• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A fitting formula for electron–ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium–tritium plasmas*

    2021-01-21 02:12:28YanNingZhang張艷寧ZhiGangWang王志剛YongTaoZhao趙永濤andBinHe何斌
    Chinese Physics B 2021年1期
    關(guān)鍵詞:王志剛

    Yan-Ning Zhang(張艷寧), Zhi-Gang Wang(王志剛), Yong-Tao Zhao(趙永濤), and Bin He(何斌),?

    1School of Science,Xi’an Jiaotong University,Xi’an 710049,China

    2Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    Keywords: inertial confinement fusion,deuterium–tritium plasma,alpha heating,energy loss

    1. Introduction

    Heating of deuterium (D) and tritium (T) ions by 3.54-MeV alpha particles in plasmas is a basic problem in controlled fusion, which is called as alpha heating. The relevant investigation has been made over half a century.[1,2]An important parameter to describe the heating is the electron–ion energy partition fraction η, defined as the ratio of the energy obtained by both D and T ions to 3.54-MeV projectile energy.In order to simulate the pellet gain and the burn processes in inertial confinement fusion (ICF),[3]the values of the partition fraction should be known for wide ranges of the electron(Te) and ion (Ti) temperatures from tens of eV to 200.0 keV,and electron number density (ne) from ~1021cm-3to ~1026cm-3.[4,5]

    As the energy partition fraction is important for the simulation of alpha heating in DT plasmas,some fitting formulas have been given at some plasma densities when Te=Ti. As far as we know, the earliest formula was presented by Fraley et al.,[6]by means of the binary collision (BC) theory.[7]They found η = Te/(Te+32) (Teis measured in unit keV)when ρ =0.213 g/cc, and η =0.5 when ρ =104g/cc and Te=24 keV.Later by the same BC model,Atzeni and Meyerter-Vehn(AM)[8]gave η =Te/(Te+25)(Teis in unit of keV)when ρ =10.0 g/cc–100.0 g/cc for typical ICF fuel density.However, they all ignored the important cases when Te/=Ti,which usually happen in the heating process. Thus it is necessary to carry out a fitting formula as a function of ρ, Te, and Tifor convenient application in related simulation. This is the main motivation of the present work.

    So far there are several models to calculate η from different physical pictures, including the classical binary collision model,[7]the collective effect or plasma polarization model[9]by means of the classical dielectric function,[10]Li and Petrasso (LP) model[11]which combined the binary collision and collective effect, and the model[12]proposed by Brown,Preston, and Singleton Jr (BPS) on the basis of a simplified Fokker–Plank equation.[13]In recent time we suggested a model[14]that was able to bring reliable values of η in wide ranges of the plasma densities and temperatures.In the present work the fitting formula is given according to the data by our model.

    Totally speaking,previous research about the energy fraction partition was obtained in the non-relativistic framework and the possible relativistic effect was not investigated but it might appear when Tebecomes very high such as 100 keV–200 keV. Therefore, it is necessary to check whether the relativistic motion of the electrons in the plasmas affects the energy partition fraction. This is the second purpose of the present work.For this goal,the relativistic model suggested by Prentice[15]is revised to gain more reasonable result of stopping power.

    This paper is organized as follows. In Section 2, a brief description about our model is presented, followed by some typical features of the energy partition fraction. In Section 3, an investigation of relativistic motion of electrons for Te≥50.0 keV is made for the possible influence upon η. In the last section, a fitting formula is given together with the fitting error. Comparisons with other works are made in this section, and the difference is explained. Finally, some conclusions are drawn. In the following the word plasma means the dense ICF DT plasma. In the current work, the plasma mass density varies from 1.0 g/cc to 10.03g/cc, and temperature changes from 100 eV to 100 keV. The projectile is always alpha particle, and the maximum of kinetic energy E is 3.54 MeV.Deuteron and triton in the plasmas are called as DT ion for simplicity. The atomic units(e=me=?=1)are used in this work unless otherwise explicitly indicated.

