• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of pressure on the electrical properties of flexible NiPc thin films fabricated by rubbing-in technology

    2021-01-21 02:07:50KhasanKarimovFahmiMuhammadsharifZubairAhmadMuqeetRehmanandRashidAli
    Chinese Physics B 2021年1期

    Khasan S Karimov, Fahmi F Muhammadsharif, Zubair Ahmad, M Muqeet Rehman, and Rashid Ali

    1GIK Institute of Engineering Sciences and Technology,Topi,District Swabi,KPK,23640,Pakistan

    2Center for Innovative Development of Science and New Technologies of Academy of Sciences of Tajikistan,Dushanbe,734025

    3Department of Physics,Faculty of Science and Health,Koya University,44023 Koya,Kurdistan Region-F.R.,Iraq

    4Center for Advanced Materials(CAM),Qatar University,P.O.Box 2713,Doha,Qatar

    5Department of Electronic Engineering,Jeju National University,Jeju,Republic of Korea

    Keywords: pressure,electrical property,NiPc,thin film,rubbing-in technology

    1. Introduction

    The emergence of organic semiconductors in electronics has made great progresses in the development of various important devices such as solar cells, diodes, transistors, memories, spin valves and sensors.[1–7]This is because organic semiconductors offer unique chemical and physical properties including optoelectronic selectivity,molecular tunability, light weight, and flexibility. Phthalocyanine (Pc) and its derivates play a splendid role in the establishment of viable electronic devices thanks to their ease of fabrication,stability, high carrier mobility, and compatibility with flexible substrates.[8–10]Having sufficient information regarding the electrical properties of organic materials is crucial before they get involved in the device application. Nickel phthalocyanine(NiPc) films have been successfully grown by dipping and spray-layer-by-layer (LbL) and the effect of deposition techniques on their electrochemical and morphological properties were investigated.[11]Tarrad et al. used thermal evaporation technique to deposit NiPc on different substrates in order to investigate their structural optical and sensing properties.[12]The use of NiPc was also found in hybrid supercapacitor,[13]volatile organic compounds (VOCs) sensor,[14]solar cell,[15]and field effect transistor.[16]In order to widely explore the limitation and capacity of NiPc for a possible application,it is imperative to have a comprehensive understanding of its physical and chemical properties. A review of literature revealed that the optical, structural, electrochemical, and morphological properties of NiPc have been addressed.[9,11,12]However,little attention has been paid on the electrical response of this semiconductor.

    We concluded that it is possible to establish elastic layered rubber–graphene composite for the multi-functional sensors by rubbing-in technology.[17]Also, flexible thermoelectric cells have been fabricated by rubbing-in technology with rubber–carbon nanotubes/graphene composites.[18]Thanks to the rubbing-in approach,carbon nanotubes,graphene powderbased multifunctional pressure, displacement, and gradient temperature sensors were also fabricated.[19]In continuation of our efforts for investigation of the properties of the devices and materials for fabrication of the devices in this paper we are presenting the results of the fabrication of flexible ITO/NiPc/CNT/Rubber cells by rubbing-in technology followed by the effect of pressure on the electrical characteristics of the system. The remainder of the paper is organized as follows: materials and methods are given in the second section,while section three is devoted to analyses and discus the obtained results followed by the main conclusions drawn in section four.

    2. Materials and methods

    Figure 1 shows the molecular structure of nickel phthalocyanine (NiPc) x-ray diffraction of the samples were conducted with Philips PW1830 x-ray diffraction system in Bragg–Brentano(θ–2θ)scan mode using monochromatic Cu Kα radiation operated at 40 kV and 25 mA.The measurements were taken at room temperature to reveal the structural information of the materials. The x-ray diffraction of the samples were conducted with Philips PW1830 x-ray diffraction system in Bragg–Brentano (θ–2θ) scan mode using monochromatic Cu Kα radiation source with an accelerating voltage of 40 kV and tube current of 25 mA at room temperature to reveal the structural information of the materials. The goniometer scanned a 2θ range between 15?and 80?with a step size of 0.05?. The x-ray diffraction results for each sample (rubber,CNTs, and blue dye) were obtained three times to check the repeatability. The x-ray diffraction patterns of rubber, CNTs powders, and blue dye (nickel phthalocyanine) are presented in Fig.2.

