• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band

    2021-01-21 02:07:36XinTongZhang張欣桐
    Chinese Physics B 2021年1期

    Xin-Tong Zhang(張欣桐)

    Department of Optics and Optical Engineering,University of Science and Technology of China,Hefei 230026,China

    Keywords: second harmonic generation,lithium niobate ridge waveguide,dispersion manipulation

    1. Introduction

    Second-order nonlinearity χ(2)is crucial for nonlinear optical parametric processes, such as second harmonic generation (SHG), sum and difference-frequency generation(SFG/DFG). These dynamical processes are most prominent approaches to achieve modern nonlinear optical applications, including optical parametric oscillators,[1]wavelength division multiplexing,[2]super-continuum generation[3]and quantum information processing.[4]The quasi-phase-matched(QPM) wavelength conversion engineering based on periodically poled lithium niobate(PPLN)waveguides is widely employed for these applications, owing to their transparency to signal format and ultrafast interaction speed. Lithium niobate(LiNbO3) crystal is a suitable χ(2)material choice for wavelength conversion because of its large second order nonlinear coefficients (d33= 25 pm/V), wide transparency range from UV to mid-IR and high refractive index. Due to these remarkable features, LiNbO3(LN) crystal becomes an efficient and prevail routine in a variety of optical and photonic applications.

    Efficient wavelength conversion is essential for a range of optical applications, such as quantum storage[5]and optical frequency comb.[6]Since the nonlinear frequency conversion efficiency is related to the intensity of optical waves inside devices, LiNbO3waveguides with tight optical confinement were widely used to enhance the nonlinear interaction strength. Recently, some outstanding works based on lithium niobate thin films have been demonstrated. Peak normalized SHG efficiency of 160%W-1·cm-2has been achieved in PPLN waveguides on silicon nitride thin-film LN platforms.[7]Ultra-high wavelength conversion efficiency of 2600%W-1·cm-2has been realized by Wang using PPLNOI waveguides.[8]Luo et al. experimentally demonstrated a significant SHG-spectrum-tuning slope of 0.84 nm/K with a nonlinear conversion efficiency of 4.7%W-1·cm-2in a lithium niobate nano-photonic waveguide.[9]It is indicated that lithium niobate waveguides are a promising candidate for future integrated wavelength conversion systems.

    Meanwhile, broad frequency conversion bandwidth is also highly desirable in many applications such as ultrafast optical signal processing, frequency tunable lasers, and optical telecommunications.[10–12]However, due to the groupvelocity mismatching between interaction waves, acceptance bandwidth of highly efficient PPLN frequency conversion process is generally narrow, typically ~50 GHz(~0.4 nm),[13]which limits its applications in ultra-shortpulse compression,[14]frequency tunable lasers[15]and optical telecommunications.[16]Several approaches have been demonstrated to broaden the acceptance bandwidth of SHG,including aperiodic domain inverted gratings[17,18]and chirping periodically poled crystals.[19,20]However, the performance of these method is usually limited by the noticeable ripples response,fabrication difficulties,additional production costs and efficiency fluctuations.[21]

    Highly efficient and simultaneously broadband second harmonic generation is of vital importance for optical applications. Ultra-broadband and efficient SHG has been realized through dispersion engineering at 2 μm wavelength,[22]whereas the specifically designed waveguide with low dispersion at 2 μm may not be applicable for dispersion properties at telecom-band. In this study, we theoretically demonstrate a broadband and efficient second harmonic generator at telecom-band,which is made of a LiNbO3ridge waveguide on a LiTaO3(LT) substrate. Through achieving simultaneously group velocity and quasi phase matching,the acceptance SHG bandwidth of >2.5 THz(~20 nm)was achieved in a 10-mmlong ridge-waveguide sample,with a conversion efficiency of>25%W-1·cm-2.

    2. Designed waveguide structure

    Figure 1 gives a schematic view showing the overall layout of the designed waveguide structure. The LiNbO3film layer was bonded on the top of the LiTaO3substrate, both the LN film and the LT substrate were diced to form a ridge with depth of 10 μm. The LiNbO3core thickness was modulated from 2.25 μm to 3 μm for different waveguide configurations. Optical wave was restricted in the top LN layer because of the higher refractive index of LN. LiTaO3was used as the substrate material in our device because the refractive index difference between LiNbO3(ne=2.13, no=2.21 at 1.55 μm) and LiTaO3(ne=2.12, no=2.11 at 1.55 μm)was quite small, which effectively reduced the waveguide dispersion and contributed to a large SHG acceptance bandwidth, at telecom-band. Additionally, as the thermal expansion coefficient of LiTaO3(α = 14×10-6?C-1)and LiNbO3(α = 16×10-6?C-1) were similar, the nonlinear performance degradation and structural instability induced by thermal stress between two layers may be prevented by using the LiTaO3substrate. The solid-source MOCVD[23]and direct hetero bonding(D-HEB)[24]method were proved to be capable of fabricating a high quality single-crystal LiNbO3film on the LiTaO3substrate for waveguide applications. The fabrication of low-loss ridged LiNbO3waveguides with ultra-smooth sidewalls has been demonstrated using the optical-grade dicing method.[25–27]The above experiments proved that our device was experimentally accessible.