    2. Brief introduction of our model and some features of η

    Although some models have been suggested to estimate the energy partition fraction, further revisions are still necessary to get more reliable data for relevant research. In the BC model the projectile slows down due to the Coulomb collision with the charged particles in the plasmas. Here the Coulomb logarithm logΛ related to Debye length λDis used,but it is invalid at high plasma density and low temperature. Moreover,the results from this model depend on the choice of Coulomb logarithm. In the picture of collective effect,the projectile polarizes the plasma and an electro-static field is excited. Therewith the projectile feels a retarding force that retards its motion. However,the projectile is usually assumed to move in a straight line so that the energy loss always happens even the projectile energy Epis far below the plasma temperature. Obviously it is unreasonable since the projectile must be thermalized at the ambient plasma temperature. In LP model the collective effect was represented by a logarithmic term,which is valid only when the projectile velocity Vpis much larger than the thermal velocity of the electrons or ions in the plasmas, as pointed in Ref. [10]. However, the collective effect at a lower Vpis also necessary for the accurate estimation of the energy transferred to the plasmas. In BPS model, the basic dimensionless parameter g (=1/(λDTe)) should be much smaller than 1. This is not satisfied in the case of high plasma density and low temperature. For example, g is higher than 0.34 when Teis around 0.1 keV while neis around 1026cm-3.

    In order to better explore the slowing down of alpha particles in ICF dense DT plasmas, the mechanism of the plasma polarization described by the quantum dielectric function ε(k,ω) and the effect of the projectile recoil[16–18]were combined in our previous work.[12]Here the rate of projectile energy change due to plasma electron or ion is obtained as

    Fig.1. Ionic component of stopping power SPi in DT plasmas as a function of Ep at different Ti when ρ =4.15 g/cc and Te =5.0 keV. The line with empty circles denotes SPe.

    Figure 2 shows the SPiand SPein DT plasmas as a function of Epat different Tiwhen ρ=4.15 g/cc and Te=5.0 keV.Here SPeis almost independent of Tisince the mass of electron is much smaller than that of DT ions.This figure indicates that the SPiat different Tiis close to each other for Ep=10 keV/u.This is also valid when Epis higher. This is the asymptotic behavior of stopping power[19]since the corresponding Vpis much higher than the thermal velocity of the DT ions. Hence,for Epbetween 10 keV/u and 885 keV/u the corresponding τ(Ep)is irrelevant with Ti. Moreover, τ(Ep)in this Eprange contributes more than 90% of the energy partition fractions.These make η in this case weak dependence upon Ti. Therefore,the asymptotic behavior of SPiand weak dependence of SPeupon Tilead to the last feature of η.

    3. The η in relativistic plasmas

    As the plasma temperature may be quite high, such as Te=100 keV, the relativistic effect of electrons in the plasmas should be considered although the effect for ions is still very weak. The reason is that the ion is much heavier than the electron so that the ion thermal velocity is much smaller than the light speed c. More than 50 years ago,Prentice[15]derived some analytical expressions for stopping power of ions in very hot plasmas,where relativistic effect was completely included on the base of classical dielectric function. However, in that work the projectile was assumed to move in a straight line in the plasmas, which made it still lose energy even if its Epis much smaller than the plasma Te. This is not suitable according to the description in the last section. For this reason the projectile recoil is introduced in the same way as Eq. (5) in Ref.[20],and the energy loss rate comes to be

    Fig. 2. SPe in DT plasmas as a function of Ep by different models at Ti =Te =100 keV and ne =1026/cc. The line with squares and circles denote the result considering the recoil of the projectile with non-relativistic and relativistic momentum distribution of the electrons, respectively. The line with up and down triangles denote the result without the recoil of the projectile when non-relativistic and relativistic momentum distribution of the electrons are considered,respectively.

    The above figure indicates clearly that the results with the recoil of the projectile is quite different from that without the recoil. Meanwhile the result by relativistic momentum distribution is close to that by non-relativistic distribution when Ep<1.0 MeV,which covers most range for SPito play its role to affect η. With Epincreasing,SPeby relativistic momentum distribution becomes a few higher than that by non-relativistic distribution. The reason may be related to the fact that the corresponding velocity distribution under the non-relativistic momentum distribution is a little flatter than that under the relativistic momentum distribution.[21]However, in the considered range of Epthe SPeunder non-relativistic distribution is at most 6.5%lower than that under relativistic distribution.Similar results are found for many other plasma cases when Teis high enough. This makes η close to each other in the two kinds of momentum distribution. In other words,our previous result of η in Ref. [14] is appropriate even if the nonrelativistic distribution was used for the electron when Teis very high.

    4. Fitting formula of η and comparison with other works

    According to Eq.(1),lots of calculations have been made to get η in the ranges of both Tiand Tefrom 0.1 keV to 100 keV, and ρ between 1. and 103g/cc. By fitting these data a formula of η is found as

    when Te<2.0 keV. Here W(x)=0 if x <0, otherwise it is equal to x.

