• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis*

    2021-01-21 02:10:36ShiRongXu許世蓉XinHongJia賈新鴻HuiLiangMa馬輝亮JiaBingLin林佳兵WenYanLiang梁文燕andYuLianYang楊玉蓮
    Chinese Physics B 2021年1期

    Shi-Rong Xu(許世蓉), Xin-Hong Jia(賈新鴻), Hui-Liang Ma(馬輝亮),Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(楊玉蓮)

    College of Physics and Electronic Engineering,Sichuan Normal University,Chengdu 610101,China

    Keywords: random distributed feedback-based optical injection, two-channel chaos lasing, bandwidth enhancement and time-delay signature suppression,physical random number generation

    1. Introduction

    In recent years, chaotic light produced by semiconductor lasers (SL) has been widely studied. Chaotic signal is of great significance for many applications including secure communication,[1–8]chaos-based lidars,[9]optical time domain reflectometries(OTDRs),[10,11]high-speed physical random number generators (PRNGs),[12–22]etc. The nonlinear dynamics of SLs can also be used for all-optical and high-speed neuromorphic calculations with good energy efficiencies.[23]SLs exhibit nonlinear dynamics under external disturbances such as optical feedback,[12,24]optical injection[25,26]and optoelectronic feedback.[27,28]Among them, optical feedback is one of the simplest schemes. However, there is an obvious disadvantage that the chaotic light has clear time-delay signature (TDS) due to the existence of external fixed cavity mode. TDS can be easily identified by an autocorrelation function(ACF),which is potentially harmful to the security of chaos-based communication. Therefore, the identification or hiding of chaos TDS has become a hot topic. The reported suppression methods include delayed self-interference,[29]inserting a phase modulator(PM)driven by high-speed pseudo random bit sequence (PRBS),[30]selfphase modulation optical feedback(SPMOF)combined with a microsphere resonator(MR),[31]and various feedback configurations such as double feedback,[32]filtered optical feedback(FOF),[33]detuned fiber Bragg grating (FBG),[34,35]chirped FBG,[36]and random FBG (RFBG) feedback.[37]However,these feedback schemes for TDS suppression are still limited in bandwidth (BW) due to the use of a single SL, which results in the lower transmission capacity of encrypted data and lower generation rate of PRNG. In order to improve the BW of chaotic light, two types of optical injection, including unidirectionally coupled systems[38–40]and mutually coupled systems,[41–47]have been proposed.

    Recently, an unidirectional coupled SL using random Rayleigh scattering feedback over a long fiber and continuous wave(CW)injection has been proposed to generate wideband chaos with suppressed TDS. A chaos output that extends to 13.6 GHz within 3 dB has been achieved.[48]A similar but more compact method combining RFBG feedback and CW optical injection was also demonstrated to obtain flatter spectrum over ~7.53 GHz.[49]It has been proved that random lasing can considerably expand the ranges of parameters for achieving good TDS cancellation compared with single-mirror feedback.[37]Compared with detuning FBG-based TDS suppression that is based on dispersion-induced group delay at the lobe of reflection spectrum,[34,35]using RFBG is more robust and stable,since TDS could be removed without any frequency detuning of the fiber random grating.[37,49]

    However, all of the reported TDS suppression by random lasing only supports a single-channel chaos output due to CW injection[48,49]or without injection.[37]The feasibility and study of random lasing-based TDS suppression by two mutually coupled SLs(MCSLs)have not yet been reported. In this paper,a system combining RFBG-based optical injection and MCSLs is designed to simultaneously generate two-channel chaos outputs with both enhanced BW and suppressed TDS.The influences of injected current,coupling intensity and frequency detuning on TDS and BW are investigated in detail.We also numerically analyze the feasibility of simultaneously generating two-channel high-speed physical random number at 200 Gbits/s (for each channel) by the proposed configuration, as a result of high-quality chaos with >20 GHz bandwidth and perfect TDS suppression.

    2. Theoretical model

    Figure 1 describes the schematic diagram of the proposed MCSLs with random distributed optical injection. In path 1,the light from SL1 firstly passes through a circulator (CIR1),and enters the RFBG1 through CIR2. Then it is reflected by each scattering center with random distribution. After CIR2,it is amplified by a semiconductor optical amplifier (SOA1)and weakened by a variable optical attenuator (VOA1) before being injected into SL2 through CIR3. Path 2 is similar to path 1. These two SLs are subjected to different random optical injections by RFBG1 and RFBG2, which can be divided into M sections with equal length of L/M (L is the length of RFBG). Note that RFBG can be manufactured by femtosecond laser direct writing.[50]In order to simulate the role of random distributed injections on the TDS suppression and chaos BW,considering the computational efficiency,10-cm-long fiber random gratings are divided into M =300 scattering centers.[37]Here,the effective power reflectivity of each scattering subsection for RFBGn (n=1, 2) is denoted by Rnmi(i=1,2,...,M). For simplification, the same Rnmiis assumed. Since the reflectivity of each scattering center is very low, multiple reflections can be reasonably ignored[37](Rnmi=1×10-4is used in our simulation). The uniform distribution is selected for the location of scattering centers.[37]