    Fig. 1. Schematic diagram of the Z-cut LiNbO3 ridge waveguide and the LiTaO3 substrate.

    3. SHG with birefringent phase matching

    Firstly, second harmonic generation (SHG) properties,such as efficiency and acceptance bandwidth, in our device were investigated under birefringent phase matching (BPM)condition. In our simulations,the sample length was assumed to be 10 mm. The refractive index and dispersion information used in the simulation were obtained numerically from the Sellmeier equation published.[28,29]The initial pump wavelength was fixed at 1.55 μm. The temperature was tuned in a reasonable range from 20?C to 220?C.The designed width of the ridge waveguide was adjusted from 2 μm to 4 μm,while the LiNbO3core thickness varied from 2.25 μm to 3 μm(see Table 1). The optical guiding modes and effective indices were calculated using the FDE Eigen-mode solver simulations(Mode Solution, Lumerical Corp). Birefringent phase matching between orthogonal polarizations (o+o →e, type-I modal interaction) was employed here. Although the nonlinear coefficient(d31= 4.3 pm/V)is not comparable to that of type-0(e+e →e,d33= 25 pm/V)interactions,the wavevector mismatch varies slowly with fundamental wavelengths under type-I interaction,which provides a broader SHG output spectrum in contrast to traditional type-0 interaction.[30,31]As shown in Fig.2,the type-I birefringent phase matching condition was achieved in four waveguides successfully within the temperature range tunable.

    No high-order modes satisfying phase matching conditions were found within the preset waveguide geometry. The fundamental transverse electric mode(TE0 for no)was phase matched with the fundamental transverse magnetic mode(TM0 for ne). The normalized conversion efficiency was calculated using the following equation:

    Table 1. Details of waveguide 1 to waveguide 4.

    Fig.2. Effective indices as a function of temperature under BPM conditions at the wavelength of 1550 nm in(a)WG1,(b)WG2,(c)WG3,(d)WG4(for specific parameters see Table 1). Inset shows the modal profiles of the pump(TE0)and SH(TM0)waves.

    WG1(geometry size of upper LN layer: width=3,thickness=2) was utilized as an example in the following simulations. The SHG acceptance bandwidth of WG1 was investigated by calculating the normalized conversion efficiency.The output SHG power was proportional to phase mismatch factor given by

    where Δk was phase mismatch factor, and L was the sample length. Figure 3 illustrates the normalized SHG spectrum in WG1. A dual SHG wavelength peak was achieved. The calculated phase mismatch factor as a function of pump wavelengths was also presented. The phase match condition was satisfied (Δk = 0) under both 1520 nm and 1558 nm, at the temperature of 146.2?C. The full width at half maximum(FWHM) of two SHG peaks were both 9 nm with the sample length of 10 mm.

    Fig.3. SHG acceptance spectrum and mismatch factor in waveguide 1 at 146.2 ?C.

    The simulation results verify that the designed device shows well performance in both efficiency and spectrum responses. In WG1, the SHG efficiency is as high as 57%W-1·cm-2, with a broad spectrum bandwidth of 9 nm(the length of waveguide is 10 mm). The bandwidth performance is promoted compared with former high efficient SHG experiments.[7,9]It is attributed to the fact that the mismatch factor varies gently versus wavelengths in our designed device,and this character results in a wide spectrum phase matching.Additionally, in order to further broaden the SHG response bandwidth, group velocity matching is introduced in the following simulations.

    4. Group velocity matching with QPM

    Group-velocity mismatching results in a narrow nonlinear interaction spectrum bandwidth, because during interaction,the pump wave and SH wave walk away from each other due to the mismatch of group velocity.[32]Group-velocity matching(GVM) usually cannot be satisfied under birefringent phase matching regime, as shown in Fig. 3, the phase matching wavelengths are 1.52 μm and 1.558 μm,but the group velocity matching was satisfied under the wavelength of 1.54 μm(dΔk/dω = 0). To eliminate walk-off effect and achieve a broader SHG acceptance band, quasi-phase match (QPM)was implemented to compensate for the phase mismatch under group velocity matching condition.[13,31]The mismatch factor is defined as ΔkQPM= Δk-K, where K is the QPM grating vector, given by K = 2π/Λ, Λ = λ/2(n2ω-nω) is the period of inverted domain. The expansion term of the phase mismatch is expressed as

    Fig. 4. (a) Acceptance bandwidth of the PPLN sample (waveguide 1)under 25 ?C; (b) group-velocity mismatch and phase mismatch factor of WG1 as a function of wavelength.

