm is lower than those of all the phases of ZrC2. The log-Euclidean anisotropic index ALreveals that the P21/c phase exhibits the highest degree of anisotropy; the P6/mmm, Cmc21and Cmmm phases exhibit weaker anisotropy; and the P42/nmc and Immm phases demonstrate almost isotropic nature.The calculated electronic band structures of ZrC2demonstrate that the ground state phase P21/c and the metastable phase Cmc21exhibit semimetal nature and the phases P42/nmc, Immm, P6/mmm and Cmmm exhibit metallic nature.

    In summary, the results reported here provide a comprehensive description of the structural stabilities,and mechanical and electronic properties of ZrC2over a wide range of pressure. This information is crucial for understanding the structural evolution under high pressure and evaluating the behavior of Zr–C compounds in the application of the clad material for the TRISO fuel. The theoretical predictions about the crystal structures,the phase transitions and the physical properties of ZrC2under ambient and high pressure conditions call for further experimental investigation and exploration.

    Acknowledgment

    This work was supported by the High Performance Computing Center of Henan Normal University.

    日本vs欧美在线观看视频| 欧美在线黄色| 90打野战视频偷拍视频| 久久99精品国语久久久| 免费av中文字幕在线| 欧美日韩国产mv在线观看视频| 欧美亚洲日本最大视频资源| 亚洲精品美女久久av网站| 视频在线观看一区二区三区| 多毛熟女@视频| 免费日韩欧美在线观看| 亚洲国产看品久久| 国产女主播在线喷水免费视频网站| 国产精品秋霞免费鲁丝片| 久久综合国产亚洲精品| 欧美亚洲日本最大视频资源| 成人免费观看视频高清| 亚洲综合色惰| 咕卡用的链子| 十八禁高潮呻吟视频| 成人亚洲精品一区在线观看| 久久久久久伊人网av| 一区二区三区四区激情视频| 九九爱精品视频在线观看| 国产精品久久久久久久久免| av视频免费观看在线观看| 国产av码专区亚洲av| 视频区图区小说| 最近中文字幕高清免费大全6| 天堂俺去俺来也www色官网| 少妇的逼水好多| 国产成人精品无人区| 国产精品亚洲av一区麻豆 | 国产精品蜜桃在线观看| 精品酒店卫生间| 免费观看a级毛片全部| 国产精品女同一区二区软件| 晚上一个人看的免费电影| 免费在线观看完整版高清| 国产黄色免费在线视频| 在线观看美女被高潮喷水网站| 日韩一区二区三区影片| 日韩,欧美,国产一区二区三区| 国产精品成人在线| 