    The nonlinear dynamics of the proposed MCSLs with random optical injection are governed by the following Lang–Kobayashi rate equations[37,43,51–54]

    where subscript m,n=1,2(m/=n)stands for SLm and SLn.The second term in Eq.(1)denotes the role of random injection for all of the scattering points. Emand Gmare the optical field and differential gain of SLm,respectively,Nmis the carrier number of SLm,N0is the carrier number at transparency,τpis the photon lifetime, τnis the carrier lifetime, ε is the gain compression coefficient, I is the injection current, α is the linewidth enhancement factor,g is the differential gain coefficient, q is the electric charge, Δωnm=2πΔfnm. Here frequency detuning is defined as Δ fnm= fn- fm. In our simulation, the frequency of SL1 (f1) is fixed, the adjustment of frequency detuning can be realized by changing the frequency of SL2 (f2). To simplify the analysis, the same basic parameters(N0, α, τn, τp, g, ε,and I)are used for SL1 and SL2 in Eqs.(1)–(3).

    Fig.1. Schematic diagram of the proposed MCSLs with random distributed optical injection. SL:semiconductor laser; RFBG:random fiber Bragg grating;CIR:circulator;SOA:semiconductor optical amplifier;VOA:variable optical attenuator.

    In Eq. (1), coupling strength of each scattering center from SLn to SLm is denoted by cnmi[51–54]

    where G is gain of amplifier and L is optical loss of path 1 or path 2 except for RFBG1 or RFBG2, τinis the roundtrip time in laser cavity, R0is the power reflectivity of end-facet for laser cavity(the same values of τinand R0are assumed for SL1 and SL2). As shown in Fig.1,the amplifiers and attenuators can be used to adjust the coupling strength. We assume that c12i=c21iin simulation for simplicity.

    In addition, τnmi(i=1,2,...M) in Eq. (1) are the coupling delays for each scattering center, calculated by τnmi=(L1+L2)/(c/ng,fiber)+2znmi/(c/ng,RFBG)(see Fig.1). Here,L1is the distance between SL1 cavity and the starting location of scattering points,L2is the distance between SL2 cavity and the starting location of scattering points,znmi(in the range of [0, L]) is the coordinates of scattering points of RFBGn(n=1,2),c is the light velocity in vacuum,ng,fiberand ng,RFBGrepresent the group refractive index of fiber link and RFBG,respectively. For simplicity, the same L1+L2is assumed for SL1 to SL2 and SL2 to SL1. Note that different realizations for the distribution of scattering centers are utilized for RFBG1 and RFBG2.

    TDS can be characterized by the subpeak of ACF of chaos intensity output,defined as

    Figures 2(a)and 2(b)show the power reflection spectrum of the used RFBG1 and RFBG2 for simulation from Eq. (7).Multiple interference patterns resulting from the backscattering light from RFBG can be observed. The reflectivity variation for various wavelengths is attributed to the random phase shift of injection light due to the irregular scattering location distribution along RFBGs. The coupling strength of each scattering point as a function of GL according to Eq.(4)is shown in Fig. 2(c). Note that the case of GL = 10 (c12i= c21i≈5.5 ns-1)corresponds to relatively strong optical injection.

    Fig.2. Power reflection spectrum of(a)RFBG1 and(b)RFBG2 used in simulation. (c)Coupling strength of each scattering center as a function of GL.

    3. Results and discussion

    3.1. Analysis of enhanced BW and suppressed TDS of twochannel chaos outputs

    Figure 3 shows the time series, power spectra, ACF and PE of MCSLs with the proposed random optical injection,where Δf21=10 GHz,c12i=c21i=2 ns-1. From Figs.3(b1)and 3(b2), flat and wide power spectrums are observed for both SL1 and SL2 (the BWs of SL1 and SL2 are ~14.5 and 13.6 GHz respectively). Here, BW is estimated by the frequency range in which 80% of total energy is covered.[16,17]From Figs. 3(c1) and 3(c2), there is no obvious subpeak for ACF, suggesting that random injection can weaken the lasing periodicity by introducing many irregular external cavity modes into SLs. Note that different from fixed cavity feedback,for random lasers,the large numbers of randomly spaced scattering centers in the fiber random grating introduce large numbers of uncorrelated external cavity modes with irregular spacing. These modes compete for the limited optical gain.Therefore, a strong and stable beating among these modes is prevented, leading to the complex dynamics and good TDS suppression.[37,49]There is no valley for PE at the roundtrip time(~20 ns)in Figs.3(d1)and 3(d2),indicating that both of SL1 and SL2 exhibits high unpredictability.This can be understood physically by noting that TDS suppression and complexity enhancement mean the intensified dissimilarity for chaos oscillation.[41]

    Fig. 3. (a1) and (a2) Time series, (b1) and (b2) power spectra, (c1) and (c2) ACF, (d1) and (d2) PE for SL1 (left column) and SL2 (right column). Δf21=10 GHz,c12i=c21i=2 ns-1,I=1.8Ith.

