• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shear-horizontal transverse-electric seismoelectric waves in cylindrical double layer porous media*

    2021-01-21 02:11:26WeiHaoWang王偉豪XiaoYanZhu朱曉焱JinXiaLiu劉金霞andZhiWenCui崔志文
    Chinese Physics B 2021年1期

    Wei-Hao Wang(王偉豪), Xiao-Yan Zhu(朱曉焱), Jin-Xia Liu(劉金霞), and Zhi-Wen Cui(崔志文)

    Department of Acoustics and Microwave Physics,College of Physics,Jilin University,Changchun 130012,China

    Keywords: seismoelectric effect,shear-horizontal and transverse-electric waves,cylindrical layer,porous media

    1. Introduction

    The reservoirs of natural resources such as oil,water,and natural gases are mostly porous media. The seismoelectric effect related to the electric double layer in a fluid-containing porous medium has potential applications in many fields,e.g.,resource exploration. Pride[1]derived the governing equations that control the coupled electromagnetic-seismic wave propagation. Since then, research on the seismoelectric effect has been widely carried out. Logging is one of the important means to obtain the formation information. Some scholars put forward the method of seismoelectric effect logging based on the experience of acoustic logging. This method receives both acoustic fields and electric fields,which can make up for the lack of information of a single type of wave field. In the seismoelectric logging method, the source and receivers are placed in the borehole, and not influenced by the detection depth.[2]Thus,the application prospect of the method in deep reservoir exploration is better. Hu et al.[3,4]carried out the earliest seismoelertric effect logging simulation. They discovered the electromagnetic head waves propagating at the formation electromagnetic wave velocity,which are independent of the acoustic field and reach the receivers almost simultaneously. In their follow-up work,[5]they proposed a simplified algorithm for calculating the inducing electric fields. Guan et al.[6]gave the rationality proof and applicable conditions for applying the simplified algorithm to calculate the borehole seismoelectric wave fields. Zyserman et al.[7]applied the method of surface seismoelectric logging exploration to study the problems of CO2storage and fluid seepage monitoring in the shallow surface. Guan et al.[8]used the finitedifference method to simulate the seismoelectric wave fields,the results are basically consistent with the simulation results obtained by real axis integral. When the formation outside the borehole is discontinuous, the characteristics of the seismoelectric coupling wave fields and the interface response law of the inducing electric fields are also important research directions. Ding et al.[9]simulated the borehole seismoelectric wave fields in a cylindrical layered formation with discontinuous salinity, the results show that an interface response will occur when the acoustic wave passes through the salinity difference interface. Zhao et al.[10]simulated the seismoelectric wave fields excited by a point acoustic source of a cylindrical double layer porous medium outside the borehole. Gao et al.[11]studied the propagation law of the acoustic-electric coupling waves in the porous elastic hollow cylinder in the fluid.Liu et al.[12]studied the seismoelectric coupling wave fields under the condition of logging while drilling with a cylindrical layered porous medium. The results show that the interface response will occur when the acoustic waves pass through the discontinuous formation. The more obvious the contrast of the elastic or electrical properties on interfaces in the layered porous medium,the stronger the interface response. The above studies are focused on the full-wave analysis of the seismoelectric coupling wave fields. The full wave waveform of the electric field becomes more complicated when the geological structure outside the borehole is complicated. It is difficult to insight the interface response law of the electric field only from the full waveform. Component wave analysis of the seismoelectric wave fields is more helpful to reveal the relationship between the formation characteristics and the wave fields. Hu[13]used the method of secant integral to calculate the electromagnetic head wave. Wang et al.[14]conducted a comprehensive component wave analysis of the borehole seismoelectric wave fields excited by a point source. Wang et al.[15]studied the generation mechanism of the interface converted electromagnetic waves of a cylindrical layered porous formation. It was found that every time the formation fast pwave and shear-horizontal-wave impinge the interface in the porous medium,an interface converted electromagnetic wave response will generate.In this paper,we also use the secant integral method to simulate the interface converted electromagnetic waves, and discuss the interface response law of shearhorizontal and transverse-electric(SH-TE)seismoelectric logging in a cylindrical double-layer porous medium.

