• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical study of the hyperfine interaction constants,Land′e g-factors,and electric quadrupole moments for the low-lying states of the 61Niq+(q=11,12,14,and 15)ions*

    2021-01-21 02:07:10TingXianZhang張婷賢YongHuiZhang張永慧ChengBinLi李承斌andTingYunShi史庭云
    Chinese Physics B 2021年1期

    Ting-Xian Zhang(張婷賢),Yong-Hui Zhang(張永慧), Cheng-Bin Li(李承斌),?, and Ting-Yun Shi(史庭云)

    1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: hyperfine interaction, Land′e g-factors, electric quadrupole moment, multiconfiguration Dirac–Hartree–Fock(MCDHF)method

    1. Introduction

    The extraordinary precision of optical clocks allows not only for creating improved time standards, but also for looking for changes in fundamental constants over time, measuring gravity red shift, and probing the existence of forces beyond the Standard Model.[1–3]The fractional uncertainties of a few parts in 10-18,even in 10-19,have been achieved in current leading optical clocks, such as the27Al+clock.[4–7]The dominated uncertainty and frequency shift of the clock transition are caused by the perturbations of the external fields,such as blackbody radiation (BBR) and quadratic Zeeman effect. In comparison to neutral atoms and singly charged ions,the highly charged ions(HCIs)possess optical transitions which can be extremely narrow and less sensitive to the external perturbations, since the electronic cloud is shrunk with the increasing of the ion charge.[8–10]Moreover, the sensitivity of optical transitions in HCIs to effects beyond the Standard Model and Einstein’s Theory of Relativity is enhanced by the nuclear charge and ionization degree. Therefore,HCIs are candidates for the novel clock which can improve the accuracy of the optical frequency standards and subsequent researches,such as exploring changes of the fine structure constant α.[11]In recent years, many HCIs have been suggested as the candidates for making ultra-precise optical clocks and exploring new physics beyond the standard model of particle physics.[10]And experimentally, sympathetic cooling and quantum logic spectroscopy of HCIs have been applied for the Ar13+ion,[12,13]which shed light on building the optical clock based on HCIs.

    Several highly charged nickel ions have been proposed for making ultra-precise optical clock with the fractional uncertainties below 10-19level.[9,22,23]The magnetic dipole(M1) transitions between the states belonging to the configuration of the ground state in the61Ni15+and61Ni14+ions were recommended by Yudin et al. The advantages of these ions are the negligible quadrupolar shift,and the simple clock level structures of themself which are benefit to both the theoretical and experimental studies.[9]Soon afterwards,Yu and Sahoo have demonstrated that the projected fractional shift for clock transition 3s23p2Po3/2–2Po1/2 in the61Ni15+ion is below the 10-19level.[22]They also pointed out that the electric quadrupole (E2) transition 3s23p23P0–3P2in58Ni12+ion is suitable for making optical clocks, since the quality factor of this transition is larger than 1015,and the M1 transition 3s23p23P1–3P2can be used for laser cooling.[23]Recently, the six optical clock transitions (in Fig. 1) in four adjacent charge states of highly charged nickel ions, Ni11+, Ni12+, Ni14+,and Ni15+, have been studied both in theory and experiment.Theoretically,the transition energies,transition rates,and enhancement factors for the α-variation for these clock transitions have been calculated by using the multi-configuration Dirac–Hartree–Fock method(MCDHF).Experimentally,with the achievement of producing and extracting the above ions in the low-energy compact Shanghai–Wuhan Electron Beam Ion Trap,[24]the transition wavelengths of four magnetic-dipole(M1) clock transitions have been measured with an accuracy of tens of ppm,which are in agreement with their calculations.

    In this work,using the MCDHF method,we calculate the hyperfine interaction constants, Land′e g-factors, and electric quadrupole moment for the states that are involved in the six optical transitions of61Ni HCIs,as shown in Fig.1.The active space approach is adopted to investigate the effects of electron correlations on the atomic parameters in detail. The above investigations allow us to obtain high-precision atomic parameters,and to evaluate reliable uncertainties for the present results.We expect our calculations could support the experimental investigations about the highly charged nickel ion optical clock.