    For the fitting results, there are some errors defined as 1-ηf/η, where ηfis the fitting value of η. Figure 3 plots the error as a function of Teand ρ when Ti=Te. Generally speaking, the error decreases with the increase of Tewhen ρ is fixed. The less absolute value of error when Te>30 keV is not plotted in the figure. It is easy to see that in most cases the size of the error is less than 5%,and it may exceed 7%when Te<5 keV and ρ >350 g/cc. Its maximum may be 15% at Te=2.0 keV and ρ >350 g/cc,where η(≈0.05)is small.

    Fig.3. Error as a function of Te and ρ when Ti=Te.

    Figure 4 shows the error as a function of Te, Ti, and ρ when Ti>Te. This figure indicates that the size of the error is less than 3%in most cases. The error may become 10%,even 15% when Teis around 2.0 keV while both Tiand ρ are in a very narrow range of theirs. However, in this case η is small and less than 6.0%. Hence, totally speaking, the fitting formula is reliable in most cases where the size of the error is less than 5%, and the error may become 10%–15% only when Teis around 2.0 keV and both Tiand ρ are in very narrow ranges and η is less than 6.0%in this situation.

    Fig.4. Error as a function of Te,Ti,and ρ when Ti >Te.

    Fig.5. Electron–ion energy partition fraction comparison among our calculation,fitting and Fraley’s result when Te=Ti and ρ =0.213 g/cc.

    It is necessary to compare the fitting formula with those obtained by others. In the case of Te=Tiand ρ =0.213 g/cc,figure 5 shows the energy partition fraction comparisons among our calculation, fitting and Fraley’s result.[6]Our calculation is according to Eq.(1)and the fitting is based on the fitting formulas(8)and(9). The fitting result is very close to the calculation when Teis small but the difference increases gradually with the increasing of Te. The fitting expression is close to Farley’s[6]η=Te/(Te+32)and their results are close to each other, especially at the low temperature range. Fraley’s expression gives η =0.238 at Te=Ti=10 keV while η =0.217 and ηf=0.210 are estimated by our calculation and fitting formula. When DT ions obtain half of the incident energy,namely η=0.5,Teis 37.7 keV according to our result,that is a few higher than 32 keV by Fraley’s work. The fitting formula gives ηf=Te/(Te+36.31·ρ-0.0248)at Te≥2.0 keV and Te=Ti. Thus ηf=Te/(Te+34.3) at ρ =10.0 g/cc and ηf=Te/(Te+32.4) at ρ =100.0 g/cc. Such tendency of ηfwith ρ and Teagrees with those in Fig. 1(b) in Ref. [6] and Fig. 11.14 in Ref. [8] but the formula is apparently different from Eq. (11.90) in Ref. [8], where η =Te/(Te+25) when ρ =10.0 g/cc~100.0 g/cc. Our results show η =0.231 and ηf=0.225 at Te=Ti=10.0 keV and ρ =10.0 g/cc. For the same Teand Tibut ρ=100.0 g/cc,η=0.245,and ηf=0.236.In both cases AM gave η =0.285.[8]So in general,our result is closer to Fraley’s than to AM’s.

    The difference among ours,Fraley and AM is mainly due to the choice of the Coulomb logarithm logΛ in respective calculation. The choice is a little arbitrary in their calculations while no such arbitrariness exists in our model. In Fraley’s work[6]the following expression was used:

    where U=E/E0,ρ0=0.213 g/cc,Teis measured in unit keV.In the above expression the first term and the second term of the right side represent the energy deposition in electron and DT ion,respectively. AM[8]used the following formula to get η:

    where logΛ due to electron and DT ion are expressed as

    According to Eq. (10) a similar expression with Eq. (11) can be obtained only with different Λeand ΛiTherefore, all the related Coulomb logarithms used in the two works are quite different. This leads to the difference of their results.