    Fig.1. Molecular structure of nickel phthalocyanine.

    Fig.2. X-ray diffraction patterns of original rubber and CNTs and blue dye(nickel phthalocyanine)powders.

    The x-ray diffraction pattern of rubber shows notable high intensity Bragg’s diffraction peaks at 2θ of 18.86?(110),23.30?(210), 29.73?(211), 30.87?(310), 36.23?(002), and 39.29?(121) respectively. These peaks and other peaks present in the rubber x-ray diffractogram are characteristics of polyvinyl chloride which perfectly match with the ICDD data base (PDF# 00-064-1628) and corresponds to high amount of structural arrangement (order) in its polymeric chains.[20]In CNTs powder diffractogram, the broad and major peak of CNTs was observed around 26.22?(002) which is attributed to the hexagonal graphite structure,having high electrical conductivities. A broad peak of CNTs at 2θ of 44.36?(101)was also observed. These peaks are consistent with standard xray diffraction data base(PDF#01-075-1621). One additional peak is also observed at 36.23?because of different functional group attached to the CNTs. The blue dye compound nickel phthalocyanine(C32H16N8Ni)and the peaks are identified using the standard ICDD database (PDF# 00-011-0744) which is also consistent with previous observations.[21]

    Deposition of the films by rubbing-in technology described in Refs.[17,18]. The thickness of the NiPc films was in the range of 30 μm–40 μm, while the surface diameter of the NiPc films was found to be about 4.5 mm. The thicknesses of the films were measured using micrometer screw gauge.All samples were fabricated at a pressure of 40 g/cm2. Measurement of the electric properties(I–V characteristics)of the ITO/NiPc/CNT/Rubber cells was carried out under uniaxial pressure of 200,280,and 480 gf/cm2,which were applied perpendicular to the surface of the NiPc film(Fig.3).

    Fig.3. (a)Deposition of the NiPc films on conductive glass(ITO)and carbon nanotube(CNT)films by rubbing-in technology.(b)Schematic diagram of the flexible cell based on ITO/NiPc/CNT/rubber cell. The flexible plastic substrate covered by ITO 1,organic semiconductor NiPc 2,carbon nanotube(CNT)layer 3,rubber 4,and terminals 5 and 6. The arrow 7 shows direction of pressures.

    3. Results and discussion

    Figure 4 shows the I–V characteristics of the ITO/NiPc/CNT/rubber cell measured at room temperature and at different applied uniaxial pressures of 200, 280, and 480 gf/cm2for the samples from 1 to 3, respectively. One can notice from Fig. 4 that the current response with respect to the applied voltage is a nonlinear curve for all the studied samples. However, the increment in pressure has made the forward potential barrier to be increased compared to the low pressured devices. On the contrary, the higher applied pressure was affected to increase the reverse potential barrier(avalanche region), thereby decreased leaking current due to minority charge carriers. Interestingly, devices with active films prepared under higher pressure can be viably useful for high power electronics application and signal rectification.

    Fig.4. The I–V characteristics of the ITO/NiPc/CNT/rubber cell under various pressures.

    It is possible to investigate non-linearity coefficient (α)from the I–V characteristics of the samples using the below expression:[22]

    This coefficient can also be determined using the following equation:

    Fig. 5. Non-linearity coefficient β(V) and pressure relationship for ITO/NiPc/CNT/rubber cell.