    To study the effect of coupling strength,Fig.4 shows the time series, power spectra, ACF and PE of MCSLs with random optical injection. The used data is the same as Fig. 3,except that c12i=c21iis increased to 3 ns-1. Compared with Figs.3(b1)and 3(b2),the BWs of SL1 and SL2 are increased to ~18.2 and 15.6 GHz,respectively,due to the increased optical injection.[16,17,40,41]A TDS peak around 20 ns of two SLs is found[see Figs.4(c1)and 4(c2)]. Physically,this value depends on the recurrence of lasing field and equals the roundtrip rather than single-path coupled time delay for the mutually coupled system, which is consistent with Refs. [46,47]. Further study shows that this is caused by the partial injection locking of SL1 and SL2,which is confirmed by obvious subpeaks with ~20 ns interval and peak value of ~0.15 for the cross-correlation function (CCF) between SL1 and SL2 outputs(not shown here),defined as[51]

    where I1(t) and I2(t) are the intensity output series of SL1 and SL2 respectively. Due to the existence of TDS, a minimum for PE around ~20 ns roundtrip time and its subharmonics (~10 ns, 6.7 ns)[55,56]can be observed in Figs. 4(d1) and 4(d2).

    Figure 5 depicts the map of TDS evolution in the parameter space of detuning and coupling strength for different bias currents. The good TDS concealment ranges are highlighted by the contour lines corresponding to ACF subpeak = 0.1.Our simulation shows that,for smaller coupling strengths,SLs work in an unlocked zone(bottom of each diagram in Fig.5)and period oscillation at the beating frequencies of SL1 and SL2 is produced due to four-wave-mixing(FWM).[53]In other zones,there is certain overlap between the contour lines,indicating that two SLs can simultaneously generate two-channel chaotic signals with ACF subpeak <0.1 within a certain parameter range. In addition, the contour regions of two SLs are larger for the higher injected current, suggesting that the broadened parameter range for good TDS suppression can be reached by selecting proper injected current.

    Fig. 4. (a1) and (a2) Time series, (b1) and (b2) power spectra, (c1) and (c2) ACF, (d1) and (d2) PE for SL1 (left column) and SL2 (right column). Δf21=10 GHz,c12i=c21i=3 ns-1,I=1.8Ith.

    Fig.5. Map of TDS evolution in the parameter space of detuning and coupling strength for MCSLs with random optical injection: (a1)and(a2)I=1.4Ith,(b1)and(b2)I=1.8Ith,(c1)and(c2)I=2.2Ith,(d1)and(d2)I=2.6Ith. Upper:SL1,lower:SL2. The dashed lines correspond to ACF subpeak=0.1.

    Fig.6. Map of BW evolution in the parameter space of detuning and coupling strength for MCSLs with random optical injection: (a1)and(a2)I=1.4Ith,(b1)and(b2)I=1.8Ith,(c1)and(c2)I=2.2Ith,(d1)and(d2)I=2.6Ith. Upper: SL1,lower: SL2. The dashed lines correspond to 20 GHz for BW.

    Figure 6 depicts the map of BW evolution in the parameter space of detuning and coupling strength for different bias currents. The ranges with <20 GHz BW are highlighted by the contour lines with BW =20 GHz. As mentioned above,BWs of both SLs are enhanced with the increase of coupling strength.[16,17,40,41,54]For appropriate coupling strength, the enhanced BW can be obtained with larger detuning,since the new frequency components in the vicinity of frequency detuning are generated due to the beating of SL1 and SL2.[41]In addition,with the increasing bias current,in parameter ranges with good TDS suppression shown in Fig. 5, the range with>20 GHz BW is also broadened, which means that increasing current can significantly expand the optimized parameter range for larger BW.Meanwhile,the range for optimized TDS(ACF subpeak <0.1)is not shrunk.

    3.2. Two-channel 200 Gbits/s physical random number generation using chaos outputs with enhanced bandwidth and TDS suppression

    In this section,we analyze the performance of the physical random number sequence generated by the post-processing of the chaotic signals from the system. Various methods have been proposed.[12–22]Here, we use the post-processing approach proposed in Ref.[19]as shown in Fig.7. The chaotic signals from the two MCSLs are respectively converted into 8-bit binary sequences with an analogue-digital converter(ADC)with sampling rate of 50 Gs/s. A four-least-significant-bit(4-LSB) sequence is selected. The generated 4-bit binary sequence and delayed version are then processed with exclusive-OR (XOR) operation (the used delay time for SL1 and SL2 outputs are 25 ns and 46.5 ns,respectively).

    As an example,according to Figs.5 and 6,we select the following parameters: c12i=c21i=2 ns-1,Δ f21=-30 GHz,I =2.6Ith. Figures 8(a), 8(b) and 8(c) show the power spectrum, ACF and CCF of chaos outputs, respectively. Due to the larger detuning,larger BWs for SL1 and SL2 are obtained(the BWs of SL1 and SL2 are ~20.6 and ~25.1 GHz, respectively). The corresponding ACF subpeaks are ~0.05 and~0.04 respectively. The correlation peaks of CCF are well within ±0.05 [see Fig. 8(c)], confirming the much weak correlation between the chaos outputs of SL1 and SL2. These higher BW, good TDS suppression and very weak crosscorrelation are helpful for generating the high-quality random sequences.