    In summary, on the basis of our previous work, a fitting formula is obtained for electron–ion energy partition fraction for 3.54-MeV fusion alpha particles in DT plasmas as a function of plasma mass density ρ,electron temperature Te,and ion temperature Ti. In the formula,ρ varies between 1.0 g/cc and 10.03g/cc,and both Teand Tichange from 0.1 keV–100.0 keV.It covers a wide range of the plasma state. The formula is reliable in the above-mentioned range,and the error is less than 5%in most cases while the maximum error may reach 10%–15%only when Teis around 2.0 keV with ρ and Tivarying in a small range. Relativistic effect for electrons is investigated with the consideration of the projectile recoil in the plasmas at Te≥50.0 keV.Little influence of the effect is found upon the results of partition fraction. The fraction at Te>Tiis close to that at Te=Ti. The comparisons with other fitting results are made at some plasma density at Te=Ti,and the difference is explained. Our formula is convenient for the simulation of alpha heating in inertial confined fusion hot dense DT plasmas.

    猜你喜歡
    王志剛
    Don’t Be Addicted To The Internet
    A Loving Brother
    Two Stories
    What Should The Man Do
    Tom Broke A Plate Or A Watch
    王志剛教授簡(jiǎn)介
    王志剛教授簡(jiǎn)介
    Scalar or Vector Tetraquark State Candidate: Zc(4100)?
    Analysis of the Possible D(2317)and D?2460)Molecules with QCD Sum Rules?
    Scalar Hidden-Charm Tetraquark States with QCD Sum Rules?
    18禁在线播放成人免费| 免费大片黄手机在线观看| 亚洲精品第二区| 亚洲精品国产色婷婷电影| 亚洲欧美日韩无卡精品| 免费观看av网站的网址| 一级毛片aaaaaa免费看小| 在现免费观看毛片| 99热国产这里只有精品6| 欧美日韩精品成人综合77777| 又大又黄又爽视频免费| 久久久久久伊人网av| 黑人高潮一二区| 色哟哟·www| 日韩av免费高清视频| 午夜福利在线在线| 91精品国产九色| 午夜免费鲁丝| 久久久午夜欧美精品| 肉色欧美久久久久久久蜜桃| 色综合色国产| 免费人成在线观看视频色| 欧美3d第一页| 国产在视频线精品| 欧美日韩视频高清一区二区三区二| 久久久成人免费电影| 亚洲av国产av综合av卡| 看十八女毛片水多多多| 