最近中文字幕高清免费大全6| 国产精品久久久久久精品古装| 18禁国产床啪视频网站| 亚洲熟女精品中文字幕| 国产免费视频播放在线视频| 免费黄网站久久成人精品| 国产成人精品福利久久| 成人国产麻豆网| 爱豆传媒免费全集在线观看| 国产精品久久久久久精品电影小说| 欧美97在线视频| 亚洲一码二码三码区别大吗| 国产精品欧美亚洲77777| 欧美日韩av久久| 日韩一区二区视频免费看| 高清黄色对白视频在线免费看| 日韩三级伦理在线观看| 欧美日韩av久久| 久久精品aⅴ一区二区三区四区 | 中文乱码字字幕精品一区二区三区| 一级爰片在线观看| 男女啪啪激烈高潮av片| 午夜免费鲁丝| 亚洲av在线观看美女高潮| 欧美最新免费一区二区三区| 亚洲成国产人片在线观看| 99久久精品国产国产毛片| 久久久国产欧美日韩av| 男女下面插进去视频免费观看| 国产男人的电影天堂91| 亚洲三区欧美一区| av有码第一页| 各种免费的搞黄视频| 免费在线观看视频国产中文字幕亚洲 | 午夜日本视频在线| 精品少妇久久久久久888优播| 晚上一个人看的免费电影| 美女高潮到喷水免费观看| 久久久久精品久久久久真实原创| 精品卡一卡二卡四卡免费| 亚洲少妇的诱惑av| 天天操日日干夜夜撸| 午夜久久久在线观看| 国产成人aa在线观看| 蜜桃在线观看..| 青草久久国产| 丝袜美足系列| 亚洲国产看品久久| 黄片无遮挡物在线观看| 嫩草影院入口| 精品视频人人做人人爽| 1024视频免费在线观看| 久久久久久久久久久久大奶| 9色porny在线观看| 韩国精品一区二区三区| 天天操日日干夜夜撸| 一级毛片电影观看| 婷婷成人精品国产| 黑丝袜美女国产一区| 日韩大片免费观看网站| 在线免费观看不下载黄p国产| kizo精华| 午夜av观看不卡| 亚洲,一卡二卡三卡| 亚洲图色成人| 久久精品国产亚洲av高清一级| 日本猛色少妇xxxxx猛交久久| 亚洲欧美日韩另类电影网站| 制服人妻中文乱码| 热99国产精品久久久久久7| 亚洲,一卡二卡三卡| 中国三级夫妇交换| 久久热在线av| 人妻人人澡人人爽人人| 丰满饥渴人妻一区二区三| 国产日韩欧美在线精品| 看免费成人av毛片| 免费大片黄手机在线观看| 免费大片黄手机在线观看| 国产av精品麻豆| 丝袜人妻中文字幕| 亚洲一级一片aⅴ在线观看| 国产综合精华液| 丝袜脚勾引网站| 中文字幕制服av| 日韩电影二区| 国产一区二区激情短视频 | 成人黄色视频免费在线看| 最近最新中文字幕免费大全7| 黄片播放在线免费| av不卡在线播放| 亚洲国产成人一精品久久久| 成年女人在线观看亚洲视频| 90打野战视频偷拍视频| 亚洲色图 男人天堂 中文字幕| 国产精品免费大片| www日本在线高清视频| 一区二区日韩欧美中文字幕| 看非洲黑人一级黄片| 亚洲国产最新在线播放| a级片在线免费高清观看视频| 日本色播在线视频| 老司机影院成人| 欧美老熟妇乱子伦牲交| 亚洲av.av天堂| a级毛片黄视频| 欧美老熟妇乱子伦牲交| 国产精品亚洲av一区麻豆 | 久久亚洲国产成人精品v| 久久精品国产自在天天线| 日韩免费高清中文字幕av| 久久婷婷青草| 国产国语露脸激情在线看| 我要看黄色一级片免费的| 日韩欧美一区视频在线观看| 免费在线观看黄色视频的| 欧美人与性动交α欧美软件| 亚洲,欧美,日韩| 一区二区av电影网| 免费黄色在线免费观看| 精品国产露脸久久av麻豆| 97在线视频观看| 亚洲国产欧美日韩在线播放| 美女脱内裤让男人舔精品视频| 日本猛色少妇xxxxx猛交久久| 亚洲精品中文字幕在线视频| 午夜福利在线观看免费完整高清在| 男女国产视频网站| 狠狠精品人妻久久久久久综合| 日本免费在线观看一区| 男女国产视频网站| 狠狠精品人妻久久久久久综合| 久久精品国产亚洲av高清一级| 精品第一国产精品| 巨乳人妻的诱惑在线观看| 2022亚洲国产成人精品| 国产在视频线精品| 国产探花极品一区二区| 欧美精品国产亚洲| 美女xxoo啪啪120秒动态图| 人妻少妇偷人精品九色| 亚洲成色77777| 国产激情久久老熟女| 国产一级毛片在线| 亚洲精品aⅴ在线观看| 