    Fig. 7. Flow chart of post-processing for high-speed physical random number generation.

    Fig.8. Power spectrum(a),ACF(b)and CCF(c)of chaos outputs under c12i=c21i=2 ns-1,Δf21=-30 GHz,I=2.6Ith.

    Fig.9. Characterization of generated random bit streams. (a1)and(a2)Probability of 256 digital amplitude of the generated binary sequences after ADC converted to decimal system; (b1) and (b2) probability of 16 digital amplitude of the generated binary sequences after 4-LSB selection and XOR operation converted to decimal system;(c1)and(c2)probability of 0 and 1 in random bit stream after 4-LSB selection and XOR;(d1)and(d2)example of 500×500 random bit sequence after 4-LSB selection and XOR operation on a two-dimensional plane. In(d1)and(d2),bits of 1 and 0 are converted into white and black dots,respectively. Upper: SL1,lower: SL2. The used length of samples is 100 Mbit.

    Fig.10. ACF of the generated random sequences after 4-LSB selection and XOR operation for SL1(a)and SL2(b). The used length of samples is 100 Mbit.

    We then use the NIST SP 800-22 suite[58]to test the randomness of the generated two-channel 4-LSB random number sequences. We take 1000 groups of 1 Mbit data points used for test, with a significance level of α = 0.01. After the test, two results will be obtained: P-value and proportion value. Only when the P-value(uniformity of p-value)is greater than 0.0001 and the proportion satisfying p-value >α in the range of 0.99±0.0094392 can pass the test.[14–22]The results are listed in Table 1. For the selected system parameters, the binary sequences generated by the two SLs passed all of the NIST test standard. Therefore,the proposed system can simultaneously generate two-channel random number sequences,with the rate of 200 Gbits/s(=50 Gs/s×4 LSB)for each channel.

    Finally, CCF of the generated sequences between SL1 and SL2 (after 4-LSB and XOR) is plotted in Fig. 11, where binary data with a length of 0.1 Mbit is used considering the computation efficiency due to longer delay time. The CCF across the delay of-40–40 ns is close to zero, implying that the two-channel random sequences are almost independent.In other words, the residual weak correlation between SL1 and SL2[see Fig.8(c)]can be eliminated radically after postprocessing. Therefore, this system could have a potential for generating a higher rate of 400 Gbits/s by interleaving the twochannel binary outputs.[16]

    Table 1. Results of statistical test using NIST SP 800-22 for a set of 1000 sequences of 1 Mbit. Both of test results for SL1 and SL2 are demonstrated. For tests which produce multiple P-values and proportions,the worst case is shown.[16–18]

    Fig.11. CCF of generated random sequences from SL1 and SL2 after 4-LSB and XOR operation.

    4. Conclusion

    In summary,a novel structure based on random-injectionbased MCSLs has been proposed and designed for simultaneously generating two-channel chaos outputs with BW enhancement and TDS elimination over a wide range of parameters. The effects of frequency detuning, coupling strength and injected current on chaos characteristics have been numerically discussed detailedly. The results show that, under certain parameters, the system can achieve BW of more than 20 GHz with perfect TDS cancellation;the broader parameter ranges for higher BW and lower TDS can be obtained by properly selecting injected current. As a practical application, we also analyze the feasibility for generating two-channel highspeed physical random sequences(200 Gbits/s for each channel). Our work is meaningful on structure design and parameter optimization for high-quality chaotic laser sources, and may find applications in high-resolution chaos-based lidars,OTDRs,high-speed secure communications and PRNGs,etc.