    Fig.1. Partial level structures and clock transitions for 61Ni11+, 61Ni12+, 61Ni14+,and 61Ni15+ions. Magnetic-dipole(M1)transitions are shown in red and electric-quadrupole (E2) transitions in blue. The wavelengths labeled in this figure are recommended values by NIST database.[25]

    2. Theoretical method

    2.1. MCDHF method

    Atomic state wave functions(ASFs)in this work are generated by using the MCDHF method.[26,29]For an N-electron atomic system,the Dirac–Coulomb Hamiltonian HDCis given by

    where c is the speed of light in vaccum, αiand βiare the 4×4 Dirac matrices, and Vnuc(ri) is the monopole part of the electron–nucleus interaction. In the MCDHF method,an ASF is constructed by configuration state functions(CSFs)|γJMJ〉with the same parity P, total angular momentum J, and its component along the z direction MJ,i.e.,

    Here, ciis the mixing coefficient, and γistands for other appropriate quantum number of the CSF. Every CSF is a linear combination of products of one-electron Dirac orbitals. The mixing coefficients and the orbitals are optimized simultaneously in the self-consistent field(SCF)procedure to minimize energies of levels concerned.Once a set of orbitals is obtained,the relativistic configuration interaction(RCI)calculations can be carried out to capture more electron correlations by optimizing the mixing coefficients.[27,28]The Breit interaction in the low-frequency approximation

    is included in the RCI Hamiltonian in order to give the correct energy level sequence. In addition, QED corrections are divided into vacuum polarization and self-energy correction and both parts are included in the RCI procedure. The vacuum polarization part is described by the Uehling model potential,and the self-energy correction is given as a sum of the oneelectron corrections,which are evaluated by using a screened hydrogenic model.[29,30]

    2.2. Hyperfine interaction

    The hyperfine interaction is caused by the interaction between the electrons and the electromagnetic multipole moments of the nucleus. The corresponding Hamiltonian is in the form of

    The hyperfine interaction couples the electronic angular momentum J and nuclear spin I to a conserved angular momentum F, F =I+J. In the first-order approximation, the hyperfine energy correction is given by

    2.3. Electric quadrupole moment

    Because the atomic charge distribution is not always spherical, there is a deviation from the spherical shape, in which case the atomic state has an electric quadrupole moment.The Hamiltonian for the interaction between the electric quadrupole moment and the electric-field gradient is

    2.4. Zeeman effect of hyperfine level

    The Zeeman interaction of the atom with the magnetic field B can be written as[34,35]For an N-electron atom,the electronic tensor operator is

    Here,gJand gFare Land′e g-factors for the fine and hyperfine states.

    3. Computational model

    For a many-electron atomic system, the description of electron correlations in the computational model plays a key role on the precision of the calculated atomic parameters. The active space approach is utilized to capture the effect of electron correlations systematically.[30,36]In this approach, the CSFs generated through single(S)and double(D)excitations from the occupied orbitals in the single reference(SR)configuration to virtual orbitals capture the first-order electron correlation effects. In order to achieve high accuracy,the higherorder electron correlations beyond the first-order electron correlation also need to be considered. The CSFs generated through SD excitations from the multireference(MR)configurations set can capture the higher-order electron correlation for the complex atomic system,i.e.,MR-SD approach.[37]The MR configurations set is formed by selecting those important CSFs in the first-order ASF. In Table 1, the reference configuration sets, the virtual orbitals, and the number of CSFs corresponding to computational processes of the nickel ions concerned are shown.

    For each ion concerned, the computation starts from the Dirac–Hartree–Fock SCF calculation. In this step, the occupied orbitals in the reference configuration are optimized as spectroscopic orbitals(labeled as DHF).As shown in Table 1,the reference configurations for the Ni11+, Ni12+, Ni14+, and Ni15+ions are 3s23p5,3s23p4,3s23p2,and 3s23p,respectively.The 3s and 3p orbitals are the valence orbitals and others are the core orbitals. In the SCF calculations, the correlation between the valence electrons,VV correlation,and that between the valence electrons and core electrons, CV correlation, are included. The configuration expansions are generated by restricting the SD excitations from the single reference configuration. The restriction to the double excitations is that at most one electron in the core subshell can be substituted at one step. The virtual orbitals are augmented layer by layer up to nmax=12 and lmax=6,nmaxand lmaxare the maximum principal quantum number and the maximum angular quantum number of the virtual orbitals, and only the last added virtual orbitals are variable in one step. The orbital set obtained in this CV computational model is used for the subsequent RCI calculations. The correlations in the core electrons, referred to as CC correlations,are included in the RCI computation by allowing the SD excitations from the core orbitals to all the virtual orbitals. In order to analyze the effects from different core electrons on the physical quantities under investigation,we open up the core subshell successively. Corresponding models are labeled with CC2p, CC2s, and CC1s, respectively,and the subscripts 2p,2s,and 1s mean that the CC correlations between these orbitals are involved. So far,the SD-excitation CSFs from the single reference configuration are all included.It means that all the first-order electron correlations are included in our calculations.