黄片播放在线免费| 在线观看免费视频网站a站| 69精品国产乱码久久久| 最近2019中文字幕mv第一页| 叶爱在线成人免费视频播放| 观看美女的网站| 免费黄频网站在线观看国产| 观看av在线不卡| 不卡av一区二区三区| 人妻一区二区av| 精品一区二区三区四区五区乱码 | 97在线视频观看| 18禁观看日本| 亚洲av欧美aⅴ国产| 亚洲色图综合在线观看| 1024香蕉在线观看| 亚洲国产av新网站| 妹子高潮喷水视频| 国产成人精品久久二区二区91 | 日韩免费高清中文字幕av| 1024香蕉在线观看| 欧美日韩亚洲国产一区二区在线观看 | 最新中文字幕久久久久| 日韩一区二区三区影片| 欧美日韩综合久久久久久| 久久久久人妻精品一区果冻| 亚洲图色成人| 亚洲天堂av无毛| 热99国产精品久久久久久7| 国产探花极品一区二区| 成人影院久久| 国产日韩欧美在线精品| 亚洲国产av新网站| 欧美成人精品欧美一级黄| 制服丝袜香蕉在线| 亚洲婷婷狠狠爱综合网| 亚洲视频免费观看视频| 可以免费在线观看a视频的电影网站 | tube8黄色片| 国产黄频视频在线观看| av女优亚洲男人天堂| av有码第一页| 午夜免费鲁丝| 宅男免费午夜| av又黄又爽大尺度在线免费看| 另类精品久久| 男女边摸边吃奶| 午夜日韩欧美国产| 日本黄色日本黄色录像| 久久影院123| 亚洲少妇的诱惑av| 日韩精品有码人妻一区| 激情视频va一区二区三区| 99精国产麻豆久久婷婷| 久久久久久久久免费视频了| 国产av一区二区精品久久| 性少妇av在线| 亚洲国产成人一精品久久久| 欧美精品一区二区免费开放| 亚洲五月色婷婷综合| 成人亚洲欧美一区二区av| 久久人人爽av亚洲精品天堂| 一区二区日韩欧美中文字幕| 欧美精品国产亚洲| 久久久a久久爽久久v久久| 欧美日韩视频精品一区| 国产片特级美女逼逼视频| 久久久久久久久久久免费av| 日本爱情动作片www.在线观看| 日韩精品免费视频一区二区三区| 爱豆传媒免费全集在线观看| 男女午夜视频在线观看| 国产极品粉嫩免费观看在线| 婷婷成人精品国产| 国产精品偷伦视频观看了| 亚洲四区av| 国产白丝娇喘喷水9色精品| 国产高清国产精品国产三级| 日韩精品免费视频一区二区三区| 国产精品人妻久久久影院| 如何舔出高潮| 老鸭窝网址在线观看| 亚洲欧美一区二区三区久久| 国产白丝娇喘喷水9色精品| 美女xxoo啪啪120秒动态图| 精品国产一区二区三区四区第35| 中国三级夫妇交换| 精品人妻一区二区三区麻豆| 精品国产一区二区久久| 在线观看www视频免费| 久久99一区二区三区| 久久韩国三级中文字幕| 亚洲国产日韩一区二区| 黄色怎么调成土黄色| 赤兔流量卡办理| 亚洲成国产人片在线观看| 国产爽快片一区二区三区| 一区二区三区精品91| 中文乱码字字幕精品一区二区三区| 亚洲人成77777在线视频| 9色porny在线观看| 欧美老熟妇乱子伦牲交| 久久久精品94久久精品| 久久精品aⅴ一区二区三区四区 | 在线观看人妻少妇| 亚洲美女视频黄频| 自线自在国产av| 亚洲熟女精品中文字幕| 超碰97精品在线观看| a级毛片在线看网站| av不卡在线播放| 90打野战视频偷拍视频| 多毛熟女@视频| 蜜桃国产av成人99| 国产精品成人在线| www日本在线高清视频| 18+在线观看网站| 777米奇影视久久| 久久精品国产a三级三级三级| 制服诱惑二区| 老汉色∧v一级毛片| 亚洲av中文av极速乱| 国产片特级美女逼逼视频| 欧美激情高清一区二区三区 | 新久久久久国产一级毛片| 看非洲黑人一级黄片| 亚洲av综合色区一区| 1024视频免费在线观看| 成年人午夜在线观看视频| 熟女电影av网| 天天躁日日躁夜夜躁夜夜| av有码第一页| 91精品伊人久久大香线蕉| 捣出白浆h1v1| 91在线精品国自产拍蜜月| 国产毛片在线视频| 成人漫画全彩无遮挡| 久久这里有精品视频免费| 18禁裸乳无遮挡动漫免费视频| 久久精品国产鲁丝片午夜精品| 日韩中字成人| 亚洲精品国产av蜜桃| 中文欧美无线码| 狂野欧美激情性bbbbbb| 日韩人妻精品一区2区三区| 