    The above research can well explain the characteristics of the borehole seismoelectric coupling wave fields excited by several typical acoustic sources. Due to the simple and easy analysis of the SH wave waveforms excited by the shear source, the work of shallow surface exploration using SH waves and the coupling electric fields has been widely carried out in recent years. Zyserman et al.[16]concluded that the signal-to-noise ratio of a shear wave source may be higher than that of a compressional source. Monachesi et al.[17]studied the seismoelectric response law of the SH waves excited by a surface shear source when passing through the seepage zone. In their subsequent work,[18]they studied the response law of the seismoelectric coupled waves excited by the horizontal shear source of the glacial environment. Gao et al.[19]used the finite difference method to simulate the 2D SH-TE seismoelectric waves. Munch et al.[20]investigated the possibility of using SH-TE seismoelectric coupling waves to detect non-aqueous fluid pollution in porous formations. In addition,related research has also shown that the borehole SH waves excited by the annular shear source have certain potential applications in formation exploration. White[21]first proposed the use of an annular shear source attached to the borehole wall for logging, and calculated the situation of a homogeneous medium outside the borehole. When it is a cylindrical layered medium outside the borehole,the characteristics of the acoustic field are different from the case of a homogeneous infinite medium.Yao et al.[22]studied the SH wave fields of a cylindrical double layer elastic medium outside the borehole. The results show that the wave field consists of the critically refracted SH wave and multi-order guided waves(i.e.,cylindrical Love waves).Unlike the Love waves of the semi-infinite plate structure, the dispersion curve of each order Love wave has a cutoff frequency,which is caused by the bending of the interface.The Love wave phase velocity at the cut-off frequency is the SH wave velocity of the outer medium. When the frequency tends to infinity, the phase velocity of each order Love wave tends to the SH wave velocity of the inner medium. That is,the Love wave phase velocity range is Vs1<VLove<Vs2,where VLoveis the phase velocity of the multi-mode Love waves,Vs1and Vs2are the SH wave velocities of the inner and the outer medium. In the cylindrical layered porous medium, the dispersion characteristics of Love waves are similar to those in an elastic medium,but the dispersion characteristics are affected by pore parameters.[23]Recent studies[24]have also shown that the circumferential guided waves in a porous cylinder are multi-order and dispersive. Relevant studies indicated that the seismoelectric effect logging method using the borehole SHTE coupling waves also has certain potential applications in exploration. Cui et al.[25]simulated the borehole SH-TE coupling waves of an infinitely homogeneous saturated porous medium. When the formation outside the borehole is homogeneous, the acoustic field has only one component, namely the SH wave. The electric field has two components, which are the interface converted electromagnetic wave and the accompanying electric field of the SH wave. The interface converted electromagnetic waves propagate at the velocity of the formation electromagnetic waves,and the velocities of the accompanying electric fields and the SH waves are consistent.The presence of the borehole-side interface makes the elastic and electrical properties of the porous medium discontinuous.For this scenario,the formation can be regarded as a cylindrical layered porous medium. In order to analyze the borehole SH-TE coupling wave field characteristics of this situation and study the application potential in exploration,we construct an SH-TE acoustic-electric effect logging model for a cylindrical double layer porous medium in this study. The expressions of the basic field quantities inside and outside the borehole are derived,and the real axis integral method is used to simulate the time-domain waveforms. The wave field composition is also analyzed. Finally, in order to study the interface response law when the porous medium outside the borehole has an interface, we adopt the secant integral method to simulate the interface converted electromagnetic waves and analyze the causes of each component.

    2. SH-TE seismoelectric waves

    In this section, we first introduce the Pride governing equations and solve the complete coupling equations to obtain the expressions of the basic field quantities inside and outside the borehole.Then the real axis integral method is used to simulate the borehole SH-TE coupling wavefields of a cylindrical double layer porous medium and the wave field composition is also analyzed.

    2.1. Expressions of the field quantities

    Pride[1]combined Biot’s[26]pore elastic wave equations and Maxwell’s electromagnetic equations to derive the coupled acoustic-electromagnetic equations. The electrokinetic coupling effect is controlled by the following two equations:

    where J is the current density,E is the electric field strength;σ(ω),κ(ω)and L(ω)are the dynamic conductivity,the dynamic permeability and the electrokinetic coupling coefficient,respectively,which are all the functions of frequency;ρfis the pore fluid density, η is the viscosity coefficient of the pore fluid, u is the solid phase displacement; p is the pore fluid pressure, and w is the seepage displacement. Equation (1)shows that solid-phase displacement acceleration and pressure gradient can generate current, and the electric field can cause seepage. When the electrokinetic coupling coefficient L(ω)is zero,the acoustic field is decoupled from the electric field,and the Pride governing equations will degenerate into Biot’s pore elastic wave equations and Maxwell’s electromagnetic equations.

    Fig.1. Schematic diagram of SH-TE seismioelectric effect logging.

    Solving the above complete Pride governing equations,the frequency-wavenumber domain expressions of the basic field quantities can be obtained. We study the SH-TE seismoelectric effect logging problem of a cylindrical double-layered porous medium. The model schematic diagram is shown in Fig. 1. The radius of the borehole is a = 0.1 m, and the distance between the interface of the porous medium and the borehole axis is b=1.5 m. There is an annular shear acoustic source attached to the borehole. The acoustic receivers are placed on the borehole wall and the electromagnetic receivers are placed in the borehole fluid. The radial distance of the electromagnetic receivers from the borehole axis is half the borehole radius. Porous medium 1 is a finite thickness porous medium,and porous medium 2 is infinite.