青春草视频在线免费观看| 建设人人有责人人尽责人人享有的 | 亚洲高清免费不卡视频| 七月丁香在线播放| 男的添女的下面高潮视频| kizo精华| 欧美一级a爱片免费观看看| 久久久久国产精品人妻一区二区| 一二三四中文在线观看免费高清| 亚洲国产欧美人成| 少妇丰满av| 久久热精品热| 亚洲欧美成人精品一区二区| 亚洲国产毛片av蜜桃av| 国产精品久久久久久精品电影小说 | 国产一区亚洲一区在线观看| 成人毛片60女人毛片免费| 男人添女人高潮全过程视频| 水蜜桃什么品种好| 亚洲成人手机| 色婷婷av一区二区三区视频| 亚洲第一区二区三区不卡| 九九爱精品视频在线观看| 一级毛片我不卡| 色哟哟·www| 蜜臀久久99精品久久宅男| 国产成人freesex在线| 亚洲国产成人一精品久久久| 一区二区三区免费毛片| 国国产精品蜜臀av免费| 国产精品秋霞免费鲁丝片| 久久99精品国语久久久| 岛国毛片在线播放| 国产色爽女视频免费观看| 纯流量卡能插随身wifi吗| 日韩亚洲欧美综合| 精品少妇久久久久久888优播| 日本vs欧美在线观看视频 | 久热这里只有精品99| 亚洲精品456在线播放app| 国产淫片久久久久久久久| 日日摸夜夜添夜夜爱| 国产精品欧美亚洲77777| 国产精品成人在线| 久久久久久久久久久免费av| 精品少妇黑人巨大在线播放| 少妇的逼水好多| 午夜视频国产福利| 久久久久久久久久久丰满| 欧美日韩亚洲高清精品| 少妇人妻精品综合一区二区| 国产精品久久久久久精品电影小说 | 午夜老司机福利剧场| 人人妻人人添人人爽欧美一区卜 | 一区二区三区乱码不卡18| 久久99热这里只频精品6学生| 国产精品一区二区在线不卡| 又粗又硬又长又爽又黄的视频| 成人国产av品久久久| 国产欧美亚洲国产| av线在线观看网站| 免费观看的影片在线观看| 欧美日韩国产mv在线观看视频 | 在线观看一区二区三区激情| a级毛色黄片| 亚洲精品日本国产第一区| 欧美成人一区二区免费高清观看| 色视频在线一区二区三区| 欧美国产精品一级二级三级 | 欧美精品人与动牲交sv欧美| 尾随美女入室| 国产免费又黄又爽又色| 久久精品国产亚洲av天美| 欧美 日韩 精品 国产| 麻豆乱淫一区二区| 亚洲高清免费不卡视频| 狂野欧美激情性xxxx在线观看| 99久久精品热视频| 22中文网久久字幕| 成人亚洲精品一区在线观看 | 欧美高清性xxxxhd video| 性色av一级| 婷婷色综合www| 国产精品欧美亚洲77777| 国产精品秋霞免费鲁丝片| 2022亚洲国产成人精品| 亚洲成色77777| 亚洲在久久综合| 日韩在线高清观看一区二区三区| 日韩成人伦理影院| 国产午夜精品一二区理论片| 国产在线男女| 亚洲国产精品999| 色5月婷婷丁香| 伊人久久精品亚洲午夜| www.av在线官网国产| 久久久久国产网址| 99re6热这里在线精品视频| 日韩国内少妇激情av| 亚洲国产日韩一区二区| 久久亚洲国产成人精品v| 亚洲精品一二三| 高清视频免费观看一区二区| 久久精品国产亚洲av涩爱| 国产欧美日韩精品一区二区| tube8黄色片| 少妇精品久久久久久久| 国产一区有黄有色的免费视频| 中文字幕久久专区| 成人午夜精彩视频在线观看| 欧美变态另类bdsm刘玥| 亚洲国产精品999| 人人妻人人看人人澡| 午夜免费男女啪啪视频观看| 人妻 亚洲 视频| 国产精品一二三区在线看| 97精品久久久久久久久久精品| 国产有黄有色有爽视频| 少妇人妻精品综合一区二区| 亚洲国产精品专区欧美| 免费大片黄手机在线观看| 国产精品爽爽va在线观看网站| 亚洲av中文av极速乱| 免费少妇av软件| 91精品国产九色| 久久久久网色| 激情 狠狠 欧美| 久久久久视频综合| 最近中文字幕2019免费版| 国产亚洲av片在线观看秒播厂| 亚洲欧美一区二区三区国产| 我的女老师完整版在线观看| 中文字幕亚洲精品专区| 一级毛片 在线播放| 十八禁网站网址无遮挡 | 内射极品少妇av片p| 国产精品一二三区在线看| 老司机影院成人| 日韩免费高清中文字幕av| 久久ye,这里只有精品| 国产真实伦视频高清在线观看| 中文字幕av成人在线电影| 欧美三级亚洲精品| 