    As mentioned earlier, the higher-order correlations between the valence orbitals and the core orbitals with n=2 are captured by MR-SD approach. We select the dominant CSFs with the weights of|ci|>0.01 in the configuration spaces obtained in the CC1smodel to form the multireference configuration set and show them in Table 1. To control the number of CSFs, the SD excitations are allowed from orbitals with n ≥2 in the MR configurations to the first three layers of virtual orbitals. These computational models are marked as MR.Finally, the Breit interaction and QED corrections are evaluated based on the MR model. In practice, we employ the GRASP2018[38]package to perform present calculations.

    Table 1. The reference configurations sets,the active orbitals(AO)set,and the number of CSFs(NCSF)for the concerned states of the Ni11+,Ni12+,Ni14+,and Ni15+ ions in various correlation models. The active orbitals are labelled by the maximum principal quantum number nmax and orbital angular momentum l.

    4. Results and discussion

    4.1. Hyperfine interaction constants

    Computational uncertainty is caused by the electron correlations neglected in the computational model. In this work all the first-order electron correlations and the dominant higher-order correlations are included. The main uncertainty arises from the neglected higher-order correlations related to the 1s electrons.But these effects should be smaller than those from the outer shells because of the stronger nuclear Coulomb potential in the inner region. Conservatively,we treat the contribution of the higher-order correlations captured in the MR model as the uncertainty due to the neglected higher-order correlations. For example, the contribution of the higher-order correlation captured in the MR model to the Ahfs(2Po1/2) of the61Ni11+ions is 0.48%, and it is treated as the uncertainty caused by the neglected higher-order correlations. Additionally, the truncation uncertainty is estimated according to the convergence trends of the various correlations. For example,the truncation uncertainty of Ahfs(2Po1/2) for the61Ni11+ions is 0.03%. The total uncertainty of Ahfs(2Po1/2)for the61Ni11+ions is 0.51%. Yu and Sahoo have calculated the hyperfine interaction constants of the61Ni15+ions by using the relativistic coupled-cluster (RCC) method.[22]Our calculated results are in excellent agreement with theirs. Using the hyperfine interaction constants of the MR-BQ models, we evaluate the transition frequency corrections of the concerned clock transitions in Fig. 1 and show them in Table 3. Accordingly, the changes of the wavelength caused by the hyperfine interaction are about 0.001 nm for the c and d lines,and 0.01 nm for the other lines in Fig.1.

    Table 2. The hyperfine interaction constants Ahfs and Bhfs (all in MHz)for the concerned states in the 61Ni11+, 61Ni12+, 61Ni14+,and 61Ni15+ions. The numbers in the parentheses are the uncertainties for our results.

    Table 3. The hyperfine interaction corrections of the transition frequency Δfhfs (in MHz)for the clock transitions in Fig.1. Numbers in parentheses stand for the uncertainties.

    4.2. Land′e g-factor

    Table 4. The Land′e g-factors of the concerned states in the 61Ni11+,61Ni12+, 61Ni14+, and 61Ni15+ ions. The numbers in the parentheses are the uncertainties for our results.