    Since the acoustic source is an annular shear source, the axial electric field cannot be excited. According to Cui et al.,[25]the frequency-wavenumber domain expressions of the basic field quantities of the borehole fluid and the outermost infinite porous medium are given by

    2.2. Numerical simulation results

    In this part,the real axis integral method is used to simulate the coupled acoustic and electromagnetic wave fields.The parameters of the layered porous medium are given in Table 1,they are the typical sandstone parameters.[4,16]In addition,the fluid density in the borehole is 1000 kg/m3, and the salinity is 0.01 Mol/L.The central frequency of the acoustic source is 10 kHz.

    Table 1. Porous medium parameters.

    Fig.2.Borehole SH-TE seismoelectric wave fields of a cylindrical double layer porous medium. The solid and dashed lines correspond to the electric and acoustic fields,respectively.

    Compared with the homogeneous medium,[25]when the porous medium outside the borehole is a cylindrical double layer porous medium, the components of the acoustic field and the electric field become complicated. Due to Vs1<Vs2,the cylindrical Love waves can be excited.[22,23]The acoustic field is composed of two parts, which are represented as c–c,d–d in Fig. 2, respectively. The component c–c is the critically refracted SH wave, it propagates at the SH wave velocity of the outer porous medium. The component d–d is composed of multi-order Love waves. The electric field consists of four components. When the source distance increases, the arrival time of components a–a and b–b is almost unchanged.This shows that components a–a and b–b are the interface responses,they are generated by the SH waves impinging the interface of the medium and propagate at the velocity of the formation electromagnetic waves, also called the interface converted electromagnetic waves. This is consistent with the interface response characteristics of the borehole seismoelectric coupling wave fields excited by a point acoustic source.[3–5]After the interface responses a–a and b–b, the electric field component c–c is the accompanying electric field of the SH wave. The electric field component d–d is the accompanying electric field of the multi-mode Love waves. Since the propagating velocity of the accompanying electric fields of the Love waves are the same as the Love wave velocities,[3,4,25]the dispersion law for them is also the same. The dispersion characteristics of the Love waves in a cylindrical layered porous medium can refer to Ref.[23]. In a nutshell,as the frequency increases, the phase velocity of the Love wave gradually decreases, and the phase velocity of each order Love wave is greater than the SH wave velocity of the inner layer porous medium and less than the SH wave velocity of the outer layer porous medium.

    3. Interface response

    In order to study the interface response of the borehole SH-TE seismoelectric coupling wave fields when the porous medium has an interface,we use the secant integral method to calculate the interface converted electromagnetic waves. The interface converted electromagnetic waves refer to the electromagnetic wave components generated by the SH wave impinging the interface of the medium and propagate at the velocity of the formation electromagnetic wave.[13,25]In this section, we first introduce the basic theory of the vertical secant integral and simulate the time domain waveforms of the interface converted electromagnetic waves. Next, the cause of each component is analyzed by comparing the interface converted electromagnetic wave waveforms of different interface positions.

    3.1. The secant integral theory

    Table 2. Values of the formation body wave branch points.

    Fig. 3. Distribution of the body wave branch points and the integral path.

    3.2. Interface converted electromagnetic wave

    Figure 4 shows the normalized time domain waveforms of the interface converted electromagnetic wave when the formation outside the borehole is a cylindrical double layer porous medium. The parameters adopted in this section are the same as those in Table 1. The distance between the interface of the porous medium and the borehole axis is still 1.5 m,and the axial distance of the electromagnetic sensors from the borehole axis is half the radius of the borehole. In order to distinguish it from the tangential electric field full wave Eθobtained in the previous section,we represent the interface converted electromagnetic waves calculated by secant integral as Eθcut.

    The interface converted electromagnetic wave is composed of three components,which are represented as a–a,b–b,and c–c in Fig.4.The arrival time of each component of the interface converted electromagnetic wave hardly increases with the increasing source distance. In order to illustrate the component corresponding relationship between the interface converted electromagnetic wave Eθcutand the electric field full wave Eθ,Fig.5 shows the waveform comparison of Eθcutand Eθ. Here we take the waveforms with a source distance of 3 m as an example. The upper figure is the waveform of the electric field full wave and the lower one is the waveform of the interface converted electromagnetic. They are both normalized with their respective maximum amplitudes.

    Fig. 4. Normalized amplitudes of the interface converted electromagnetic wave.

    Fig.5. Waveform comparison of the interface converted electric wave and the electric field full wave.