    Figure 5 shows the change in β(V)with the applied pressure for ITO/NiPc/CNT/rubber cells. It is seen that nonlinearity coefficient (β) is in the range of (2–3). Its value is maximum at the pressure of 200 gf/cm2and it is exponentially decreased with increase of the applied pressure up to 480 gf/cm2.The change in the non-linearity of the I–V characteristics might be due to two main effects. First,the decrease in the resistance of the sample and hence increased current through the semiconductor(NiPc). Second,the increased concentration of charge carries, thereby increasing the mobility of charge carriers due to hopping mechanism of conduction which is usually taken place in organic semiconductors.[22]

    Also, the phenomenon of non-linearity in the I–V characteristics of organic semiconductors can be observed due to semiconductor–conductor interface defects. Here, the nonlinearity of the studied cells, shown in Fig. 4, can be due to ITO–NiPc and NiPc–CNT contact junctions, which plays the role of two diodes connected opposite to each other.

    Figure 6 shows that the rectification ratio in the I–V curve of the ITO/NiPc/CNT/rubber cell is greatly changes with the change of applied pressure. The non-monotonic change in the rectification ratio suggests that the proposed diode structure can be interestingly applied for the application of high-power rectification at selected applied pressures. The presence of a trivial asymmetry in the I–V characteristics can be due to the differences in the work function of ITO and CNT as well as the concentration of the defects present at the concerned interfaces. In particular, the work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy was found to be 4.4 eV to 4.5 eV,[23]while that for the multi-and single-walled carbon nanotubes were estimated to be 4.95 eV and 5.05 eV, respectively.[24]To increase the asymmetry of the I–V characteristics the ITO can be replaced by different conductors having various work functions such as aluminum with work function of 4.06 eV to 4.26 eV.Nevertheless, replacement of ITO by CNT is another approach which has been considered to reduce the cost of materials and to achieve I–V response for desired applications.

    Fig.6. Relationship of the rectification ratio and pressure.

    Fig.7. Resistance–pressure relationship at various sweeping voltages.

    It is seen that as pressure or applied voltage increased the resistance decreased.The decrease of the resistance can be explained by decrease of the two contact ITO–NiPc and NiPc–CNT resistances as well under effect of pressure,and volume resistance of the NiPc due to decrease of the intermolecular, NiPc–NiPc, distances which accelerate hopping mechanism of the charge carriers transfer. It was observed from the results shown in Figs. 7 and 8 that the resistance of the cells is decreased with the increase of both the applied voltage and pressure. The obtained results show that the flexible ITO/NiPc/CNT/rubber cell fabricated by rubbing-in technology can also be used as pressure sensors due to the changed resistance of the device with the pressure.

    Fig. 8. Dependences of the resistance of the ITO–NiPc–CNT samples on applied voltage at different pressures.

    4. Conclusion

    The nickel phthalocyanine (NiPc) film was successfully fabricated by rubbing-in technology on the surface of flexible ITO glass substrate and the I–V characteristics of the ITO/NiPc/CNT/rubber devices were investigated under uniaxial pressures of 200, 280, and 480 gf/cm2. It was concluded that the cell resistance is decreased with the increase of pressure and voltage. The nonlinearity coefficient of the I–V characteristics of the samples was found to be about 2 to 3,which was decreased with the increase of the pressure. The rectification ratio of the cells was estimated to be dependent on the applied pressure. The results presented here can be potentially used for the fabrication of rubbing-in technology based electronic devices such as diodes,non-linear resistors and sensors.