    又爽又黄无遮挡网站| 国产淫语在线视频| 久久久久久久久久人人人人人人| 少妇人妻一区二区三区视频| 色综合站精品国产| 日韩欧美精品免费久久| 精品人妻一区二区三区麻豆| 三级男女做爰猛烈吃奶摸视频| 日本色播在线视频| 搡老妇女老女人老熟妇| 国产精品蜜桃在线观看| 亚洲,欧美,日韩| 色网站视频免费| 久久久久久九九精品二区国产| 国产极品天堂在线| 国产亚洲最大av| av女优亚洲男人天堂| 久热久热在线精品观看| 欧美人与善性xxx| 只有这里有精品99| 一级毛片久久久久久久久女| 超碰97精品在线观看| 欧美高清成人免费视频www| 免费观看在线日韩| 精品午夜福利在线看| 精品久久久精品久久久| 亚洲在线自拍视频| 国产免费一级a男人的天堂| 国产成人免费观看mmmm| 一个人观看的视频www高清免费观看| 国产精品伦人一区二区| 白带黄色成豆腐渣| 99热网站在线观看| 亚洲高清免费不卡视频| 久久久a久久爽久久v久久| 国产男女超爽视频在线观看| 亚洲综合色惰| 老司机影院成人| 亚洲人成网站高清观看| 国产成人精品久久久久久| 我的女老师完整版在线观看| 国内精品宾馆在线| 99久久精品一区二区三区| 亚洲av日韩在线播放| 免费高清在线观看视频在线观看| 激情 狠狠 欧美| 日韩 亚洲 欧美在线| 成人一区二区视频在线观看| 午夜福利在线在线| 国精品久久久久久国模美| 亚洲精品中文字幕在线视频 | 亚洲真实伦在线观看| 男女边吃奶边做爰视频| 好男人视频免费观看在线| 国产91av在线免费观看| 欧美日韩综合久久久久久| 国产精品av视频在线免费观看| 国产av国产精品国产| 蜜桃亚洲精品一区二区三区| 成人亚洲精品一区在线观看 | 国产黄片美女视频| 色综合亚洲欧美另类图片| 天天躁日日操中文字幕| 久久久a久久爽久久v久久| 国产精品久久久久久久电影| 麻豆国产97在线/欧美| 麻豆成人午夜福利视频| 日韩欧美一区视频在线观看 | 极品教师在线视频| 人妻制服诱惑在线中文字幕| 日韩制服骚丝袜av| 久久国内精品自在自线图片| 精品久久久久久久人妻蜜臀av| 天天躁夜夜躁狠狠久久av| 亚洲欧洲日产国产| 超碰97精品在线观看| 日本熟妇午夜| 又大又黄又爽视频免费| 欧美成人a在线观看| 国产黄色视频一区二区在线观看| 极品少妇高潮喷水抽搐| 日韩大片免费观看网站| 一个人免费在线观看电影| 高清欧美精品videossex| 中文乱码字字幕精品一区二区三区 | 国产免费视频播放在线视频 | 麻豆久久精品国产亚洲av| 街头女战士在线观看网站| av又黄又爽大尺度在线免费看| 日本免费a在线| 亚洲最大成人手机在线| 插阴视频在线观看视频| 免费看av在线观看网站| 久久久久久久亚洲中文字幕| 天堂av国产一区二区熟女人妻| 久久久欧美国产精品| 国产黄片美女视频| av在线观看视频网站免费| 国产成人免费观看mmmm| 中国国产av一级| 18禁在线无遮挡免费观看视频| 乱系列少妇在线播放| 别揉我奶头 嗯啊视频| 80岁老熟妇乱子伦牲交| .国产精品久久| 街头女战士在线观看网站| 亚洲欧美成人综合另类久久久| 国产欧美另类精品又又久久亚洲欧美| av在线天堂中文字幕| 在线免费十八禁| 高清在线视频一区二区三区| 精品久久久久久久末码| 日韩av在线大香蕉| 禁无遮挡网站| 中文字幕免费在线视频6| 精品人妻一区二区三区麻豆| 在线天堂最新版资源| 国产伦在线观看视频一区| 三级经典国产精品| 男人舔奶头视频| 国产 一区精品| 少妇丰满av| 亚洲欧洲国产日韩| 色哟哟·www| av卡一久久| 亚洲成人一二三区av| 欧美日本视频| 国内精品美女久久久久久| 免费看a级黄色片| 婷婷六月久久综合丁香| av一本久久久久| 18禁裸乳无遮挡免费网站照片| 日韩一区二区三区影片| 青春草视频在线免费观看| 免费看光身美女| 日韩av在线免费看完整版不卡| 免费观看a级毛片全部| 久久6这里有精品| 伊人久久国产一区二区| 国产精品国产三级专区第一集| 国产av国产精品国产| 免费黄频网站在线观看国产| 国产精品福利在线免费观看| 午夜老司机福利剧场| 免费观看精品视频网站| 精品人妻视频免费看| 大片免费播放器 马上看| 国产日韩欧美在线精品| 欧美日韩精品成人综合77777| 97热精品久久久久久| 中文字幕久久专区| 久久精品国产自在天天线| 国语对白做爰xxxⅹ性视频网站| 亚洲丝袜综合中文字幕| 在线观看一区二区三区| 国产精品美女特级片免费视频播放器| 