亚洲人成网站在线观看播放| 国产无遮挡羞羞视频在线观看| 激情五月婷婷亚洲| 久久人妻熟女aⅴ| 成人午夜精彩视频在线观看| videos熟女内射| 成人二区视频| 99热全是精品| 国产精品久久久久久精品电影小说 | 婷婷色麻豆天堂久久| 成人免费观看视频高清| 久久久a久久爽久久v久久| 亚洲av在线观看美女高潮| 精品亚洲成国产av| 在线亚洲精品国产二区图片欧美 | 777米奇影视久久| 日韩av不卡免费在线播放| 大话2 男鬼变身卡| 我的老师免费观看完整版| 熟女电影av网| 日本黄大片高清| 免费观看在线日韩| 精品熟女少妇av免费看| 亚洲成色77777| 精品国产一区二区三区久久久樱花 | 日本午夜av视频| 欧美日韩视频精品一区| 国产爱豆传媒在线观看| 大陆偷拍与自拍| 夜夜看夜夜爽夜夜摸| 午夜福利网站1000一区二区三区| 亚洲电影在线观看av| 亚洲国产高清在线一区二区三| 久久久久久久久久久免费av| 国产v大片淫在线免费观看| 久久精品国产亚洲网站| 久久99热6这里只有精品| 国产免费视频播放在线视频| 欧美性感艳星| 色哟哟·www| 国产亚洲午夜精品一区二区久久| 国国产精品蜜臀av免费| 亚洲av国产av综合av卡| 久热这里只有精品99| 免费黄色在线免费观看| 欧美少妇被猛烈插入视频| 国产男人的电影天堂91| 又大又黄又爽视频免费| 观看av在线不卡| 日本色播在线视频| 欧美日韩视频精品一区| 亚洲欧美精品专区久久| 久久人妻熟女aⅴ| 在线天堂最新版资源| 精品少妇黑人巨大在线播放| 国产探花极品一区二区| 国产精品国产av在线观看| 赤兔流量卡办理| 蜜桃亚洲精品一区二区三区| 久久精品国产鲁丝片午夜精品| 亚洲第一av免费看| 国产精品蜜桃在线观看| 97在线人人人人妻| 青春草视频在线免费观看| 日韩视频在线欧美| 精品一品国产午夜福利视频| 国产成人午夜福利电影在线观看| 亚洲精华国产精华液的使用体验| 中文字幕精品免费在线观看视频 | 国产又色又爽无遮挡免| 成年免费大片在线观看| 老女人水多毛片| 美女中出高潮动态图| 99久久人妻综合| 人体艺术视频欧美日本| 久久午夜福利片| 六月丁香七月| 久久久色成人| 国产精品伦人一区二区| 亚洲av在线观看美女高潮| 欧美一级a爱片免费观看看| 日韩电影二区| av线在线观看网站| av不卡在线播放| 国产av国产精品国产| 黄色日韩在线| 人妻一区二区av| 看免费成人av毛片| 最近中文字幕2019免费版| 亚洲色图av天堂| 1000部很黄的大片| 久久久午夜欧美精品| 精品久久久久久久久亚洲| 亚洲欧洲国产日韩| 亚洲国产欧美在线一区| a级毛片免费高清观看在线播放| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品久久午夜乱码| 午夜精品国产一区二区电影| 精品熟女少妇av免费看| av一本久久久久| 内地一区二区视频在线| 欧美三级亚洲精品| 青春草亚洲视频在线观看| 18禁动态无遮挡网站| 美女脱内裤让男人舔精品视频| 国产精品三级大全| 热re99久久精品国产66热6| 亚洲经典国产精华液单| a级毛片免费高清观看在线播放| 秋霞在线观看毛片| 波野结衣二区三区在线| 少妇猛男粗大的猛烈进出视频| 老师上课跳d突然被开到最大视频| 国产成人精品久久久久久| 亚洲精品国产成人久久av| 国产v大片淫在线免费观看| 欧美日韩综合久久久久久| 五月玫瑰六月丁香| 午夜精品国产一区二区电影| 观看av在线不卡| 日韩免费高清中文字幕av| 联通29元200g的流量卡| 在线观看免费日韩欧美大片 | 国产又色又爽无遮挡免| 国产精品秋霞免费鲁丝片| 亚洲四区av| 国产在线男女| 免费播放大片免费观看视频在线观看| 国产亚洲精品久久久com| av视频免费观看在线观看| 日韩av在线免费看完整版不卡| 亚洲性久久影院| 久久精品久久久久久久性| 尤物成人国产欧美一区二区三区| 精品人妻一区二区三区麻豆| 亚洲精品国产色婷婷电影| 大码成人一级视频| 国产精品嫩草影院av在线观看| 欧美97在线视频| 久久99蜜桃精品久久| 男男h啪啪无遮挡| 乱码一卡2卡4卡精品| 男的添女的下面高潮视频| 