    From comparison, we can find that the first two components of the interface electromagnetic wave Eθcutand the electric field full wave Eθare correspondence. This further illustrates that the components a–a and b–b in the full wave of the electric field given by Fig. 2 are the interface converted electromagnetic waves. Since the amplitude of the interface converted electromagnetic wave component c–c in Fig. 4 is small and the arrival time is close to the accompanying electric fields,it is not obvious in the electric field full wave Eθ.In order to explain the production causes of each component of Eθcut,we compare the waveforms of Eθcutof different porous medium interface positions, as shown in Fig. 6. Δt1and Δt2are the arrival time difference, b is the distance between the porous medium interface and the borehole axis. Here we still take the waveforms with a source distance of 3 m as an example.

    Fig.6. Interface converted electromagnetic waveforms of different interface positions.The solid and the dashed line correspond to b=1.5 m and 1.8 m,respectively.

    As shown in Fig. 6, when the porous medium interface turns 0.3 m away from the borehole wall,the arrival time and the amplitude of the first component hardly change. The position of the interface has little influence on the first component. This shows that the first component(represented as a–a in Fig. 4) is the interface response at the borehole wall. The arrival time difference of the second component is 0.218 ms,which is consistent with the time of SH wave propagating 0.3 m in the inner porous medium. This shows that the second component(represented as b–b Fig.4)is the interface response generated by the SH wave impinging the interface of the porous medium. The arrival time difference of the third component is 0.654 ms, which is consistent with the time of SH wave propagating 0.9 m in the inner medium. This shows that the third component (represented as c–c in Fig. 4) is the interface response generated by the SH wave impinging the interface of the porous medium again after two reflections.Since the SH wave is uncoupled with the fluid in the borehole,there is almost no interface response when the SH wave propagates back from the formation to the borehole wall. In summary,the first component of the interface converted electromagnetic wave is the interface response at the borehole wall. Except for the first component,all the other components are the interface responses generated by the SH wave impinging the interface between the porous medium.

    4. Conclusions

    In summary, we have studied the borehole SH-TE seismoelectric coupling wave fields of a cylindrical double layer porous medium. First, we derive the expressions of the basic field quantities inside and outside the borehole,and the full wave waveforms of the acoustic field and electric field are simulated. Then,in order to study the interface response,we use the secant integral method to calculate the interface converted electromagnetic waves. The results show that the interface of the porous medium makes the composition of the acousticelectric coupling wave fields more complicated than that of a homogeneous infinite medium. In addition to the critically refracted SH waves,multi-order and dispersive cylindrical Love waves can also be excited due to the layered structure. The electric field includes the interface responses and the accompanying electric fields of the acoustic fields.The interface converted electromagnetic waves propagate in the porous medium at the velocity of the formation electromagnetic waves while the accompanying electric fields are consistent with the propagation velocity of the acoustic waves. The existence of the interface of the porous medium makes the interface response law of the SH-TE wave fields complicated. The results show that when the SH wave generate multi refractions and reflections in the inner porous medium, each time it impinges the interface between the porous medium, an interface converted electromagnetic wave response will occur. The research results in this study indicate that the borehole SH-TE seismoelectric coupling wave fields have certain application potential in the fields of formation exploration and borehole-side interface detection. However, the Love waves in the porous layered medium are complicated. The dispersion,excitation and attenuation characteristics of the cylindrical Love modes with seismoelectric effect are worthy of further study. In addition,the idealized model in this paper needs further improvement to be more in line with the actual situation.

    5. Appendix A

    The elements of matrix[mij]7×7are

    Here a is the borehole radius,and b is the distance between the interface of the porous medium and the borehole axis.