    精品午夜福利视频在线观看一区| 日本在线视频免费播放| 国产成人av教育| 国产美女午夜福利| 真人一进一出gif抽搐免费| 日本一二三区视频观看| 韩国av在线不卡| 亚洲av电影不卡..在线观看| 久久久久久久亚洲中文字幕| 国产av麻豆久久久久久久| 真实男女啪啪啪动态图| av专区在线播放| 日日夜夜操网爽| 两性午夜刺激爽爽歪歪视频在线观看| 三级男女做爰猛烈吃奶摸视频| 国产精品福利在线免费观看| 国产伦人伦偷精品视频| 国产精品伦人一区二区| 不卡视频在线观看欧美| 国产一区二区在线观看日韩| 免费搜索国产男女视频| 色av中文字幕| 国产免费男女视频| 午夜影院日韩av| 亚洲精品国产成人久久av| 国产欧美日韩一区二区精品| 日日摸夜夜添夜夜添小说| 永久网站在线| 精品久久国产蜜桃| 久久午夜亚洲精品久久| 国产综合懂色| av在线蜜桃| 久久精品国产亚洲av香蕉五月| 精品免费久久久久久久清纯| 蜜桃久久精品国产亚洲av| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品日韩av片在线观看| 亚洲av第一区精品v没综合| 午夜精品在线福利| 啦啦啦观看免费观看视频高清| 日本-黄色视频高清免费观看| 日本 av在线| 日本a在线网址| 久久久久性生活片| 免费一级毛片在线播放高清视频| 国产精品久久久久久亚洲av鲁大| 日本免费a在线| 色视频www国产| 看黄色毛片网站| av天堂中文字幕网| 免费不卡的大黄色大毛片视频在线观看 | 全区人妻精品视频| 久久人人爽人人爽人人片va| 在线免费观看不下载黄p国产 | 国产伦人伦偷精品视频| 色av中文字幕| 在线a可以看的网站| 热99在线观看视频| 中国美女看黄片| 麻豆精品久久久久久蜜桃| 午夜日韩欧美国产| 色哟哟哟哟哟哟| 精品午夜福利在线看| 国产午夜精品论理片| 亚洲人成网站在线播放欧美日韩| 一区福利在线观看| 俺也久久电影网| 真实男女啪啪啪动态图| 亚洲中文字幕一区二区三区有码在线看| 美女黄网站色视频| 精品欧美国产一区二区三| 国产aⅴ精品一区二区三区波| 在线a可以看的网站| 黄色女人牲交| 亚洲av熟女| 亚洲人成伊人成综合网2020| 黄色配什么色好看| 亚洲一级一片aⅴ在线观看| 春色校园在线视频观看| 亚洲三级黄色毛片| 日本与韩国留学比较| 欧美性猛交╳xxx乱大交人| 精品无人区乱码1区二区| 亚洲成av人片在线播放无| 又紧又爽又黄一区二区| 国产亚洲精品久久久久久毛片| 亚洲最大成人中文| 22中文网久久字幕| 丰满的人妻完整版| 久久精品影院6| 久久久精品欧美日韩精品| 少妇的逼好多水| 丝袜美腿在线中文| 很黄的视频免费| 中文在线观看免费www的网站| 亚洲性久久影院| 不卡一级毛片| 国产主播在线观看一区二区| 欧美精品国产亚洲| 亚洲精品粉嫩美女一区| 嫩草影院新地址| 成人性生交大片免费视频hd| 免费黄网站久久成人精品| 成人亚洲精品av一区二区| 欧洲精品卡2卡3卡4卡5卡区| 赤兔流量卡办理| av.在线天堂| 色在线成人网| 久久中文看片网| 欧美性感艳星| 欧美黑人巨大hd| 午夜精品久久久久久毛片777| 一卡2卡三卡四卡精品乱码亚洲| 日日摸夜夜添夜夜添小说| 欧美激情久久久久久爽电影| www.