成人高潮视频无遮挡免费网站| 亚洲国产精品专区欧美| 少妇熟女欧美另类| 国产有黄有色有爽视频| 视频中文字幕在线观看| 亚洲天堂国产精品一区在线| av网站免费在线观看视频 | 一区二区三区免费毛片| 免费观看精品视频网站| 国产一区二区三区av在线| 国产精品久久视频播放| 成人综合一区亚洲| 日本与韩国留学比较| 国产精品久久视频播放| 中文字幕av在线有码专区| 精华霜和精华液先用哪个| 国模一区二区三区四区视频| 久久久久久久久久成人| 中文精品一卡2卡3卡4更新| 久久久久性生活片| 一级毛片黄色毛片免费观看视频| 欧美一区二区亚洲| 欧美一级a爱片免费观看看| 亚洲真实伦在线观看| 嫩草影院入口| 可以在线观看毛片的网站| 国产精品福利在线免费观看| 国产片特级美女逼逼视频| av在线亚洲专区| 精品久久久久久电影网| 啦啦啦啦在线视频资源| 1000部很黄的大片| 午夜福利在线观看吧| 精品久久久久久久人妻蜜臀av| 26uuu在线亚洲综合色| 久久久色成人| 欧美激情国产日韩精品一区| 日本猛色少妇xxxxx猛交久久| 嘟嘟电影网在线观看| 天堂中文最新版在线下载 | 一级毛片我不卡| 午夜免费男女啪啪视频观看| 国产 亚洲一区二区三区 | 国产成人aa在线观看| 免费大片黄手机在线观看| 国产亚洲91精品色在线| 亚洲美女搞黄在线观看| 神马国产精品三级电影在线观看| 午夜福利视频1000在线观看| 亚洲欧美成人精品一区二区| 五月玫瑰六月丁香| 亚洲国产成人一精品久久久| 婷婷色麻豆天堂久久| 天天躁日日操中文字幕| 久久久久久久久中文| 亚洲欧洲国产日韩| 女人被狂操c到高潮| 亚洲国产高清在线一区二区三| 乱人视频在线观看| 成人综合一区亚洲| eeuss影院久久| av女优亚洲男人天堂| 岛国毛片在线播放| 久久久精品欧美日韩精品| 久久精品国产鲁丝片午夜精品| 亚洲精品日韩在线中文字幕| 男人和女人高潮做爰伦理| 高清视频免费观看一区二区 | 久久久久久久久中文| 精品久久久久久电影网| 久久精品久久久久久久性| 一级毛片黄色毛片免费观看视频| 一二三四中文在线观看免费高清| 国产又色又爽无遮挡免| 午夜激情久久久久久久| 亚洲天堂国产精品一区在线| 亚洲欧美精品专区久久| 人妻少妇偷人精品九色| 肉色欧美久久久久久久蜜桃 | 中文字幕亚洲精品专区| 亚洲精品亚洲一区二区| 国产精品嫩草影院av在线观看| 免费人成在线观看视频色| 亚洲经典国产精华液单| 国产探花在线观看一区二区| 欧美三级亚洲精品| 久久久久久国产a免费观看| 少妇熟女欧美另类| 黄色配什么色好看| 最近最新中文字幕免费大全7| 最近2019中文字幕mv第一页| 亚洲av成人精品一区久久| 国产黄色免费在线视频| 日本av手机在线免费观看| 中文字幕制服av| 精品国产一区二区三区久久久樱花 | 哪个播放器可以免费观看大片| 国产精品女同一区二区软件| 少妇人妻精品综合一区二区| 欧美潮喷喷水| 天天躁夜夜躁狠狠久久av| 搡老乐熟女国产| 97精品久久久久久久久久精品| 啦啦啦韩国在线观看视频| 男女边摸边吃奶| 嫩草影院精品99| 最近的中文字幕免费完整| 可以在线观看毛片的网站| 大陆偷拍与自拍| 国产成人免费观看mmmm| 一区二区三区乱码不卡18| 嘟嘟电影网在线观看| 国产成人freesex在线| 亚洲精品,欧美精品| 91在线精品国自产拍蜜月| 国产单亲对白刺激| 精品酒店卫生间| 亚洲欧美成人综合另类久久久| 亚洲婷婷狠狠爱综合网| 国产 一区 欧美 日韩| 精品人妻视频免费看| 亚洲欧美一区二区三区国产| 免费观看av网站的网址| 日韩欧美精品免费久久| av天堂中文字幕网| 嫩草影院入口| h日本视频在线播放| 偷拍熟女少妇极品色| 精品一区二区三卡| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲av片在线观看秒播厂 | 99热6这里只有精品| 寂寞人妻少妇视频99o| 欧美成人a在线观看| 搞女人的毛片| 一个人免费在线观看电影| 看黄色毛片网站| 国产成人精品婷婷| 又黄又爽又刺激的免费视频.