    中文字幕人妻熟人妻熟丝袜美| 伊人久久精品亚洲午夜| 寂寞人妻少妇视频99o| 日韩电影二区| 国产有黄有色有爽视频| 欧美三级亚洲精品| 日本免费在线观看一区| 国产精品久久久久久久电影| 一级毛片黄色毛片免费观看视频| 免费观看av网站的网址| 制服丝袜香蕉在线| 国产成人精品无人区| 美女大奶头黄色视频| freevideosex欧美| 91aial.com中文字幕在线观看| 日本av免费视频播放| 观看av在线不卡| 美女国产视频在线观看| 精品久久国产蜜桃| 91久久精品国产一区二区成人| 午夜福利影视在线免费观看| 最近手机中文字幕大全| 三级国产精品片| 性色av一级| 曰老女人黄片| 精品人妻在线不人妻| 久久女婷五月综合色啪小说| 午夜日本视频在线| 少妇人妻久久综合中文| 亚洲国产欧美在线一区| 久久 成人 亚洲| 在现免费观看毛片| 韩国高清视频一区二区三区| 一个人免费看片子| 欧美+日韩+精品| 永久免费av网站大全| 日本色播在线视频| 七月丁香在线播放| 国产免费视频播放在线视频| 韩国av在线不卡| 精品亚洲成国产av| 精品人妻熟女毛片av久久网站| av.在线天堂| 一级,二级,三级黄色视频| 国产极品天堂在线| 亚洲国产精品一区二区三区在线| 免费观看在线日韩| 边亲边吃奶的免费视频| av福利片在线| 中国三级夫妇交换| 国产精品三级大全| 久久久久久久精品精品| 国模一区二区三区四区视频| av不卡在线播放| 国产精品一二三区在线看| 精品99又大又爽又粗少妇毛片| 欧美97在线视频| 人人妻人人爽人人添夜夜欢视频| 久久精品人人爽人人爽视色| 久久精品国产自在天天线| 日日爽夜夜爽网站| 免费黄频网站在线观看国产| 欧美精品人与动牲交sv欧美| 亚洲情色 制服丝袜| 天堂俺去俺来也www色官网| 日韩成人伦理影院| 人人妻人人澡人人看| 日日爽夜夜爽网站| 又黄又爽又刺激的免费视频.| 全区人妻精品视频| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲精品久久久com| 午夜福利视频在线观看免费| 天天躁夜夜躁狠狠久久av| 久久久精品94久久精品| 性色av一级| 亚洲在久久综合| 3wmmmm亚洲av在线观看| 亚洲欧美清纯卡通| 考比视频在线观看| 国产精品国产三级专区第一集| 成人18禁高潮啪啪吃奶动态图 | 亚洲图色成人| 国产成人精品久久久久久| 国产男人的电影天堂91| 午夜激情福利司机影院| 精品酒店卫生间| 亚洲av成人精品一二三区| 99久久综合免费| av黄色大香蕉| 亚洲av二区三区四区| 亚洲国产av影院在线观看| 精品久久久精品久久久| 精品亚洲成国产av| 国产精品一区二区三区四区免费观看| 国产午夜精品一二区理论片| 黑人猛操日本美女一级片| 亚洲怡红院男人天堂| 男女高潮啪啪啪动态图| av卡一久久| 午夜激情福利司机影院| 精品人妻一区二区三区麻豆| 久久久欧美国产精品| 色94色欧美一区二区| 蜜臀久久99精品久久宅男| av福利片在线| 日韩av免费高清视频| 国产片内射在线| 久久国内精品自在自线图片| 成人二区视频| 少妇精品久久久久久久| 麻豆成人av视频| 免费人妻精品一区二区三区视频| 国国产精品蜜臀av免费| 日韩免费高清中文字幕av| tube8黄色片| 国产免费一级a男人的天堂| 夫妻午夜视频| 久久久久久人妻| 午夜精品国产一区二区电影| 考比视频在线观看| 国产成人精品在线电影| 国产一区二区三区av在线| 一级片'在线观看视频| 天美传媒精品一区二区| 大片免费播放器 马上看| 午夜激情福利司机影院| 涩涩av久久男人的天堂| 国产又色又爽无遮挡免| 国产精品久久久久久久电影| 国产 一区精品| 色哟哟·www| 精品国产国语对白av| 一边摸一边做爽爽视频免费| 国产老妇伦熟女老妇高清| 性色av一级| 久久精品国产亚洲网站| 乱人伦中国视频| 亚洲人成77777在线视频| 欧美日韩精品成人综合77777| 大片免费播放器 马上看| 免费少妇av软件| 男女啪啪激烈高潮av片| 午夜福利视频精品| av视频免费观看在线观看| 国产精品无大码| 精品少妇久久久久久888优播| 亚洲精品一区蜜桃| 久久热精品热| 午夜福利视频精品| 蜜桃在线观看..