    The normalized QPM SHG conversion efficiency versus wavelength in WG1 with group velocity matching is illustrated in Fig. 4(a). The simulation was carried out at the room temperature(25?C).The zero-group-velocity dispersion wavelength is 1.49 μm, where the wave-vector mismatching takes the extremum [see Fig. 4(b)]. The QPM polarization period is calculated to be 133 μm. It should be noted that the nonlinear coefficient is modulated by ±deffin the QPM scheme, thus the effective nonlinear susceptibility in Eq. (1)is replaced by dQPM=2d31/π = 3 pm/V.The simulation results indicate that our device achieves a large SHG bandwidth of 24 nm (~3 THz) while maintains a high conversion efficiency of 25%W-1·cm-2, which is beneficial for wavelength conversion applications in integrated optics platforms. Meanwhile, the effects of the sample length on the SHG efficiency and the acceptance bandwidth are also investigated, as listed in Table 2.

    Table 2. SHG efficiency and bandwidth related to sample length.

    There is a trade-off between efficiency and bandwidth,because efficiency grows with the waveguide length as L2,[33]while the bandwidth narrows because different wavelengths can accumulate different phase mismatchs (ΔkL) as L grows,according to Eq.(3). In fact, the bandwidth is decided inherently by dispersion properties of Δk,rather than the length L.Essentially,we design the waveguide to reduce the dispersion effect of Δk and to achieve a broad bandwidth, so the sample length is fixed at 10 mm in our work.

    The polarization inverted voltage and electric resistance of LiNbO3decrease dramatically with magnesium oxide(MgO)doped,which is beneficial for the nonlinear characteristics and commercial applications of LiNbO3. Thus,simulations were performed using the MgO-doped LiNbO3sample.The refractive index and dispersion are described by the Sellmeier equation of MgO-doped LN.[34]The calculated GVM wavelength of MgO-doped WG1 is 1.455 μm, with a conversion efficiency of 26.8%W-1·cm-2at room temperature.The calculated bandwidth is 23 nm with a grating period of 65 μm. The GVM wavelength is altered to communication wavelength of 1.548 μm as temperature increases to 61?C,as illustrated by Fig. 5(a). The 3-dB acceptance bandwidth is broadened to 26 nm, at the cost of reduction in efficiency(23.8%W-1·cm-2). The calculated inverted domain period is 174 μm. It could be concluded that MgO-doping has little impact on SHG output features. However,it is worth noting that the crystal properties,such as non-linearity and electro-optical characteristics,will be largely promoted with MgO-doping in practical applications.

    In order to investigate the SHG properties in waveguides with different geometrical parameters,the size of ridge waveguide is enlarged on the basis of WG1 (LN waveguide size:width=3 μm, thickness=2 μm). As depicted in Fig. 5(b)(green line), with the thickness of LiNbO3core increasing from 2 μm to 3 μm, the GVM wavelength is altered to 1.471 μm,at room temperature. The central wavelength conversion efficiency is 19%W-1·cm-2with acceptance bandwidth (ABW) of 25 nm. Next, the LN waveguide cross section area is further enlarged to 4×4 μm2, the GVM wavelength becomes 1.506 μm and the acceptance bandwidth is broadened to 27 nm while the conversion efficiency decreases to 10.6%W-1·cm-2. With temperature altered to 40?C (red curve in Fig. 5(b)), the GVM wavelength of the 4×4 μm2cross-section waveguide is shifted to 1.545 μm. The acceptance bandwidth is as large as 28.4 nm with a grating period of 38 μm,while the conversion efficiency further decreases to 10%W-1·cm-2. Furthermore, as the device temperature increases, the GVM wavelength shifts with a tuning slope of 3.08 nm/?C, as shown in Fig. 5(c). Under 85?C, the GVM wavelength is 1.69 μm, the acceptance bandwidth increases to 35 nm,due to the decrease in material dispersion at longer wavelengths.

    It is concluded that as the waveguide geometry grows larger, the SHG efficiency decreases, but the bandwidth is broadened. Once the QPM and GVM are both satisfied(Δk(ω0) = 0,Δk′(ω0) = 0),the mismatch and bandwidth are dominated by higher(second)order dispersion

    Here Δk′′is induced by group velocity dispersion mismatch between fundamental wave and second harmonic wave. The second order mismatch Δk′′at GVM wavelength is calculated as listed in Table 3. Δk′′of the bulk material is also calculated for comparison.

    The dispersion in waveguide devices is comprised of material dispersion and waveguide dispersion. Table 2 indicates that as the waveguide becomes more compact, the tight optical confinement introduces a stronger waveguide dispersion,which results in a narrower SHG bandwidth in our device.