| 热99在线观看视频| 午夜福利成人在线免费观看| 免费观看a级毛片全部| 免费在线观看成人毛片| 一区二区三区高清视频在线| 国产精品嫩草影院av在线观看| 三级男女做爰猛烈吃奶摸视频| 国产高清有码在线观看视频| 亚洲欧美日韩东京热| 日韩强制内射视频| av专区在线播放| 日韩三级伦理在线观看| 国产一区有黄有色的免费视频 | 亚洲人与动物交配视频| 免费看光身美女| 亚州av有码| 麻豆乱淫一区二区| 大香蕉久久网| 亚洲国产欧美在线一区| freevideosex欧美| 一边亲一边摸免费视频| 日本一二三区视频观看| 别揉我奶头 嗯啊视频| 在线天堂最新版资源| 久久久久久伊人网av| 男人爽女人下面视频在线观看| 国产激情偷乱视频一区二区| 中文欧美无线码| 亚洲欧美日韩卡通动漫| 免费黄网站久久成人精品| 国产有黄有色有爽视频| 国产视频首页在线观看| 日本三级黄在线观看| 肉色欧美久久久久久久蜜桃 | 少妇猛男粗大的猛烈进出视频 | 欧美日韩精品成人综合77777| 麻豆av噜噜一区二区三区| 神马国产精品三级电影在线观看| 久久精品国产亚洲网站| 国产黄频视频在线观看| 国产精品一二三区在线看| 男人舔奶头视频| 国产精品美女特级片免费视频播放器| 一区二区三区高清视频在线| 国产黄色视频一区二区在线观看| 午夜日本视频在线| 国产精品一二三区在线看| 神马国产精品三级电影在线观看| 久久久久性生活片| 91aial.com中文字幕在线观看| 久久久久性生活片| 国产精品无大码| 国产精品国产三级国产专区5o| 男女边摸边吃奶| 少妇猛男粗大的猛烈进出视频 | av网站免费在线观看视频 | 亚洲av成人精品一区久久| 一级毛片 在线播放| 精品亚洲乱码少妇综合久久| 丰满人妻一区二区三区视频av| 尤物成人国产欧美一区二区三区| 久久久久久久久大av| 久久精品国产亚洲av天美| 又大又黄又爽视频免费| 久久精品国产亚洲网站| 欧美xxⅹ黑人| 国产av不卡久久| 男女下面进入的视频免费午夜| 久久精品久久精品一区二区三区| 天堂av国产一区二区熟女人妻| 婷婷六月久久综合丁香| 啦啦啦啦在线视频资源| 午夜日本视频在线| 高清欧美精品videossex| 国产白丝娇喘喷水9色精品| 乱人视频在线观看| 成年女人在线观看亚洲视频 | 亚洲av男天堂| 国产91av在线免费观看| 日韩欧美 国产精品| 天美传媒精品一区二区| 可以在线观看毛片的网站| 波野结衣二区三区在线| 国产成人精品福利久久| 亚洲国产欧美在线一区| 99热这里只有是精品在线观看| 成人亚洲欧美一区二区av| 国产精品女同一区二区软件| 久久精品熟女亚洲av麻豆精品 | 我要看日韩黄色一级片| 99久国产av精品| av.在线天堂| 免费观看无遮挡的男女| 中文字幕久久专区| 草草在线视频免费看| 简卡轻食公司| 看十八女毛片水多多多| 又粗又硬又长又爽又黄的视频| 91精品国产九色| 寂寞人妻少妇视频99o| 日韩强制内射视频| 精品久久久久久久久久久久久| 男人舔奶头视频| 91精品伊人久久大香线蕉| 少妇的逼水好多| 黄片wwwwww| 成人性生交大片免费视频hd| 亚洲最大成人中文| 街头女战士在线观看网站| 久久久色成人| 久久久久久久久久成人| 2018国产大陆天天弄谢| 晚上一个人看的免费电影| 久久精品国产自在天天线| 国产久久久一区二区三区| 国产精品一及| 免费观看精品视频网站| 乱人视频在线观看| 黄色一级大片看看| 最近手机中文字幕大全| 久久热精品热| 亚洲精品中文字幕在线视频 | 女人被狂操c到高潮| 日韩中字成人| 亚洲图色成人| xxx大片免费视频| av专区在线播放| 青春草亚洲视频在线观看| 日韩国内少妇激情av| 男女视频在线观看网站免费| 在线天堂最新版资源| 成年人午夜在线观看视频 | 老司机影院成人| 久久精品人妻少妇| 如何舔出高潮| 丰满人妻一区二区三区视频av| 欧美一级a爱片免费观看看| 国产一区二区亚洲精品在线观看| 内射极品少妇av片p| 在线观看免费高清a一片| 午夜福利在线观看吧| 大陆偷拍与自拍| 精品欧美国产一区二区三| 边亲边吃奶的免费视频| 成人鲁丝片一二三区免费| 又大又黄又爽视频免费| 国产成人a区在线观看| 久久久久久国产a免费观看| 国产伦理片在线播放av一区| 欧美成人a在线观看| 日本-黄色视频高清免费观看| 亚洲欧美中文字幕日韩二区| 久久99蜜桃精品久久| 蜜桃久久精品国产亚洲av| 丰满人妻一区二区三区视频av| 一级毛片aaaaaa免费看小| 嫩草影院精品99| 欧美激情久久久久久爽电影| 久久国内精品自在自线图片| 久久久午夜欧美精品| 极品教师在线视频| 亚洲一级一片aⅴ在线观看| 成人一区二区视频在线观看| 视频中文字幕在线观看| 最近中文字幕2019免费版| 成年人午夜在线观看视频 | 亚洲欧美中文字幕日韩二区| 亚洲自拍偷在线| 