| 哪个播放器可以免费观看大片| 热re99久久国产66热| 免费少妇av软件| 日产精品乱码卡一卡2卡三| 啦啦啦视频在线资源免费观看| 丝瓜视频免费看黄片| 国产免费一级a男人的天堂| 成人漫画全彩无遮挡| 亚洲不卡免费看| 亚洲国产精品一区二区三区在线| 18禁在线播放成人免费| 国产成人精品一,二区| 亚洲一区二区三区欧美精品| av电影中文网址| 久久毛片免费看一区二区三区| 日本色播在线视频| 国产 精品1| 国产成人freesex在线| 日韩大片免费观看网站| 国产无遮挡羞羞视频在线观看| 亚洲成色77777| 又粗又硬又长又爽又黄的视频| 51国产日韩欧美| 国产一区二区三区综合在线观看 | 伦理电影免费视频| videos熟女内射| 日韩人妻高清精品专区| 亚洲国产最新在线播放| 久久久久久久久久成人| 少妇的逼好多水| 欧美3d第一页| 99视频精品全部免费 在线| 丰满乱子伦码专区| videos熟女内射| 午夜日本视频在线| 嫩草影院入口| 97在线人人人人妻| 九九在线视频观看精品| 欧美日韩视频精品一区| 我的女老师完整版在线观看| 亚洲欧美清纯卡通| 国产一区有黄有色的免费视频| 久久久久久久久久人人人人人人| 欧美人与性动交α欧美精品济南到 | 久久久久久伊人网av| 黄色毛片三级朝国网站| 天堂俺去俺来也www色官网| 亚洲丝袜综合中文字幕| 在线看a的网站| 亚洲国产av影院在线观看| 久久青草综合色| 热re99久久精品国产66热6| 在线观看免费视频网站a站| 伦精品一区二区三区| 午夜福利在线观看免费完整高清在| 亚洲一级一片aⅴ在线观看| 91久久精品国产一区二区三区| 欧美 日韩 精品 国产| 满18在线观看网站| 嫩草影院入口| 国产探花极品一区二区| 国产精品国产三级国产av玫瑰| 欧美日韩av久久| 精品一品国产午夜福利视频| 亚洲第一区二区三区不卡| 少妇人妻 视频| 91在线精品国自产拍蜜月| 国产欧美日韩一区二区三区在线 | 国产一区亚洲一区在线观看| 国产免费视频播放在线视频| 欧美日韩亚洲高清精品| 男女免费视频国产| 精品国产国语对白av| 日韩在线高清观看一区二区三区| 精品久久蜜臀av无| 丝袜在线中文字幕| 亚洲激情五月婷婷啪啪| 久久午夜福利片| 少妇的逼水好多| 国产伦精品一区二区三区视频9| 水蜜桃什么品种好| av.在线天堂| 久久99热这里只频精品6学生| 日韩视频在线欧美| 美女国产视频在线观看| 中文字幕免费在线视频6| 亚洲精品aⅴ在线观看| 久久韩国三级中文字幕| 欧美激情 高清一区二区三区| 日韩大片免费观看网站| 久久精品国产亚洲av天美| 这个男人来自地球电影免费观看 | av网站免费在线观看视频| 91精品伊人久久大香线蕉| 久久毛片免费看一区二区三区| 亚洲综合色惰| 国产爽快片一区二区三区| 亚洲激情五月婷婷啪啪| 男人爽女人下面视频在线观看| 看免费成人av毛片| 成人毛片a级毛片在线播放| 国产亚洲午夜精品一区二区久久| 亚洲国产毛片av蜜桃av| 国产精品秋霞免费鲁丝片| 少妇熟女欧美另类| 久久人妻熟女aⅴ| 久久97久久精品| 99久久精品一区二区三区| 国产国语露脸激情在线看| 免费观看的影片在线观看| 热re99久久精品国产66热6| 插阴视频在线观看视频| 内地一区二区视频在线| 欧美激情国产日韩精品一区| 日韩欧美一区视频在线观看| 中文欧美无线码| 91在线精品国自产拍蜜月| 国产日韩欧美在线精品| 日本与韩国留学比较| 插阴视频在线观看视频| 18+在线观看网站| 人成视频在线观看免费观看| 观看美女的网站| 国产乱人偷精品视频| 视频在线观看一区二区三区| 18禁在线无遮挡免费观看视频| 久久这里有精品视频免费| 久久精品久久久久久噜噜老黄| 国产老妇伦熟女老妇高清| 日韩精品免费视频一区二区三区 | 色5月婷婷丁香| 成人国产麻豆网| 国内精品宾馆在线| a级片在线免费高清观看视频| 欧美日韩精品成人综合77777| 一区二区三区乱码不卡18| av视频免费观看在线观看| 国产精品一国产av| 男人爽女人下面视频在线观看| 精品酒店卫生间| 久久久精品94久久精品| 欧美3d第一页| 免费观看在线日韩| 在线观看美女被高潮喷水网站| 欧美精品高潮呻吟av久久| 成人手机av| 亚洲综合精品二区| 欧美激情 高清一区二区三区| 少妇人妻 视频| 国产黄色视频一区二区在线观看| 国产成人精品福利久久| 欧美少妇被猛烈插入视频| 飞空精品影院首页| 91午夜精品亚洲一区二区三区| 国模一区二区三区四区视频| 黄色欧美视频在线观看| 国产一区二区在线观看日韩| 