色视频.com| 久久九九热精品免费| 日日摸夜夜添夜夜添小说| 久久久久久九九精品二区国产| 欧美bdsm另类| 亚洲18禁久久av| АⅤ资源中文在线天堂| 国内精品宾馆在线| 男女之事视频高清在线观看| 一区二区三区四区激情视频 | av中文乱码字幕在线| 波多野结衣高清作品| 性色avwww在线观看| 免费观看人在逋| 国产精品女同一区二区软件 | 黄色配什么色好看| 国语自产精品视频在线第100页| 免费看a级黄色片| 他把我摸到了高潮在线观看| 国内毛片毛片毛片毛片毛片| 日本免费a在线| 久9热在线精品视频| 亚洲一区高清亚洲精品| 中文字幕人妻熟人妻熟丝袜美| 婷婷亚洲欧美| 午夜免费成人在线视频| 久久久久久久久大av| 99国产精品一区二区蜜桃av| xxxwww97欧美| 大型黄色视频在线免费观看| 午夜影院日韩av| 变态另类丝袜制服| 国产高清有码在线观看视频| bbb黄色大片| 男女那种视频在线观看| 国产白丝娇喘喷水9色精品| 国产精品福利在线免费观看| 男女边吃奶边做爰视频| 欧美色视频一区免费| 亚洲成av人片在线播放无| 久久精品久久久久久噜噜老黄 | 国产亚洲精品久久久久久毛片| 深夜精品福利| 老司机午夜福利在线观看视频| 欧美最新免费一区二区三区| 露出奶头的视频| 极品教师在线视频| 精品人妻偷拍中文字幕| 亚洲国产精品成人综合色| 真实男女啪啪啪动态图| 日日啪夜夜撸| 日本一二三区视频观看| 国产精品人妻久久久久久| 色噜噜av男人的天堂激情| 美女cb高潮喷水在线观看| 免费av观看视频| www日本黄色视频网| 嫁个100分男人电影在线观看| 亚洲中文日韩欧美视频| 美女黄网站色视频| 欧美成人免费av一区二区三区| 欧美区成人在线视频| 免费电影在线观看免费观看| 欧美性猛交黑人性爽| 最好的美女福利视频网| 美女黄网站色视频| 午夜福利视频1000在线观看| 精品久久久久久成人av| 看黄色毛片网站| 日本-黄色视频高清免费观看| 久久精品国产亚洲av香蕉五月| 欧美一区二区亚洲| 精品无人区乱码1区二区| 午夜视频国产福利| 精品一区二区三区人妻视频| 美女黄网站色视频| 男插女下体视频免费在线播放| 精品午夜福利视频在线观看一区| 久久久久免费精品人妻一区二区| 欧美日韩黄片免| 亚洲一级一片aⅴ在线观看| 美女xxoo啪啪120秒动态图| 久久精品国产自在天天线| 亚州av有码| 亚洲精品久久国产高清桃花| 99久国产av精品| 亚洲国产日韩欧美精品在线观看| 日韩精品中文字幕看吧| 成人国产一区最新在线观看| 床上黄色一级片| 男人和女人高潮做爰伦理| 最近最新中文字幕大全电影3| 国产精品1区2区在线观看.| 美女免费视频网站| 国产精品美女特级片免费视频播放器| 欧美区成人在线视频| 国产精品自产拍在线观看55亚洲| 午夜精品一区二区三区免费看| 精品久久久久久,| 国产亚洲av嫩草精品影院| 欧美激情国产日韩精品一区| 久久久久久久午夜电影| 十八禁国产超污无遮挡网站| 欧美日本亚洲视频在线播放| 成年人黄色毛片网站| 久久精品国产亚洲av涩爱 | 一区二区三区高清视频在线| 中国美女看黄片| 在线观看舔阴道视频| 久久精品国产清高在天天线| 欧美极品一区二区三区四区| 午夜福利在线在线| 简卡轻食公司| 一区二区三区激情视频| 免费搜索国产男女视频| 熟妇人妻久久中文字幕3abv| 国产精品日韩av在线免费观看| 99热这里只有精品一区| 国产精品福利在线免费观看| 欧美xxxx性猛交bbbb| 国产黄片美女视频| 国产精品爽爽va在线观看网站| 亚洲第一电影网av| 五月伊人婷婷丁香| 麻豆av噜噜一区二区三区| 中文亚洲av片在线观看爽| 午夜亚洲福利在线播放| 看黄色毛片网站| 久久精品国产清高在天天线| 女的被弄到高潮叫床怎么办 | 91精品国产九色| 身体一侧抽搐| 夜夜爽天天搞| 老司机深夜福利视频在线观看| 国产男人的电影天堂91| 