色婷婷久久久亚洲欧美| 天天操日日干夜夜撸| 欧美国产精品va在线观看不卡| 久久女婷五月综合色啪小说| 亚洲成人手机| 精品国产一区二区三区久久久樱花| 国产成人a∨麻豆精品| 欧美日本中文国产一区发布| 黄色毛片三级朝国网站| 亚洲成色77777| 国产成人免费无遮挡视频| 日韩,欧美,国产一区二区三区| 国产成人av激情在线播放| 亚洲国产精品999| 99久久精品国产国产毛片| 亚洲成人av在线免费| 亚洲婷婷狠狠爱综合网| 精品国产露脸久久av麻豆| 王馨瑶露胸无遮挡在线观看| 丝袜美腿诱惑在线| 亚洲婷婷狠狠爱综合网| 久久久久久久久久久免费av| 丰满少妇做爰视频| 亚洲第一区二区三区不卡| 亚洲综合精品二区| 天堂中文最新版在线下载| 春色校园在线视频观看| 天堂中文最新版在线下载| 国产精品久久久久成人av| 最近中文字幕2019免费版| 好男人视频免费观看在线| 国产精品一区二区在线观看99| 久久 成人 亚洲| 黄色配什么色好看| 色播在线永久视频| 中文字幕另类日韩欧美亚洲嫩草| 婷婷色综合www| 国产精品av久久久久免费| 久久午夜福利片| 老司机影院毛片| 精品少妇内射三级| 最近中文字幕2019免费版| 午夜老司机福利剧场| 成人亚洲欧美一区二区av| 亚洲欧美一区二区三区久久| 亚洲第一区二区三区不卡| 不卡av一区二区三区| 在线看a的网站| 美女国产高潮福利片在线看| 亚洲精品日韩在线中文字幕| 妹子高潮喷水视频| 国产极品粉嫩免费观看在线| 男女午夜视频在线观看| 亚洲精品乱久久久久久| 日韩精品免费视频一区二区三区| 91久久精品国产一区二区三区| 午夜免费男女啪啪视频观看| 黄片播放在线免费| 黄色一级大片看看| videossex国产| 黑丝袜美女国产一区| 国语对白做爰xxxⅹ性视频网站| 精品国产露脸久久av麻豆| 国产精品久久久久成人av| 满18在线观看网站| 狂野欧美激情性bbbbbb| 黄片无遮挡物在线观看| 久久久久久人妻| 日本vs欧美在线观看视频| 老女人水多毛片| 亚洲精品乱久久久久久| 在线观看免费视频网站a站| 丰满乱子伦码专区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲av在线观看美女高潮| 日日撸夜夜添| 日韩电影二区| 精品第一国产精品| 伦理电影大哥的女人| 亚洲婷婷狠狠爱综合网| 亚洲国产精品一区二区三区在线| 亚洲欧美日韩另类电影网站| 国产熟女午夜一区二区三区| 久久精品国产a三级三级三级| 最近最新中文字幕免费大全7| 免费少妇av软件| 国产精品欧美亚洲77777| 国产精品不卡视频一区二区| 高清不卡的av网站| 99精国产麻豆久久婷婷| 美女国产高潮福利片在线看| 一区二区三区精品91| 欧美成人精品欧美一级黄| 日本wwww免费看| 亚洲国产毛片av蜜桃av| 欧美中文综合在线视频| 国产成人一区二区在线| 丝袜美足系列| 永久免费av网站大全| 日韩 亚洲 欧美在线| 一区二区三区精品91| 久久久久久人人人人人| 少妇人妻久久综合中文| 日韩视频在线欧美| 两个人看的免费小视频| 成人亚洲精品一区在线观看| 五月天丁香电影| 1024视频免费在线观看| 久久久久久久大尺度免费视频| 日韩制服骚丝袜av| 久久狼人影院| 美女xxoo啪啪120秒动态图| 国产成人精品福利久久| 不卡av一区二区三区| 1024视频免费在线观看| 在线亚洲精品国产二区图片欧美| 十分钟在线观看高清视频www| 精品视频人人做人人爽| 9色porny在线观看| 亚洲av电影在线进入| 又黄又粗又硬又大视频| a级毛片在线看网站| 亚洲精品中文字幕在线视频| 精品人妻一区二区三区麻豆| 啦啦啦在线观看免费高清www| 免费看不卡的av| 一区二区三区四区激情视频| 免费女性裸体啪啪无遮挡网站| 水蜜桃什么品种好| 婷婷色综合大香蕉| 国产亚洲av片在线观看秒播厂| 777米奇影视久久| 国产精品不卡视频一区二区| 嫩草影院入口| 欧美精品人与动牲交sv欧美| 黄色 视频免费看| 亚洲综合色惰| 国产午夜精品一二区理论片| 亚洲 欧美一区二区三区| 