    Fig. 5. (a) Normalized SHG efficiency versus wavelengths under 61 ?C in MgO doped WG1;(b)GVM wavelength evolution and SHG acceptance bandwidth (ABW) of different waveguides (W: width, T: thickness); (c)GVM wavelength versus temperature in waveguide with 4×4 μm2 cross section.

    Table 3. Dispersion properties of different waveguides under GVM conditions.

    Simulations were also performed with type-0 QPM configuration (e+e →e) to characterize the highest conversion efficiency by utilizing the largest non-linearity component:(dQPM= 2d33/π = 16 pm/V, d33= 25 pm/V). The GVM wavelength for type-0 QPM is above 2.5 μm, far away from waveband of 1550 nm. Here, the pump wavelength is set to be 1550 nm, with the temperature of 25?C. The simulation results are depicted in Fig. 6. Owing to the low index difference between LiNbO3(ne= 2.13 at 1.55 μm)waveguide and the LiTaO3(ne= 2.12 at 1.55 μm) substrate layer, the fundamental TM mode can only be supported in the waveguide with large LiNbO3core sizes(4×4 μm2). The conversion efficiency as high as 303%W-1·cm-2is achieved theoretically,with a grating period of 15.58 μm.The SHG acceptance bandwidth is only 0.41 nm, about 50 times lower than the type-I QPM interaction.

    Fig. 6. SHG spectrum of type-0 interaction under wavelength of 1550 nm at 25 ?C.

    5. Conclusion

    We have theoretically demonstrated a new type of optical waveguide composed of LiNbO3and LiTaO3materials that can be used for broadband, high-conversion-efficiency SHG at telecommunication band. By optimizing simultaneously the group-velocity and quasi-phase matching conditions in this ridge waveguide, the 3-dB acceptance bandwidth of pump wavelength can be broadened to 24 nm in a 10-mmlong sample, and the conversion efficiency can be as high as 25%W-1·cm-2. We also demonstrate that several parameters of the SHG process in this waveguide, including the spectral bandwidth,conversion efficiency and central wavelength,can be tuned by adjusting the size and temperature of the waveguide. Since the LiNbO3crystal and the LiTaO3substrate have similar thermal-expansion coefficients,the waveguide structure demonstrated here has largely reduced built-in stress as the device temperature varies,allowing stable nonlinearity performance and good structure robustness.

    Acknowledgment

    X.T.Zhang appreciates Professor Meng Pang(Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences)for his helpful advice.