最近最新中文字幕大全电影3| 亚洲国产精品sss在线观看| 亚洲国产色片| 免费观看在线日韩| 日韩高清综合在线| 亚洲经典国产精华液单| 欧美激情在线99| 日韩欧美在线乱码| 久久久久久久久久黄片| 精品99又大又爽又粗少妇毛片 | 精品日产1卡2卡| 免费在线观看影片大全网站| 最近中文字幕高清免费大全6 | 国产成年人精品一区二区| 成人亚洲精品av一区二区| 九九爱精品视频在线观看| av在线观看视频网站免费| 极品教师在线免费播放| 久久久国产成人精品二区| 波多野结衣巨乳人妻| 搡老岳熟女国产| 最近最新免费中文字幕在线| 午夜久久久久精精品| 日本-黄色视频高清免费观看| 五月玫瑰六月丁香| 简卡轻食公司| 色综合婷婷激情| 久久久午夜欧美精品| 欧美一区二区亚洲| 亚洲国产精品久久男人天堂| 一级黄色大片毛片| 日日撸夜夜添| 午夜福利视频1000在线观看| 国产午夜精品论理片| 高清日韩中文字幕在线| 久99久视频精品免费| 国产欧美日韩精品一区二区| av中文乱码字幕在线| 美女cb高潮喷水在线观看| 欧美日本视频| 免费看a级黄色片| 久久亚洲真实| 日韩大尺度精品在线看网址| 色在线成人网| 久久久久九九精品影院| 亚洲中文日韩欧美视频| 美女免费视频网站| 高清毛片免费观看视频网站| 精品国内亚洲2022精品成人| 男女啪啪激烈高潮av片| 午夜亚洲福利在线播放| 高清在线国产一区| 国内少妇人妻偷人精品xxx网站| 欧美zozozo另类| 国产综合懂色| av中文乱码字幕在线| 日韩高清综合在线| 窝窝影院91人妻| 一a级毛片在线观看| 国内精品宾馆在线| 在线播放无遮挡| 日本色播在线视频| 最后的刺客免费高清国语| 国产又黄又爽又无遮挡在线| 日本免费一区二区三区高清不卡| 乱人视频在线观看| 99热这里只有精品一区| 两个人的视频大全免费| 少妇裸体淫交视频免费看高清| 国产久久久一区二区三区| 12—13女人毛片做爰片一| 日日干狠狠操夜夜爽| 国产精品一及| 亚洲不卡免费看| 18禁黄网站禁片免费观看直播| 在线免费观看不下载黄p国产 | 欧美成人一区二区免费高清观看| 看十八女毛片水多多多| 亚洲国产精品成人综合色| 日本熟妇午夜| 久久6这里有精品| av在线亚洲专区| 欧美性猛交黑人性爽| 国产成人a区在线观看| 国产蜜桃级精品一区二区三区| 特大巨黑吊av在线直播| 少妇人妻一区二区三区视频| 啦啦啦啦在线视频资源| 亚洲精品日韩av片在线观看| 亚洲av不卡在线观看| 午夜福利18| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区性色av| 男人的好看免费观看在线视频| 亚洲av二区三区四区| 日韩av在线大香蕉| av福利片在线观看| 午夜免费激情av| 免费av不卡在线播放| 欧美zozozo另类| 欧美激情久久久久久爽电影| 毛片一级片免费看久久久久 | av在线天堂中文字幕| 人人妻人人看人人澡| 久久久久久国产a免费观看| 精品国内亚洲2022精品成人| 精品久久国产蜜桃| 免费av观看视频| 狂野欧美激情性xxxx在线观看| 欧美潮喷喷水| 男女边吃奶边做爰视频| av在线老鸭窝| 亚洲成人中文字幕在线播放| 国产精华一区二区三区| 欧美日本视频| 亚洲一级一片aⅴ在线观看| 国产在视频线在精品| 久久久久久伊人网av| 久久久久久久久久久丰满 | 亚洲精品456在线播放app | 国产 一区 欧美 日韩| 国产免费av片在线观看野外av| 国内久久婷婷六月综合欲色啪| 草草在线视频免费看| 日本三级黄在线观看| 