    4.3. Electric quadrupole moments

    In Table 5,the electric quadrupole moments of the clock states in the61Ni11+,12+,14+,15+ions are presented. Similar to the cases of the hyperfine interaction constants and Land′e g-factors, the electric quadrupole moments of the states concerned are sensitive to the VV and CV electron correlations as well. The effects of the CC correlations and higher-order correlations on the electric quadrupole moments under investigation are about 1%,and opposite to each other. Thus,to obtain Θ with high precision, both the CC and the higher-order correlation are indispensable. The Θ(3P2)of the Ni12+and Ni14+ions are more sensitive to the Breit interaction and QED effect than other Θ in Table 5. The corrections of the Breit and QED to the Θ(3P2)of the Ni12+ion are 0.95%and 0.06%, respectively,and 3.3%and 0.25%for the Ni14+ion. For other Θ in Table 5, the influences of the Breit and QED effect are less than 0.1% and 0.01%, respectively. Due to the contributions from the neglected higher-order corrections and truncations of the active orbital sets, 1% uncertainties are given for present electric quadrupole moments. Yu and Sahoo[23]have calculated the Θ(3P2) of the Ni12+ion using the DIRAC program that based on Fock space coupled cluster(FSCC)method.Our calculated results agree with their results.

    Table 5. The electric quadrupole moments(in a.u.) of the concerned states in the 61Ni11+, 61Ni12+, 61Ni14+,and 61Ni15+ ions. The numbers in the parentheses are the uncertainties for our results.

    4.4. Electric quadrupole shift

    The electric quadrupole shift caused by the interaction between the electric quadrupole moments of the clock states with the gradient of the electric field is one of the main systematic shifts in the atomic clock. For the isotopes with nonzero nuclear spin, the quadrupole shift can be either eliminated or strongly suppressed by choosing clock transitions between the hyperfine levels which make the 6j symbol in Eq.(14)equal to zero. For the61Ni11+and61Ni15+ions,it is proper to choose the transitions between2Po3/2F =0 and2Po1/2F =1,2. In the61Ni12+and61Ni14+ions,the suitable states are3P0F =3/2,3P1F =1/2, and3P2F =1/2. Since Θ(2)-qis an even-parity operator of rank 2, the electric quadrupole moments of the states with F <1 are zero according to the selection rules.Thus, for the M1 clock transition in61Ni12+,3P1F =1/2–3P2F = 1/2, the quadrupolar shift is zero identically. For the other clock transitions concerned, the electric quadrupolar shifts are suppressed,which are benefited from that the ΘJof the2Po1/2and3P0states are zero. Moreover, the electric quadrupole shift can be canceled by two methods experimentally. Both of them are based on measuring the Zeeman spectrum of the clock transition.[33,39]The averaged value of the transition frequencies that correspond to three magnetic fields with the same magnitude but with mutually perpendicular directions does not contain the electric quadrupole shift. Alternatively,the electric quadrupole shift can be eliminated when an average over all MFis done.

    4.5. Zeeman shift

    The Zeeman shift of the clock transition frequency is caused by the residual magnetic field B of the environment.Generally,it is sufficient to consider only the first and secondorder Zeeman effects on the clock transitions frequency. The first-order Zeeman shift can be canceled by measuring two transitions with opposite magnetic quantum number MFand averaging the frequencies.[40]Indeed,for the clock transitions between the sublevels2Po1/2F = 0 MF= 0 and2Po3/2F =1,2 MF=0 of the61Ni11+,15+ions, the first-order Zeeman shift equals zero. The quadratic Zeeman shift can be evaluated by ΔE(2)m=CM2B2,where CM2~(gJμB-gIμN(yùn))/h2Ahfs.Using the calculated Land′e g-factors and magnetic dipole hyperfine interaction constants,we estimate theCM2for the clock transitions investigated in this work, and the values are listed in the third column of Table 6. Table 6 also gives the transition frequencies of the clock transitions concerned which are~1014Hz. By assuming a small magnetic field B=1 μT,the relative quadratic Zeeman shifts are evaluated. From Table 6,it can be seen that the quadratic Zeeman shifts are nonnegligible for the six clock transitions concerned,and we must identify the shifts precisely. The g-factor plays a key role in the accurate diagnosis of the magnetic field strength,which is necessary for determining the quadratic shift precisely.

    Table 6. The quadratic Zeeman shift coefficients CM2 (in Hz/T2) and the transition frequencies f (in Hz) of the concerned clock transitions in the 61Ni11+, 61Ni12+, 61Ni14+, and 61Ni15+ ions. The relative quadratic Zeeman shifts are evaluated by assuming a small magnetic field B=1 μT.Numbers in square brackets stand for the power of 10.