    ponron亚洲| 精品久久蜜臀av无| 两性夫妻黄色片| 亚洲人成电影免费在线| 日本一区二区免费在线视频| 久久精品91蜜桃| 亚洲精品中文字幕在线视频| 成人国产一区最新在线观看| 国产精品影院久久| 日本五十路高清| 十分钟在线观看高清视频www| 美女免费视频网站| 日韩中文字幕欧美一区二区| 非洲黑人性xxxx精品又粗又长| 久久久久国内视频| 香蕉丝袜av| 国产精品日韩av在线免费观看| 国产亚洲欧美在线一区二区| 草草在线视频免费看| 波多野结衣av一区二区av| 国产在线观看jvid| 久久婷婷人人爽人人干人人爱| 在线免费观看的www视频| 亚洲av日韩精品久久久久久密| 欧美成人性av电影在线观看| 桃红色精品国产亚洲av| 一进一出抽搐动态| 亚洲欧美精品综合久久99| 日韩欧美在线二视频| 欧美一级a爱片免费观看看 | 国产一卡二卡三卡精品| 亚洲国产欧美网| av福利片在线| 午夜精品在线福利| 日本a在线网址| 免费女性裸体啪啪无遮挡网站| 亚洲精品中文字幕一二三四区| 麻豆av在线久日| 黄色片一级片一级黄色片| 法律面前人人平等表现在哪些方面| 国产伦在线观看视频一区| 男人舔女人的私密视频| 亚洲狠狠婷婷综合久久图片| 日本撒尿小便嘘嘘汇集6| 精品久久久久久久人妻蜜臀av| 黄色 视频免费看| 日本精品一区二区三区蜜桃| 18禁黄网站禁片午夜丰满| 久久久久久久久免费视频了| 久久精品国产综合久久久| 欧美 亚洲 国产 日韩一| 日本三级黄在线观看| a在线观看视频网站| 黑丝袜美女国产一区| 国产精品av久久久久免费| 1024香蕉在线观看| 日本精品一区二区三区蜜桃| 女生性感内裤真人,穿戴方法视频| 人成视频在线观看免费观看| 国产精品美女特级片免费视频播放器 | 欧美中文综合在线视频| 亚洲精品一卡2卡三卡4卡5卡| 久久国产乱子伦精品免费另类| 黄色女人牲交| 日本精品一区二区三区蜜桃| 亚洲精品国产精品久久久不卡| 亚洲狠狠婷婷综合久久图片| 久久天躁狠狠躁夜夜2o2o| 成人午夜高清在线视频 | 国语自产精品视频在线第100页| 日韩欧美国产一区二区入口| 变态另类丝袜制服| 国产国语露脸激情在线看| 波多野结衣巨乳人妻| 精品电影一区二区在线| 午夜亚洲福利在线播放| 级片在线观看| 亚洲 欧美 日韩 在线 免费| 亚洲av日韩精品久久久久久密| 99热6这里只有精品| 国产亚洲精品综合一区在线观看 | 久久久久久大精品| aaaaa片日本免费| 日韩欧美在线二视频| 脱女人内裤的视频| 最新在线观看一区二区三区| 搡老妇女老女人老熟妇| 欧美激情极品国产一区二区三区| 亚洲狠狠婷婷综合久久图片| 欧美性猛交黑人性爽| 哪里可以看免费的av片| 黄频高清免费视频| 麻豆国产av国片精品| 一卡2卡三卡四卡精品乱码亚洲| 热re99久久国产66热| 亚洲国产高清在线一区二区三 | 午夜免费观看网址| 久久狼人影院| 色在线成人网| 亚洲国产欧美日韩在线播放| 亚洲一区二区三区色噜噜| 欧美日韩黄片免| 人人妻,人人澡人人爽秒播| 亚洲成人精品中文字幕电影| 深夜精品福利| 男男h啪啪无遮挡| 色老头精品视频在线观看| 97碰自拍视频| 草草在线视频免费看| 精品免费久久久久久久清纯| 好男人在线观看高清免费视频 | 中文亚洲av片在线观看爽| 日本熟妇午夜| 天堂影院成人在线观看| 精品午夜福利视频在线观看一区| 国产精品一区二区免费欧美| 波多野结衣巨乳人妻| 欧美成人午夜精品| 精品久久久久久,| 免费女性裸体啪啪无遮挡网站| 美女扒开内裤让男人捅视频| 亚洲中文字幕一区二区三区有码在线看 | 免费无遮挡裸体视频| 黄色女人牲交| 亚洲色图 男人天堂 中文字幕| 麻豆一二三区av精品| 久久久国产欧美日韩av| 午夜福利视频1000在线观看| 欧美乱码精品一区二区三区| 日韩欧美一区二区三区在线观看| 中文字幕人妻熟女乱码| 757午夜福利合集在线观看| 国内揄拍国产精品人妻在线 | 成年版毛片免费区| 国产欧美日韩精品亚洲av| 一进一出抽搐动态| 亚洲专区字幕在线| 亚洲国产欧洲综合997久久, | 久久精品aⅴ一区二区三区四区| 禁无遮挡网站| 熟妇人妻久久中文字幕3abv| 99精品欧美一区二区三区四区| 人人妻人人澡人人看| 中文字幕精品免费在线观看视频| 日本精品一区二区三区蜜桃| 老司机福利观看| 中文亚洲av片在线观看爽| av有码第一页| 成人三级做爰电影| 日韩精品中文字幕看吧| 免费av毛片视频| 