春色校园在线视频观看| 亚洲国产日韩一区二区| 国产男人的电影天堂91| 亚洲国产欧美日韩在线播放| 欧美日韩一区二区视频在线观看视频在线| 9色porny在线观看| 久久久a久久爽久久v久久| av播播在线观看一区| 国产精品嫩草影院av在线观看| 伦精品一区二区三区| 又粗又硬又长又爽又黄的视频| 亚洲av不卡在线观看| 国产永久视频网站| 嫩草影院入口| 亚洲精品一二三| 免费不卡的大黄色大毛片视频在线观看| 嘟嘟电影网在线观看| 国产免费一级a男人的天堂| 在线观看免费高清a一片| 国产又色又爽无遮挡免| 女人精品久久久久毛片| 丰满饥渴人妻一区二区三| 熟女电影av网| 日韩成人av中文字幕在线观看| 精品亚洲乱码少妇综合久久| 精品少妇黑人巨大在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 一级黄片播放器| 久久久欧美国产精品| 成人国产av品久久久| 春色校园在线视频观看| 尾随美女入室| www.色视频.com| 国产 精品1| 黑丝袜美女国产一区| 99久久中文字幕三级久久日本| 一级毛片我不卡| 久久毛片免费看一区二区三区| 久久久久精品久久久久真实原创| 精品一区二区三区视频在线| 亚洲精品一二三| 亚洲色图 男人天堂 中文字幕 | 国产 一区精品| 久久久久网色| 人妻 亚洲 视频| av在线观看视频网站免费| 我要看黄色一级片免费的| 国产精品99久久久久久久久| 日日撸夜夜添| 欧美丝袜亚洲另类| 中文天堂在线官网| 国产精品久久久久成人av| 欧美+日韩+精品| 伦理电影免费视频| 国产高清三级在线| 婷婷色综合大香蕉| 亚洲五月色婷婷综合| .国产精品久久| 午夜久久久在线观看| 亚洲av综合色区一区| 女性生殖器流出的白浆| 国产精品三级大全| 日本91视频免费播放| 男人操女人黄网站| 国产成人aa在线观看| 成年美女黄网站色视频大全免费 | 午夜福利,免费看| 国产一区亚洲一区在线观看| 国产欧美日韩一区二区三区在线 | 亚洲国产精品成人久久小说| 国产在线视频一区二区| 十分钟在线观看高清视频www| 欧美亚洲日本最大视频资源| 亚洲精品视频女| 女性被躁到高潮视频| 成人免费观看视频高清| 亚洲精品国产色婷婷电影| 亚洲国产成人一精品久久久| 国产精品99久久久久久久久| 亚洲精品色激情综合| 18禁动态无遮挡网站| 国产午夜精品久久久久久一区二区三区| 在线 av 中文字幕| 国产免费现黄频在线看| 青春草亚洲视频在线观看| 日韩一区二区视频免费看| 少妇人妻 视频| 亚洲成人一二三区av| 边亲边吃奶的免费视频| 99九九在线精品视频| 九九久久精品国产亚洲av麻豆| 五月天丁香电影| 国产成人精品在线电影| 黑人欧美特级aaaaaa片| 成年女人在线观看亚洲视频| 亚洲欧洲国产日韩| 秋霞在线观看毛片| 这个男人来自地球电影免费观看 | 精品久久久久久久久亚洲| 中文字幕制服av| 九九久久精品国产亚洲av麻豆| av黄色大香蕉| 少妇的逼好多水| 久久久欧美国产精品| 黄片播放在线免费| av有码第一页| 春色校园在线视频观看| 日韩av不卡免费在线播放| 日韩一区二区三区影片| 看非洲黑人一级黄片| 亚洲精品中文字幕在线视频| 日韩av不卡免费在线播放| 国内精品宾馆在线| 久久女婷五月综合色啪小说| 国产日韩一区二区三区精品不卡 | 国产av码专区亚洲av| 在线观看美女被高潮喷水网站| 欧美精品高潮呻吟av久久| 男人操女人黄网站| 国产精品99久久99久久久不卡 | 国产在线免费精品| 精品一区在线观看国产| 成人综合一区亚洲| 亚洲伊人久久精品综合| 日韩一区二区三区影片| 国产av码专区亚洲av| 免费久久久久久久精品成人欧美视频 | 极品人妻少妇av视频| 国产69精品久久久久777片| 亚洲国产精品一区二区三区在线| 黑人欧美特级aaaaaa片| 精品一品国产午夜福利视频| 国产熟女午夜一区二区三区 | 看免费成人av毛片| 91久久精品国产一区二区三区| 乱码一卡2卡4卡精品| 久久久久精品久久久久真实原创| 久久精品夜色国产| av有码第一页| 久久综合国产亚洲精品| h视频一区二区三区| 国产精品国产三级国产av玫瑰| 狠狠精品人妻久久久久久综合| 国产极品天堂在线| a 毛片基地| 免费人妻精品一区二区三区视频| 亚洲人成网站在线播| 一本色道久久久久久精品综合| 青春草视频在线免费观看| 