国产在线一区二区三区精| 一级片'在线观看视频| 亚洲无线观看免费| 美女内射精品一级片tv| 中文天堂在线官网| 91精品国产九色| 我的女老师完整版在线观看| 看黄色毛片网站| 国产av国产精品国产| 日本免费在线观看一区| 国产精品国产三级国产专区5o| 国产不卡一卡二| 男女那种视频在线观看| 91久久精品国产一区二区三区| 伊人久久精品亚洲午夜| 国产欧美日韩精品一区二区| 欧美日韩视频高清一区二区三区二| 波野结衣二区三区在线| 熟女人妻精品中文字幕| 日韩中字成人| 成人综合一区亚洲| 一个人免费在线观看电影| 大陆偷拍与自拍| 国产黄色视频一区二区在线观看| 少妇被粗大猛烈的视频| 大又大粗又爽又黄少妇毛片口| av在线天堂中文字幕| 欧美最新免费一区二区三区| 好男人在线观看高清免费视频| 亚洲真实伦在线观看| 99久久人妻综合| 有码 亚洲区| 亚洲最大成人中文| 精品欧美国产一区二区三| 日本与韩国留学比较| 高清在线视频一区二区三区| 淫秽高清视频在线观看| 人人妻人人澡人人爽人人夜夜 | 国产精品久久久久久久电影| 久久久久性生活片| 亚洲国产精品专区欧美| 免费看不卡的av| 国产成人a∨麻豆精品| 两个人的视频大全免费| 啦啦啦啦在线视频资源| 国产精品久久久久久久电影| 国产精品久久久久久精品电影小说 | 国产精品人妻久久久久久| 一个人观看的视频www高清免费观看| 国产精品一区二区性色av| 国产69精品久久久久777片| www.色视频.com| 国产午夜精品一二区理论片| 少妇猛男粗大的猛烈进出视频 | 一级毛片电影观看| 成人亚洲精品一区在线观看 | 三级国产精品欧美在线观看| 亚洲四区av| 永久免费av网站大全| 亚洲精品日本国产第一区| av在线蜜桃| 国产精品久久久久久精品电影小说 | 黄色一级大片看看| 中文精品一卡2卡3卡4更新| 亚洲国产精品国产精品| 国内揄拍国产精品人妻在线| 亚洲久久久久久中文字幕| 久久这里只有精品中国| 高清在线视频一区二区三区| av免费在线看不卡| 一级爰片在线观看| 亚洲av成人av| 久久精品熟女亚洲av麻豆精品 | 日本黄色片子视频| 亚洲熟女精品中文字幕| 亚洲av不卡在线观看| 国产伦精品一区二区三区视频9| 又爽又黄a免费视频| 国产精品人妻久久久影院| 成人综合一区亚洲| 男女边吃奶边做爰视频| 亚洲欧美成人精品一区二区| 观看美女的网站| 成人高潮视频无遮挡免费网站| 欧美成人a在线观看| 夜夜看夜夜爽夜夜摸| 亚洲欧美中文字幕日韩二区| 久久久久久九九精品二区国产| 国产精品久久久久久久久免| 亚洲熟妇中文字幕五十中出| 日韩,欧美,国产一区二区三区| 男人和女人高潮做爰伦理| 五月伊人婷婷丁香| 99久久精品一区二区三区| 六月丁香七月| 日日啪夜夜撸| 又黄又爽又刺激的免费视频.| 国产黄色小视频在线观看| 国产免费一级a男人的天堂| 狠狠精品人妻久久久久久综合| 久久久久久国产a免费观看| 波野结衣二区三区在线| 99热这里只有是精品在线观看| 久久久久久久久久黄片| 国产成人freesex在线| 99久国产av精品国产电影| av国产免费在线观看| 99久久精品一区二区三区| 好男人视频免费观看在线| 亚洲av国产av综合av卡| 国产大屁股一区二区在线视频| 综合色丁香网| 三级国产精品欧美在线观看| 99热这里只有精品一区| 91久久精品国产一区二区三区| 九九在线视频观看精品| 亚洲精品456在线播放app| 麻豆国产97在线/欧美| 在线a可以看的网站| 99热这里只有是精品在线观看| av又黄又爽大尺度在线免费看| 色综合色国产| 秋霞在线观看毛片| 亚洲美女视频黄频| 国产淫语在线视频| 日本av手机在线免费观看| 夫妻性生交免费视频一级片| 精品欧美国产一区二区三| 日韩精品青青久久久久久| 成年免费大片在线观看| 国产精品无大码| 久久精品国产亚洲av天美| 国产男人的电影天堂91| 午夜免费男女啪啪视频观看| or卡值多少钱| 看免费成人av毛片| 国语对白做爰xxxⅹ性视频网站| av网站免费在线观看视频 | 99re6热这里在线精品视频| av卡一久久| 亚洲av日韩在线播放| 建设人人有责人人尽责人人享有的 | 欧美日韩视频高清一区二区三区二| 久久久久久久久久久免费av| 日本欧美国产在线视频| av在线观看视频网站免费| 精品亚洲乱码少妇综合久久| 亚洲内射少妇av| 国产探花极品一区二区| 最近手机中文字幕大全| 神马国产精品三级电影在线观看| 成年av动漫网址|