高清毛片免费观看视频网站| 免费在线观看成人毛片| 中文在线观看免费www的网站 | а√天堂www在线а√下载| 日韩欧美免费精品| 国产真实乱freesex| 女人被狂操c到高潮| 日日摸夜夜添夜夜添小说| 亚洲va日本ⅴa欧美va伊人久久| 午夜视频精品福利| 99热只有精品国产| 男女视频在线观看网站免费 | 日本在线视频免费播放| 午夜福利在线在线| 两性夫妻黄色片| 9191精品国产免费久久| 男女下面进入的视频免费午夜 | 人人澡人人妻人| 一区二区三区高清视频在线| 天堂√8在线中文| 91字幕亚洲| 日韩大尺度精品在线看网址| 很黄的视频免费| 亚洲天堂国产精品一区在线| 婷婷精品国产亚洲av| 丁香欧美五月| 欧美在线黄色| 19禁男女啪啪无遮挡网站| 精品久久久久久久末码| 97超级碰碰碰精品色视频在线观看| 久久久久久久久免费视频了| 男人舔女人的私密视频| 村上凉子中文字幕在线| 在线免费观看的www视频| 欧美日韩亚洲综合一区二区三区_| 国产日本99.免费观看| www.熟女人妻精品国产| 亚洲av中文字字幕乱码综合 | 欧美性猛交黑人性爽| 黄片大片在线免费观看| 两人在一起打扑克的视频| 国产精品永久免费网站| 日本黄色视频三级网站网址| 亚洲成av片中文字幕在线观看| 欧美日韩亚洲综合一区二区三区_| 国产亚洲欧美在线一区二区| 夜夜夜夜夜久久久久| 在线国产一区二区在线| 91老司机精品| 少妇 在线观看| 在线观看舔阴道视频| 男人舔奶头视频| 亚洲av电影在线进入| av超薄肉色丝袜交足视频| 国产亚洲欧美精品永久| 欧美 亚洲 国产 日韩一| 美女午夜性视频免费| 欧美激情高清一区二区三区| 亚洲欧洲精品一区二区精品久久久| 伊人久久大香线蕉亚洲五| 一个人观看的视频www高清免费观看 | a级毛片a级免费在线| 亚洲精品国产一区二区精华液| 丝袜在线中文字幕| 在线观看午夜福利视频| 精品卡一卡二卡四卡免费| 国产不卡一卡二| 1024手机看黄色片| 亚洲精品一卡2卡三卡4卡5卡| 90打野战视频偷拍视频| 国产精品永久免费网站| 国产三级黄色录像| 国产v大片淫在线免费观看| 丝袜在线中文字幕| 日韩大码丰满熟妇| 女性被躁到高潮视频| 长腿黑丝高跟| 国产亚洲欧美精品永久| 色在线成人网| 精品一区二区三区四区五区乱码| 999久久久精品免费观看国产| 狠狠狠狠99中文字幕| 丁香六月欧美| 国产主播在线观看一区二区| 老司机午夜福利在线观看视频| 色哟哟哟哟哟哟| 久久精品国产亚洲av高清一级| 人妻丰满熟妇av一区二区三区| 午夜福利18| 国产精品久久久久久人妻精品电影| 欧美国产日韩亚洲一区| 黑人巨大精品欧美一区二区mp4| 免费av毛片视频| 一本久久中文字幕| 亚洲在线自拍视频| 一级黄色大片毛片| 亚洲成av片中文字幕在线观看| 中文字幕人妻熟女乱码| 男男h啪啪无遮挡| 色在线成人网| 免费搜索国产男女视频| 看免费av毛片| 91麻豆精品激情在线观看国产| 欧美黄色淫秽网站| 人人妻,人人澡人人爽秒播| 午夜福利视频1000在线观看| 在线观看66精品国产| 丝袜美腿诱惑在线| 国产成人精品久久二区二区免费| 国产黄a三级三级三级人| 国内久久婷婷六月综合欲色啪| 欧美日本亚洲视频在线播放| 国产麻豆成人av免费视频| 女同久久另类99精品国产91| cao死你这个sao货| 熟妇人妻久久中文字幕3abv| 嫩草影院精品99| 欧美一级a爱片免费观看看 | 两性夫妻黄色片| 曰老女人黄片| 极品教师在线免费播放| 人人妻人人看人人澡| 1024香蕉在线观看| 亚洲第一电影网av| 男人舔女人下体高潮全视频| 99久久综合精品五月天人人| 亚洲成人精品中文字幕电影| 夜夜夜夜夜久久久久| 午夜视频精品福利| 欧美色视频一区免费| 国产黄片美女视频| 免费搜索国产男女视频| 又黄又爽又免费观看的视频| 少妇裸体淫交视频免费看高清 | 欧美激情久久久久久爽电影| 亚洲av第一区精品v没综合| 久久久久久久久中文| 亚洲国产欧洲综合997久久, | 欧美日韩中文字幕国产精品一区二区三区| 精品国内亚洲2022精品成人| 欧美黑人欧美精品刺激| 最新美女视频免费是黄的| 日韩精品免费视频一区二区三区| 国产视频内射| 亚洲av成人不卡在线观看播放网| 制服诱惑二区| 亚洲三区欧美一区| 亚洲精品久久国产高清桃花| 一级a爱视频在线免费观看| 免费观看人在逋| 看黄色毛片网站| 十八禁网站免费在线| 亚洲欧洲精品一区二区精品久久久| 