    5. Conclusion

    In summary,we calculated the hyperfine interaction constants, Land′e g-factors, and electric quadrupole moments of the sates involved in the clock transitions in61Ni11+,61Ni12+,61Ni14+,and61Ni15+ions using the MCDHF method. Based on the active space approach, the effects of the electron correlations, the Breit interaction, and QED effect on the above atomic parameters were discussed. We found that the VV and CV electron correlations make significant contributions to these physical quantities concerned. Moreover, both the CC and higher-order electron correlations should be included in order to acquire high precision atomic parameters. Reliable uncertainties were evaluated by taking into account the contributions from the neglected high-order corrections and truncations effects of the active orbital sets. In addition, we discussed the electric quadrupole shifts and Zeeman shifts of the clock transitions concerned. For the clock transitions under investigation,the electric quadrupole shifts and linear Zeeman shifts can be eliminated or suppressed. While the quadratic Zeeman shifts should be measured precisely for achieving the uncertainty below the 10-19level.

    Acknowledgment

    We would like to thank Li Ji-Guang of Institute of Applied Physics and Computational Mathematics for many useful discussions.

    日韩电影二区| freevideosex欧美| 制服丝袜香蕉在线| 色94色欧美一区二区| 美女中出高潮动态图| 男女无遮挡免费网站观看| 久久狼人影院| 欧美97在线视频| 一区二区日韩欧美中文字幕 | 午夜免费男女啪啪视频观看| 一级爰片在线观看| 亚洲美女搞黄在线观看| 三级国产精品片| 一边摸一边做爽爽视频免费| 国产精品熟女久久久久浪| 欧美日韩av久久| 如何舔出高潮| 亚洲国产欧美日韩在线播放| 亚洲精品456在线播放app| 蜜桃国产av成人99| 久久久精品区二区三区| 建设人人有责人人尽责人人享有的| 亚洲人与动物交配视频| 午夜91福利影院| 2021少妇久久久久久久久久久| 国产成人av激情在线播放| 免费大片18禁| 伦理电影免费视频| www.