制服人妻中文乱码| av有码第一页| 热99国产精品久久久久久7| 国产黄色免费在线视频| 51国产日韩欧美| 日韩人妻高清精品专区| 欧美成人精品欧美一级黄| 国产成人91sexporn| 青春草视频在线免费观看| 成人漫画全彩无遮挡| 性高湖久久久久久久久免费观看| 99久国产av精品国产电影| 亚洲av中文av极速乱| 国产精品蜜桃在线观看| 欧美+日韩+精品| 免费不卡的大黄色大毛片视频在线观看| h视频一区二区三区| 一边亲一边摸免费视频| 久久精品国产亚洲av天美| 欧美人与善性xxx| 男的添女的下面高潮视频| 久久久久人妻精品一区果冻| 女的被弄到高潮叫床怎么办| 中文欧美无线码| 亚洲av免费高清在线观看| 亚洲欧美成人精品一区二区| 国产精品国产三级国产av玫瑰| 国产精品蜜桃在线观看| 91国产中文字幕| 国产黄色视频一区二区在线观看| 久久99一区二区三区| 日韩免费高清中文字幕av| 久久久久久久久久人人人人人人| 国产精品久久久久久av不卡| 女性生殖器流出的白浆| 国产高清有码在线观看视频| 99视频精品全部免费 在线| 久久久久国产精品人妻一区二区| 久久99精品国语久久久| 青春草国产在线视频| 大香蕉久久成人网| 精品国产乱码久久久久久小说| 91精品国产国语对白视频| 99国产精品免费福利视频| 午夜激情久久久久久久| videos熟女内射| 日韩伦理黄色片| 久久人人爽人人片av| 天天躁夜夜躁狠狠久久av| 曰老女人黄片| 欧美精品人与动牲交sv欧美| 下体分泌物呈黄色| 伊人亚洲综合成人网| 国产 精品1| 亚洲精品视频女| 午夜精品国产一区二区电影| 日韩av免费高清视频| 日韩,欧美,国产一区二区三区| 日韩免费高清中文字幕av| 免费高清在线观看视频在线观看| 精品人妻一区二区三区麻豆| 制服人妻中文乱码| 99视频精品全部免费 在线| 亚洲国产精品成人久久小说| 久久热精品热| 秋霞在线观看毛片| 久热这里只有精品99| 亚洲av中文av极速乱| 亚洲人与动物交配视频| 边亲边吃奶的免费视频| a级毛片黄视频| 国产永久视频网站| 午夜激情av网站| 男的添女的下面高潮视频| 久久久久精品性色| 天天躁夜夜躁狠狠久久av| 一级黄片播放器| av播播在线观看一区| 飞空精品影院首页| 又大又黄又爽视频免费| av黄色大香蕉| 一级毛片 在线播放| h视频一区二区三区| 国产免费视频播放在线视频| 日韩av不卡免费在线播放| 国产深夜福利视频在线观看| 久久ye,这里只有精品| .国产精品久久| 99热6这里只有精品| 亚洲av男天堂| 欧美老熟妇乱子伦牲交| 夜夜骑夜夜射夜夜干| 国产一区二区三区av在线| 亚洲第一av免费看| 亚洲欧美日韩卡通动漫| a级毛片在线看网站| 久久久久久久久久久丰满| 在线观看国产h片| 一级毛片黄色毛片免费观看视频| 国产69精品久久久久777片| 亚州av有码| 亚洲国产日韩一区二区| 熟女人妻精品中文字幕| 精品久久久久久电影网| 日韩成人伦理影院| 国内精品宾馆在线| 26uuu在线亚洲综合色| av视频免费观看在线观看| 99九九在线精品视频| 一区二区三区精品91| 在线观看一区二区三区激情| av国产精品久久久久影院| 性色av一级| 日日撸夜夜添| 久久精品国产亚洲av涩爱| 精品一区二区三区视频在线| 亚洲欧洲国产日韩| 在线播放无遮挡| 亚洲四区av| 99热国产这里只有精品6| 国产日韩欧美在线精品| av一本久久久久| 免费看光身美女| 丝袜美足系列| 亚洲国产精品一区二区三区在线| 最近2019中文字幕mv第一页| 欧美日韩成人在线一区二区| 特大巨黑吊av在线直播| av免费在线看不卡| 久久久精品免费免费高清| 99九九线精品视频在线观看视频| 看免费成人av毛片| av电影中文网址| 日韩人妻高清精品专区| 欧美亚洲日本最大视频资源| 亚洲精品乱久久久久久| 免费大片黄手机在线观看| 亚洲精品第二区| 黑人高潮一二区| 少妇高潮的动态图| 三级国产精品片| 久久久国产一区二区| 免费av不卡在线播放| 99热这里只有是精品在线观看| 欧美精品国产亚洲| 国产精品一区二区在线观看99| 啦啦啦啦在线视频资源| 国产精品三级大全| 国产熟女欧美一区二区| 纯流量卡能插随身wifi吗| 在线观看国产h片| 永久免费av网站大全| av黄色大香蕉| 制服人妻中文乱码| 亚洲成色77777| 国产片特级美女逼逼视频| 日本与韩国留学比较| 97在线人人人人妻|