美女午夜性视频免费| 欧美色欧美亚洲另类二区| ponron亚洲| 一本一本综合久久| 国产亚洲精品久久久久久毛片| 亚洲aⅴ乱码一区二区在线播放 | 美女免费视频网站| 麻豆国产av国片精品| 亚洲最大成人中文| 88av欧美| 久久久久久亚洲精品国产蜜桃av| 国产黄片美女视频| 久久精品国产清高在天天线| 桃红色精品国产亚洲av| 女人爽到高潮嗷嗷叫在线视频| 搡老岳熟女国产| 69av精品久久久久久| 国产精品 欧美亚洲| 国产午夜福利久久久久久| 欧美激情极品国产一区二区三区| 亚洲欧美精品综合久久99| 久久精品91蜜桃| 国产三级黄色录像| 精品日产1卡2卡| 天天躁夜夜躁狠狠躁躁| 亚洲一码二码三码区别大吗| 亚洲av片天天在线观看| 午夜福利免费观看在线| 看免费av毛片| 亚洲熟妇熟女久久| 日日夜夜操网爽| 亚洲男人天堂网一区| 亚洲天堂国产精品一区在线| 日韩欧美三级三区| 久久热在线av| 亚洲男人天堂网一区| 91大片在线观看| 一进一出好大好爽视频| 九色国产91popny在线| 国产欧美日韩一区二区三| 欧美另类亚洲清纯唯美| 两个人免费观看高清视频| 校园春色视频在线观看| 日本 av在线| 欧美另类亚洲清纯唯美| 国产av一区二区精品久久| 午夜久久久在线观看| 精品国产一区二区三区四区第35| 人妻久久中文字幕网| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成人免费av一区二区三区| 欧美av亚洲av综合av国产av| 久久久久国产一级毛片高清牌| 亚洲欧美日韩无卡精品| 午夜福利成人在线免费观看| 婷婷六月久久综合丁香| 亚洲国产中文字幕在线视频| 少妇被粗大的猛进出69影院| 精品第一国产精品| 天堂动漫精品| 看片在线看免费视频| 欧美激情极品国产一区二区三区| 人人妻人人看人人澡| 成人亚洲精品一区在线观看| 香蕉久久夜色| 国产伦人伦偷精品视频| 色婷婷久久久亚洲欧美| 亚洲精华国产精华精| 老熟妇乱子伦视频在线观看| 亚洲一码二码三码区别大吗| 亚洲午夜精品一区,二区,三区| 狠狠狠狠99中文字幕| 久久久久国产精品人妻aⅴ院| 男女之事视频高清在线观看| 老司机在亚洲福利影院| 日韩高清综合在线| 国产成人欧美| 三级毛片av免费| 97碰自拍视频| 亚洲成国产人片在线观看| 91成人精品电影| 国产单亲对白刺激| 国产主播在线观看一区二区| 最近最新中文字幕大全电影3 | 国产精品亚洲av一区麻豆| 精品久久久久久,| 老司机午夜福利在线观看视频| 美女免费视频网站| 国内久久婷婷六月综合欲色啪| 成人特级黄色片久久久久久久| 欧美黑人巨大hd| 国产黄片美女视频| 一本久久中文字幕| 黄色 视频免费看| 在线观看日韩欧美| 欧美+亚洲+日韩+国产| 三级毛片av免费| 午夜免费成人在线视频| 最新在线观看一区二区三区| 精华霜和精华液先用哪个| 国产成人欧美在线观看| 精品国产一区二区三区四区第35| 日本三级黄在线观看| 国产欧美日韩一区二区三| 午夜久久久久精精品| 国产精品,欧美在线| 一本精品99久久精品77| 老汉色av国产亚洲站长工具| 久久 成人 亚洲| 久久久国产精品麻豆| 黑人操中国人逼视频| 黄色视频,在线免费观看| 美国免费a级毛片| 51午夜福利影视在线观看| 亚洲va日本ⅴa欧美va伊人久久| 午夜亚洲福利在线播放| 色老头精品视频在线观看| 老鸭窝网址在线观看| 久热爱精品视频在线9| 俺也久久电影网| 国产一区二区三区视频了| 99精品久久久久人妻精品| 97碰自拍视频| 久久久久国产一级毛片高清牌| 国产不卡一卡二| √禁漫天堂资源中文www| 国产免费av片在线观看野外av| 久久热在线av| 成人亚洲精品一区在线观看| 欧美国产精品va在线观看不卡| 99久久无色码亚洲精品果冻| 欧美三级亚洲精品| 国产精品美女特级片免费视频播放器 | 久久久久久久久免费视频了| 在线永久观看黄色视频| 91国产中文字幕| 欧美精品亚洲一区二区| 国产成人精品无人区| 久久久久国产精品人妻aⅴ院| 俄罗斯特黄特色一大片| 国产亚洲精品av在线| 久久久久久国产a免费观看| 最新美女视频免费是黄的| www日本黄色视频网| 黄色片一级片一级黄色片| 欧美三级亚洲精品| 99久久无色码亚洲精品果冻| 欧美乱色亚洲激情| 久久香蕉国产精品| 夜夜躁狠狠躁天天躁| 久久精品国产亚洲av香蕉五月| 精品欧美一区二区三区在线| 国产精品久久久久久亚洲av鲁大| 国产av又大| 黄网站色视频无遮挡免费观看| 久久天躁狠狠躁夜夜2o2o| 曰老女人黄片| а√天堂www在线а√下载| 91九色精品人成在线观看| 19禁男女啪啪无遮挡网站| 人人澡人人妻人| 亚洲,欧美精品.