最近中文字幕高清免费大全6| 免费黄频网站在线观看国产| 国产亚洲5aaaaa淫片| 91精品国产国语对白视频| 久久国产精品男人的天堂亚洲 | 国产精品成人在线| 久久精品国产自在天天线| 国产黄片美女视频| 中文字幕人妻熟人妻熟丝袜美| 日韩视频在线欧美| 亚洲丝袜综合中文字幕| 亚洲中文av在线| 亚洲精品乱码久久久久久按摩| 久久久久视频综合| 欧美日韩亚洲高清精品| 成人高潮视频无遮挡免费网站| 亚洲怡红院男人天堂| 久久国内精品自在自线图片| 岛国毛片在线播放| 色哟哟·www| 久久久久久人妻| 人妻夜夜爽99麻豆av| 国产综合精华液| tube8黄色片| 汤姆久久久久久久影院中文字幕| 王馨瑶露胸无遮挡在线观看| 伦精品一区二区三区| 在线观看一区二区三区| 水蜜桃什么品种好| 人人妻人人爽人人添夜夜欢视频 | 久久久久久久久久成人| 又粗又硬又长又爽又黄的视频| 久久精品久久久久久久性| 高清午夜精品一区二区三区| 少妇的逼好多水| 18禁在线播放成人免费| 久久精品久久久久久噜噜老黄| 国产精品三级大全| 视频区图区小说| 亚洲国产精品专区欧美| 99热全是精品| av在线蜜桃| 国产免费视频播放在线视频| 国产午夜精品一二区理论片| 亚洲怡红院男人天堂| 99热6这里只有精品| 久久毛片免费看一区二区三区| 3wmmmm亚洲av在线观看| 国产 精品1| 精品人妻偷拍中文字幕| 欧美成人一区二区免费高清观看| 国产探花极品一区二区| 久久久久久久国产电影| 我的老师免费观看完整版| 日日摸夜夜添夜夜爱| 美女中出高潮动态图| 久久精品久久久久久噜噜老黄| 日韩 亚洲 欧美在线| 三级经典国产精品| 一级二级三级毛片免费看| 人妻一区二区av| 一级片'在线观看视频| 亚洲av不卡在线观看| 全区人妻精品视频| 精品久久久久久电影网| 99热网站在线观看| 少妇高潮的动态图| 国产精品偷伦视频观看了| 成人国产av品久久久| 国产69精品久久久久777片| 在线播放无遮挡| 久久热精品热| 自拍欧美九色日韩亚洲蝌蚪91 | 国产亚洲最大av| 久久精品久久久久久久性| 十八禁网站网址无遮挡 | 亚洲av二区三区四区| 国国产精品蜜臀av免费| 又爽又黄a免费视频| 国产精品无大码| 国产精品久久久久久精品电影小说 | 亚洲成人中文字幕在线播放| 51国产日韩欧美| 亚洲欧美精品自产自拍| 亚洲欧美清纯卡通| 日韩国内少妇激情av| 亚洲国产欧美人成| 精品久久久噜噜| 深夜a级毛片| 热99国产精品久久久久久7| 亚洲在久久综合| 又粗又硬又长又爽又黄的视频| 中文字幕亚洲精品专区| av播播在线观看一区| 国产精品久久久久久精品电影小说 | 国产男女超爽视频在线观看| 亚洲高清免费不卡视频| 看免费成人av毛片| 国产男女内射视频| 晚上一个人看的免费电影| 久久人妻熟女aⅴ| 91在线精品国自产拍蜜月| 成年女人在线观看亚洲视频| 最新中文字幕久久久久| 简卡轻食公司| 亚洲成人av在线免费| 日韩强制内射视频| 最近最新中文字幕大全电影3| 免费人妻精品一区二区三区视频| 一区二区三区免费毛片| 国产毛片在线视频| 日韩三级伦理在线观看| 久热久热在线精品观看| 永久免费av网站大全| 午夜福利视频精品| 国产精品人妻久久久久久| 国产伦精品一区二区三区视频9| 亚洲精品成人av观看孕妇| 国产男女超爽视频在线观看| av国产精品久久久久影院| h视频一区二区三区| 少妇丰满av| 亚洲精品成人av观看孕妇| 老司机影院毛片| 国产精品女同一区二区软件| av视频免费观看在线观看| www.色视频.com| a级毛色黄片| 肉色欧美久久久久久久蜜桃| 亚洲精品久久午夜乱码| 国产成人午夜福利电影在线观看| 深夜a级毛片| 毛片女人毛片| www.av在线官网国产| 久久人人爽人人爽人人片va| 成年av动漫网址| 亚洲精品亚洲一区二区| 老司机影院成人| 黄色配什么色好看| 91精品国产国语对白视频| 老师上课跳d突然被开到最大视频| 在线观看免费高清a一片| 欧美3d第一页| 国产av精品麻豆| 亚洲国产精品专区欧美| 久久久色成人| 国产精品不卡视频一区二区| 欧美bdsm另类| 亚洲国产最新在线播放| av在线老鸭窝| 