久久久久久久久久人人人人人人| 黄色视频在线播放观看不卡| 观看av在线不卡| 丁香六月天网| 激情五月婷婷亚洲| 国产成人精品福利久久| 老司机影院成人| 91国产中文字幕| 亚洲国产精品国产精品| 国产精品三级大全| 岛国毛片在线播放| 成年人午夜在线观看视频| 青草久久国产| 91成人精品电影| 国产亚洲最大av| 亚洲中文av在线| 女性被躁到高潮视频| 只有这里有精品99| 国产深夜福利视频在线观看| 国产亚洲午夜精品一区二区久久| 黄色配什么色好看| 久久久久网色| 亚洲天堂av无毛| tube8黄色片| 成人18禁高潮啪啪吃奶动态图| 欧美激情极品国产一区二区三区| 色婷婷久久久亚洲欧美| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品第一综合不卡| 男女边吃奶边做爰视频| 伦理电影大哥的女人| 久久久久网色| 美女主播在线视频| 欧美97在线视频| 午夜免费鲁丝| 亚洲欧美一区二区三区黑人 | 桃花免费在线播放| 亚洲视频免费观看视频| 精品国产国语对白av| 国产精品 国内视频| 三上悠亚av全集在线观看| 啦啦啦在线观看免费高清www| 亚洲久久久国产精品| 午夜老司机福利剧场| 亚洲av国产av综合av卡| 亚洲图色成人| 欧美精品av麻豆av| 国产成人精品在线电影| 水蜜桃什么品种好| 亚洲欧美成人综合另类久久久| 美女中出高潮动态图| 久久99热这里只频精品6学生| av.在线天堂| 啦啦啦啦在线视频资源| av又黄又爽大尺度在线免费看| 国产精品二区激情视频| 春色校园在线视频观看| 如日韩欧美国产精品一区二区三区| 久久久a久久爽久久v久久| 黑人欧美特级aaaaaa片| 黄频高清免费视频| 超碰97精品在线观看| 可以免费在线观看a视频的电影网站 | 亚洲av电影在线进入| 97精品久久久久久久久久精品| 看非洲黑人一级黄片| h视频一区二区三区| 亚洲 欧美一区二区三区| 永久免费av网站大全| 狠狠精品人妻久久久久久综合| 国产激情久久老熟女| 女性生殖器流出的白浆| 最近的中文字幕免费完整| 精品久久久久久电影网| 18禁国产床啪视频网站| 中文字幕精品免费在线观看视频| 欧美日韩视频精品一区| 男女无遮挡免费网站观看| 国产成人免费无遮挡视频| a级毛片在线看网站| 久久精品国产亚洲av天美| 久久久精品94久久精品| 亚洲成人av在线免费| 天堂俺去俺来也www色官网| 一本色道久久久久久精品综合| 国产毛片在线视频| 欧美国产精品va在线观看不卡| 哪个播放器可以免费观看大片| 久久狼人影院| 热re99久久国产66热| 亚洲精品久久久久久婷婷小说| 久久久国产欧美日韩av| 精品少妇久久久久久888优播| 午夜福利网站1000一区二区三区| 中文字幕制服av| 男女高潮啪啪啪动态图| 精品国产露脸久久av麻豆| 国产无遮挡羞羞视频在线观看| 少妇的丰满在线观看| 免费观看性生交大片5| 伊人亚洲综合成人网| 国产在线一区二区三区精| 精品第一国产精品| 亚洲国产精品一区二区三区在线| 久久久久久久国产电影| 欧美另类一区| 你懂的网址亚洲精品在线观看| 蜜桃国产av成人99| www.精华液| 最近中文字幕2019免费版| 成人二区视频| 国产亚洲午夜精品一区二区久久| 黑丝袜美女国产一区| 免费看av在线观看网站| 国产精品免费大片| 大陆偷拍与自拍| 亚洲精品中文字幕在线视频| 色哟哟·www| 亚洲成人av在线免费| 亚洲精品中文字幕在线视频| 国产精品三级大全| 精品国产露脸久久av麻豆| 飞空精品影院首页| www.熟女人妻精品国产| 欧美激情高清一区二区三区 | 亚洲,欧美精品.| 色婷婷久久久亚洲欧美| 精品国产一区二区久久| 高清视频免费观看一区二区| 亚洲精品日本国产第一区| 日韩制服骚丝袜av| 99re6热这里在线精品视频| 欧美精品亚洲一区二区| 久久久久久伊人网av| 日本黄色日本黄色录像| 亚洲精品第二区| 在线观看三级黄色| 国产成人精品在线电影| 国产精品久久久久久精品古装| 国产亚洲午夜精品一区二区久久| 精品国产乱码久久久久久男人| 国产欧美日韩一区二区三区在线|