| 欧美国产日韩亚洲一区| 亚洲国产看品久久| 狂野欧美激情性xxxx| 91成人精品电影| 国产视频内射| 国产av在哪里看| 中文字幕精品亚洲无线码一区 | videosex国产| 亚洲 欧美一区二区三区| 欧美黑人欧美精品刺激| 午夜久久久久精精品| 91麻豆精品激情在线观看国产| 久久久久精品国产欧美久久久| 草草在线视频免费看| 亚洲国产中文字幕在线视频| 久久精品国产亚洲av香蕉五月| 校园春色视频在线观看| 国产又爽黄色视频| 日韩大码丰满熟妇| 久久久久国产精品人妻aⅴ院| 欧美激情高清一区二区三区| 中文字幕高清在线视频| 国产精品精品国产色婷婷| 欧美激情久久久久久爽电影| 国产av又大| 久久人人精品亚洲av| 国内久久婷婷六月综合欲色啪| 哪里可以看免费的av片| 亚洲va日本ⅴa欧美va伊人久久| 俺也久久电影网| 神马国产精品三级电影在线观看 | 欧美精品啪啪一区二区三区| 香蕉国产在线看| av天堂在线播放| 国产精品 欧美亚洲| 国产黄a三级三级三级人| 亚洲自偷自拍图片 自拍| 久久精品成人免费网站| 欧美又色又爽又黄视频| 亚洲第一电影网av| a级毛片a级免费在线| 国产黄片美女视频| 黄色片一级片一级黄色片| av在线播放免费不卡| 91老司机精品| 18禁美女被吸乳视频| 中文亚洲av片在线观看爽| 亚洲人成伊人成综合网2020| 国产精品久久久人人做人人爽| 一级毛片精品| 夜夜爽天天搞| 国产成人欧美| 精品午夜福利视频在线观看一区| 免费高清视频大片| 欧美精品啪啪一区二区三区| 99在线视频只有这里精品首页| 亚洲第一av免费看| 免费观看精品视频网站| 亚洲av熟女| 少妇粗大呻吟视频| 精品久久久久久成人av| 久久久水蜜桃国产精品网| 天天一区二区日本电影三级| 青草久久国产| 18禁黄网站禁片免费观看直播| 淫妇啪啪啪对白视频| 搡老妇女老女人老熟妇| 精品国产超薄肉色丝袜足j| 十分钟在线观看高清视频www| 久久中文看片网| 国产精品亚洲美女久久久| 国产精华一区二区三区| 成人三级黄色视频| 91老司机精品| 国产高清有码在线观看视频 | 精华霜和精华液先用哪个| 怎么达到女性高潮| 亚洲aⅴ乱码一区二区在线播放 | 国产一区二区三区在线臀色熟女| 一级黄色大片毛片| 夜夜夜夜夜久久久久| 免费在线观看完整版高清| 国产精品亚洲美女久久久| 国产色视频综合| 丁香欧美五月| 国产精品电影一区二区三区| 国产成人精品久久二区二区91| 国产爱豆传媒在线观看 | 国产精品99久久99久久久不卡| 三级毛片av免费| 久久天堂一区二区三区四区| 国产伦一二天堂av在线观看| 成人手机av| www日本黄色视频网| 一级毛片精品| 国产精品久久视频播放| 亚洲精品一区av在线观看| 两个人看的免费小视频| 午夜亚洲福利在线播放| 日韩欧美 国产精品| 亚洲国产精品久久男人天堂| 嫩草影院精品99| 动漫黄色视频在线观看| 成人三级做爰电影| 久久久国产精品麻豆| 国产亚洲精品久久久久久毛片| 亚洲成国产人片在线观看| 天堂√8在线中文| 亚洲一区中文字幕在线| 精品无人区乱码1区二区| 欧美午夜高清在线| 亚洲一区二区三区不卡视频| 欧美色视频一区免费| 欧美黑人精品巨大| 欧美乱码精品一区二区三区| 制服诱惑二区| 亚洲精品久久成人aⅴ小说| 亚洲av成人一区二区三| 久久九九热精品免费| 中文字幕人成人乱码亚洲影| 中文字幕av电影在线播放| 久久精品91无色码中文字幕| 国产三级在线视频| 久久青草综合色| 国产精品久久视频播放| 成人国语在线视频| 国产精品久久久久久精品电影 | 桃红色精品国产亚洲av| 18禁黄网站禁片免费观看直播| 国产精品野战在线观看| 国产成人影院久久av| 亚洲欧美日韩无卡精品| 黄色毛片三级朝国网站| 99riav亚洲国产免费| 啦啦啦免费观看视频1| 久久久久久久久中文| 国产亚洲av嫩草精品影院| 日韩精品免费视频一区二区三区| 一区二区三区国产精品乱码| 91国产中文字幕| av欧美777| 国产亚洲精品av在线| 麻豆国产av国片精品| 在线永久观看黄色视频| 老司机深夜福利视频在线观看| 国产精品美女特级片免费视频播放器 | 精品福利观看| 在线看三级毛片| 99在线人妻在线中文字幕|