成人国产麻豆网| 亚洲精品乱码久久久v下载方式| 午夜福利欧美成人| 亚洲国产精品久久男人天堂| 99久久中文字幕三级久久日本| 中文字幕人妻熟人妻熟丝袜美| 我的女老师完整版在线观看| 亚洲av成人精品一区久久| 天堂动漫精品| 成人欧美大片| 亚洲无线在线观看| 亚洲性久久影院| 国产黄色小视频在线观看| 老司机深夜福利视频在线观看| 日本a在线网址| 国内精品一区二区在线观看| 男女视频在线观看网站免费| 在线a可以看的网站| 成人无遮挡网站| 在线天堂最新版资源| 亚洲四区av| 人妻夜夜爽99麻豆av| 国产真实乱freesex| 日韩一本色道免费dvd| 热99re8久久精品国产| 日本免费一区二区三区高清不卡| 国产视频内射| 日韩中字成人| 高清在线国产一区| 亚洲av成人av| 99热精品在线国产| 88av欧美| 亚洲第一电影网av| 欧美日韩精品成人综合77777| 亚洲国产色片| 日本成人三级电影网站| 欧美性猛交╳xxx乱大交人| 国产在线精品亚洲第一网站| 一级a爱片免费观看的视频| 国产精品一区www在线观看 | 少妇猛男粗大的猛烈进出视频 | 久久国内精品自在自线图片| 一本精品99久久精品77| av国产免费在线观看| 麻豆精品久久久久久蜜桃| 国产免费一级a男人的天堂| a在线观看视频网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av熟女| 欧美不卡视频在线免费观看| 久久国产精品人妻蜜桃| av在线观看视频网站免费| 午夜精品在线福利| 亚洲国产高清在线一区二区三| 国产伦精品一区二区三区视频9| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区视频了| 97热精品久久久久久| 欧美日韩综合久久久久久 | 国产精品女同一区二区软件 | 久久6这里有精品| 老司机深夜福利视频在线观看| 校园人妻丝袜中文字幕| 国产白丝娇喘喷水9色精品| 亚洲欧美清纯卡通| 成人av一区二区三区在线看| 99精品久久久久人妻精品| 人妻夜夜爽99麻豆av| bbb黄色大片| av在线观看视频网站免费| 老司机福利观看| 亚洲美女视频黄频| 老女人水多毛片| 色哟哟·www| 国产精品不卡视频一区二区| 狠狠狠狠99中文字幕| 成人国产综合亚洲| 欧美xxxx黑人xx丫x性爽| 夜夜看夜夜爽夜夜摸| 久久国内精品自在自线图片| 日韩人妻高清精品专区| 欧美色欧美亚洲另类二区| 亚洲精品日韩av片在线观看| 欧美高清性xxxxhd video| 久久精品国产清高在天天线| 免费看av在线观看网站| 亚洲自拍偷在线| 欧美极品一区二区三区四区| 一进一出好大好爽视频| 免费在线观看日本一区| 亚洲性夜色夜夜综合| 国产免费男女视频| 成人无遮挡网站| 麻豆久久精品国产亚洲av| 少妇人妻精品综合一区二区 | 亚洲最大成人中文| 亚洲五月天丁香| 一区二区三区激情视频| 国产成人av教育| 深夜a级毛片| 久久精品国产亚洲av天美| 亚洲av免费在线观看| 成人一区二区视频在线观看| 亚洲性夜色夜夜综合| 免费无遮挡裸体视频| 最后的刺客免费高清国语| 成人av一区二区三区在线看| 老司机午夜福利在线观看视频| 久久这里只有精品中国| 国产色婷婷99| 国内毛片毛片毛片毛片毛片| 欧美最新免费一区二区三区| 午夜精品久久久久久毛片777| 男人舔奶头视频| 99久国产av精品| 99热网站在线观看| 国产激情偷乱视频一区二区| 精品免费久久久久久久清纯| 熟女电影av网| 中文字幕精品亚洲无线码一区| 一级a爱片免费观看的视频| 