亚洲av成人精品一二三区| 极品教师在线视频| 五月伊人婷婷丁香| 99热全是精品| 天天躁夜夜躁狠狠久久av| 亚洲国产最新在线播放| 波野结衣二区三区在线| 嫩草影院入口| 亚洲中文av在线| 亚洲,一卡二卡三卡| 99re6热这里在线精品视频| 亚洲精品国产成人久久av| 久久婷婷青草| 亚洲内射少妇av| 一级爰片在线观看| 亚洲精品乱久久久久久| 亚洲人成网站高清观看| 亚洲怡红院男人天堂| 香蕉精品网在线| 自拍偷自拍亚洲精品老妇| 日韩亚洲欧美综合| 国产有黄有色有爽视频| 婷婷色综合www| 国产av码专区亚洲av| 亚洲成人手机| 一个人看的www免费观看视频| 91在线精品国自产拍蜜月| 亚洲在久久综合| 亚洲高清免费不卡视频| 免费av不卡在线播放| 亚洲aⅴ乱码一区二区在线播放| 久久久久国产网址| 国产亚洲欧美精品永久| 少妇精品久久久久久久| 久久99精品国语久久久| 亚洲欧美日韩另类电影网站 | 国产黄片视频在线免费观看| 亚洲第一区二区三区不卡| 99热这里只有是精品在线观看| 九九久久精品国产亚洲av麻豆| 夜夜爽夜夜爽视频| 久久99热这里只频精品6学生| 肉色欧美久久久久久久蜜桃| 国产成人aa在线观看| 日韩伦理黄色片| 精品一区二区三卡| 久久精品久久精品一区二区三区| 寂寞人妻少妇视频99o| 免费看av在线观看网站| 97超视频在线观看视频| 欧美老熟妇乱子伦牲交| 一区二区三区免费毛片| 久久久午夜欧美精品| 国产在线一区二区三区精| 精品久久久久久久久av| 女人久久www免费人成看片| 久久久色成人| 最黄视频免费看| 青春草视频在线免费观看| 久久久久视频综合| av在线老鸭窝| 一级二级三级毛片免费看| 欧美人与善性xxx| 久久人人爽av亚洲精品天堂 | a级毛片免费高清观看在线播放| 久久这里有精品视频免费| 黑人猛操日本美女一级片| 国产又色又爽无遮挡免| 青春草亚洲视频在线观看| 欧美激情国产日韩精品一区| 一二三四中文在线观看免费高清| 黄色一级大片看看| 欧美zozozo另类| 看十八女毛片水多多多| 日韩欧美精品免费久久| 欧美人与善性xxx| 91精品伊人久久大香线蕉| av天堂中文字幕网| 精品久久久精品久久久| 制服丝袜香蕉在线| 下体分泌物呈黄色| 亚洲av中文av极速乱| 一级黄片播放器| 一级毛片 在线播放| 亚洲国产毛片av蜜桃av| 国产亚洲91精品色在线| 国产伦精品一区二区三区四那| 日本猛色少妇xxxxx猛交久久| 中文字幕制服av| 久久99热这里只有精品18| 97在线人人人人妻| 国产一区亚洲一区在线观看| 日韩电影二区| 国产精品一区二区在线不卡| 在线观看一区二区三区激情| 啦啦啦在线观看免费高清www| 免费人成在线观看视频色| 成人影院久久| 伊人久久精品亚洲午夜| 超碰av人人做人人爽久久| 欧美日本视频| 超碰av人人做人人爽久久| 岛国毛片在线播放| 国产免费一区二区三区四区乱码| 欧美xxⅹ黑人| 熟女人妻精品中文字幕| 日韩欧美 国产精品| 国产 精品1| 色婷婷av一区二区三区视频| av在线老鸭窝| 一级a做视频免费观看| 黄色配什么色好看| 欧美xxxx黑人xx丫x性爽| 蜜臀久久99精品久久宅男| 极品教师在线视频| 一区二区av电影网| 久热这里只有精品99| 久久综合国产亚洲精品| 成人毛片60女人毛片免费| 99热全是精品| 亚洲精品亚洲一区二区| 免费黄频网站在线观看国产| 国产精品三级大全| 精品一品国产午夜福利视频| 成人无遮挡网站| 亚洲精品aⅴ在线观看| 最近的中文字幕免费完整| 成人国产av品久久久| 少妇熟女欧美另类| 街头女战士在线观看网站| 干丝袜人妻中文字幕| 免费久久久久久久精品成人欧美视频 | 老司机影院成人| 26uuu在线亚洲综合色| 久久久a久久爽久久v久久| 国产成人精品婷婷| av福利片在线观看| 日韩亚洲欧美综合| 日韩精品有码人妻一区| 国产一区有黄有色的免费视频| av国产精品久久久久影院| 亚洲国产高清在线一区二区三| 如何舔出高潮| 99久久中文字幕三级久久日本| 亚洲丝袜综合中文字幕| 高清av免费在线| 亚洲av二区三区四区| 亚洲精品日本国产第一区| 一区二区av电影网| 日韩一区二区视频免费看|