熟女人妻精品国产 | 秋霞伦理黄片| 18禁国产床啪视频网站| 熟女av电影| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久久久电影| 又粗又硬又长又爽又黄的视频| 亚洲欧美清纯卡通| 欧美97在线视频| 天堂中文最新版在线下载| 日日撸夜夜添| 久久国内精品自在自线图片| 乱人伦中国视频| 成人免费观看视频高清| 亚洲欧美成人综合另类久久久| 91在线精品国自产拍蜜月| 超碰97精品在线观看| 久久亚洲国产成人精品v| freevideosex欧美| 啦啦啦中文免费视频观看日本| 婷婷成人精品国产| 女人久久www免费人成看片| 国产熟女午夜一区二区三区| 美女福利国产在线| 久久久久久久国产电影| 亚洲成人av在线免费| 亚洲av成人精品一二三区| 国产av国产精品国产| 成人二区视频| 久久久久精品人妻al黑| 亚洲熟女精品中文字幕| 美女内射精品一级片tv| 国产亚洲精品第一综合不卡 | 黄色视频在线播放观看不卡| 亚洲国产毛片av蜜桃av| 久久婷婷青草| 免费看光身美女| 精品国产露脸久久av麻豆| 22中文网久久字幕| 久久久久久久久久久久大奶| 亚洲精品自拍成人| 亚洲熟女精品中文字幕| 日本色播在线视频| 国产日韩一区二区三区精品不卡| 亚洲国产欧美日韩在线播放| 国产熟女欧美一区二区| 2018国产大陆天天弄谢| 国产精品国产三级国产专区5o| 蜜桃在线观看..| av在线观看视频网站免费| 久久ye,这里只有精品| 侵犯人妻中文字幕一二三四区| 精品人妻在线不人妻| 天天躁夜夜躁狠狠久久av| 国产亚洲午夜精品一区二区久久| 一级黄片播放器| 18禁国产床啪视频网站| 国产国语露脸激情在线看| 精品卡一卡二卡四卡免费| 亚洲美女搞黄在线观看| 满18在线观看网站| 少妇的逼好多水| 国产精品久久久久久精品电影小说| 亚洲精品久久成人aⅴ小说| 交换朋友夫妻互换小说| 久久影院123| 性色av一级| 十八禁网站网址无遮挡| 18禁裸乳无遮挡动漫免费视频| 热99国产精品久久久久久7| 国产xxxxx性猛交| 欧美精品一区二区大全| 青青草视频在线视频观看| 女人被躁到高潮嗷嗷叫费观| 老司机影院毛片| 日日撸夜夜添| 亚洲欧美日韩另类电影网站| 亚洲精品一二三| 如日韩欧美国产精品一区二区三区| 校园人妻丝袜中文字幕| 丁香六月天网| 日韩一本色道免费dvd| 成人漫画全彩无遮挡| 999精品在线视频| 女人久久www免费人成看片| 日日撸夜夜添| 九色亚洲精品在线播放| 少妇高潮的动态图| av片东京热男人的天堂| a级毛片黄视频| 人妻 亚洲 视频| 成人手机av| 久久精品久久精品一区二区三区| 久久久国产欧美日韩av| 一级,二级,三级黄色视频| 两个人看的免费小视频| 亚洲少妇的诱惑av| 一级,二级,三级黄色视频| 人人澡人人妻人| 午夜精品国产一区二区电影| 大话2 男鬼变身卡| 制服人妻中文乱码| av女优亚洲男人天堂| 99久久人妻综合| 久久亚洲国产成人精品v| 国产精品一区二区在线观看99| 熟女电影av网| 边亲边吃奶的免费视频| av片东京热男人的天堂| 99热网站在线观看| 国产亚洲精品久久久com| 日韩欧美一区视频在线观看| 婷婷色综合大香蕉| 又黄又粗又硬又大视频| 国产午夜精品一二区理论片| 久久久久精品久久久久真实原创| 下体分泌物呈黄色| 久久av网站| 一区二区三区精品91| av又黄又爽大尺度在线免费看| 啦啦啦视频在线资源免费观看| 在线免费观看不下载黄p国产| 18禁动态无遮挡网站| 夜夜爽夜夜爽视频| 亚洲中文av在线| 久久精品人人爽人人爽视色| 午夜日本视频在线| 日韩精品有码人妻一区| 中国三级夫妇交换| 国产片内射在线| 嫩草影院入口| 婷婷色av中文字幕| 久久国产精品男人的天堂亚洲 | 爱豆传媒免费全集在线观看| 91久久精品国产一区二区三区| 国语对白做爰xxxⅹ性视频网站| 三级国产精品片| 在线观看免费视频网站a站| 亚洲一区二区三区欧美精品| 日日摸夜夜添夜夜爱| 乱码一卡2卡4卡精品| 天天操日日干夜夜撸| 欧美少妇被猛烈插入视频| 国产精品久久久久久久久免| 亚洲av日韩在线播放| 成人漫画全彩无遮挡| av线在线观看网站| 国产黄频视频在线观看| av卡一久久| 精品视频人人做人人爽| 亚洲美女视频黄频| 亚洲精品成人av观看孕妇| 国产欧美亚洲国产| 黑人猛操日本美女一级片| 久久久久久久大尺度免费视频| 熟女电影av网| 一区二区三区四区激情视频| 午夜福利乱码中文字幕| 草草在线视频免费看| 丝袜脚勾引网站| 亚洲在久久综合| 久久久久久伊人网av| 久久久久国产精品人妻一区二区| 亚洲成色77777| 精品久久国产蜜桃| 亚洲国产精品国产精品| 久久久亚洲精品成人影院| 久久 成人 亚洲| 男女无遮挡免费网站观看| 香蕉国产在线看| 日韩欧美精品免费久久| 亚洲成av片中文字幕在线观看 | www.