校园春色视频在线观看| 亚洲自偷自拍三级| 亚洲成av人片在线播放无| 亚洲欧美日韩卡通动漫| 日本-黄色视频高清免费观看| 51国产日韩欧美| av国产免费在线观看| 国产又黄又爽又无遮挡在线| 亚洲无线在线观看| 国内精品一区二区在线观看| 亚洲最大成人手机在线| av在线观看视频网站免费| 高清在线国产一区| 麻豆国产97在线/欧美| 亚洲,欧美,日韩| 亚洲欧美清纯卡通| 国产精品福利在线免费观看| 精品久久久久久久久久久久久| 九色成人免费人妻av| 伦精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 久久精品人妻少妇| 成熟少妇高潮喷水视频| 国产精品一区二区三区四区久久| 亚洲性久久影院| 国模一区二区三区四区视频| 亚洲精品在线观看二区| 欧美国产日韩亚洲一区| 久久久久久国产a免费观看| 99久久九九国产精品国产免费| 男人和女人高潮做爰伦理| 国产三级在线视频| 级片在线观看| 偷拍熟女少妇极品色| 国产高清不卡午夜福利| aaaaa片日本免费| 久久精品国产亚洲av香蕉五月| 真人做人爱边吃奶动态| 91久久精品国产一区二区成人| 精品一区二区三区人妻视频| 久久精品国产99精品国产亚洲性色| 亚洲av.av天堂| 色综合婷婷激情| 欧美成人a在线观看| ponron亚洲| 午夜福利成人在线免费观看| АⅤ资源中文在线天堂| 欧美精品啪啪一区二区三区| 在现免费观看毛片| 91av网一区二区| 精品一区二区三区av网在线观看| 一级毛片久久久久久久久女| 国产精品亚洲一级av第二区| 久久精品国产亚洲网站| 免费av毛片视频| 国产精品人妻久久久久久| 亚洲精品影视一区二区三区av| 日本免费一区二区三区高清不卡| 亚洲avbb在线观看| 精品久久国产蜜桃| 欧美最新免费一区二区三区| 久久99热6这里只有精品| 97超视频在线观看视频| 国产伦一二天堂av在线观看| 禁无遮挡网站| 少妇人妻一区二区三区视频| 亚洲av成人精品一区久久| 69人妻影院| 国产精品一区二区性色av| 国产精品久久久久久久久免| 国产一区二区在线av高清观看| 国产毛片a区久久久久| 成人av在线播放网站| 男人舔女人下体高潮全视频| 国产精品野战在线观看| 天天躁日日操中文字幕| 亚洲精品在线观看二区| 男女那种视频在线观看| av视频在线观看入口| 中文字幕av成人在线电影| 黄色丝袜av网址大全| 亚洲狠狠婷婷综合久久图片| 国产熟女欧美一区二区| 欧美3d第一页| 欧美精品国产亚洲| 黄色一级大片看看| 国产精品美女特级片免费视频播放器| 国内揄拍国产精品人妻在线| 少妇的逼水好多| 97热精品久久久久久| 亚洲欧美日韩无卡精品| 联通29元200g的流量卡| 91久久精品国产一区二区成人| 此物有八面人人有两片| 国产高清三级在线| 日本爱情动作片www.在线观看 | 国产一区二区在线av高清观看| 亚洲专区国产一区二区| 日本黄色片子视频| 国产精品一区二区三区四区久久| 看十八女毛片水多多多| 非洲黑人性xxxx精品又粗又长| 香蕉av资源在线| 国产精品乱码一区二三区的特点| 午夜精品久久久久久毛片777| 九九久久精品国产亚洲av麻豆| 国产亚洲精品综合一区在线观看| 男插女下体视频免费在线播放| 久久国产乱子免费精品| 国产欧美日韩精品一区二区| 亚洲精华国产精华精| 自拍偷自拍亚洲精品老妇| 黄色欧美视频在线观看| 免费人成视频x8x8入口观看| 日韩欧美国产一区二区入口| 久久人妻av系列| 狠狠狠狠99中文字幕| 久久欧美精品欧美久久欧美| 国产色爽女视频免费观看|