熟女人妻精品国产 | 国产国拍精品亚洲av在线观看| 国产69精品久久久久777片| 成人亚洲欧美一区二区av| 多毛熟女@视频| 成年av动漫网址| 亚洲av欧美aⅴ国产| 免费观看性生交大片5| tube8黄色片| 日韩人妻精品一区2区三区| 欧美另类一区| 美女脱内裤让男人舔精品视频| 成年美女黄网站色视频大全免费| 日本午夜av视频| 九色成人免费人妻av| 在线观看免费高清a一片| 熟女人妻精品中文字幕| av黄色大香蕉| 亚洲精品美女久久av网站| a级毛片在线看网站| 亚洲伊人久久精品综合| 久久ye,这里只有精品| 国内精品宾馆在线| 伊人久久国产一区二区| 大香蕉久久网| 街头女战士在线观看网站| 亚洲精品国产色婷婷电影| 在现免费观看毛片| 91成人精品电影| 国产黄频视频在线观看| 亚洲欧美一区二区三区国产| 狠狠婷婷综合久久久久久88av| 亚洲av电影在线观看一区二区三区| 涩涩av久久男人的天堂| 中文字幕人妻熟女乱码| 激情视频va一区二区三区| 天堂中文最新版在线下载| xxxhd国产人妻xxx| 国产不卡av网站在线观看| 十分钟在线观看高清视频www| 热re99久久精品国产66热6| 日本-黄色视频高清免费观看| 综合色丁香网| 亚洲人成网站在线观看播放| 各种免费的搞黄视频| 香蕉精品网在线| 亚洲一码二码三码区别大吗| 久久精品国产综合久久久 | 日韩中文字幕视频在线看片| 18禁观看日本| 视频在线观看一区二区三区| 亚洲国产色片| 在线天堂最新版资源| 亚洲精品久久午夜乱码| 少妇被粗大的猛进出69影院 | 中文字幕免费在线视频6| 22中文网久久字幕| 五月天丁香电影| 五月开心婷婷网| 久久午夜综合久久蜜桃| 日韩欧美一区视频在线观看| xxx大片免费视频| 国产精品蜜桃在线观看| 日本av免费视频播放| 久久久久精品性色| 免费女性裸体啪啪无遮挡网站| 久久97久久精品| 国产精品人妻久久久久久| 亚洲精品色激情综合| 久久久久久久国产电影| 日本午夜av视频| 一二三四在线观看免费中文在 | 一区二区三区四区激情视频| 人人妻人人爽人人添夜夜欢视频| 久久久精品94久久精品| 免费人成在线观看视频色| 免费播放大片免费观看视频在线观看| 婷婷色av中文字幕| 岛国毛片在线播放| 高清av免费在线| 伊人久久国产一区二区| 一区二区av电影网| 亚洲精品国产av蜜桃| av在线观看视频网站免费| 国产片特级美女逼逼视频| 看十八女毛片水多多多| 亚洲av电影在线观看一区二区三区| 精品国产一区二区三区四区第35| 久久久久视频综合| 丁香六月天网| 亚洲av男天堂| 久久人人97超碰香蕉20202| 超色免费av| 9热在线视频观看99| 国产av码专区亚洲av| 啦啦啦中文免费视频观看日本| 国产又色又爽无遮挡免| 国产精品欧美亚洲77777| 国产精品久久久av美女十八| 亚洲成国产人片在线观看| 欧美成人午夜免费资源| 国产国语露脸激情在线看| 最近2019中文字幕mv第一页| 亚洲性久久影院| 亚洲一码二码三码区别大吗| 久久久久精品人妻al黑| 日韩伦理黄色片| 好男人视频免费观看在线| 黑人巨大精品欧美一区二区蜜桃 | 精品久久蜜臀av无| av女优亚洲男人天堂| 精品一区二区三卡| 国产精品国产三级专区第一集| 亚洲国产精品一区三区| 国产无遮挡羞羞视频在线观看| 亚洲国产日韩一区二区| 日韩伦理黄色片| 春色校园在线视频观看| 精品一区二区三卡| 2022亚洲国产成人精品| 国产视频首页在线观看| 久久久久久人妻| 亚洲美女黄色视频免费看| 在线免费观看不下载黄p国产| 成人毛片60女人毛片免费| 春色校园在线视频观看| 免费观看在线日韩| 一区二区三区乱码不卡18| 国产白丝娇喘喷水9色精品| 啦啦啦中文免费视频观看日本| 国产伦理片在线播放av一区| 欧美性感艳星| 午夜福利,免费看| 国产亚洲最大av| 久久这里有精品视频免费| 欧美精品国产亚洲| 久久婷婷青草| 男女高潮啪啪啪动态图| 97超碰精品成人国产| 男女高潮啪啪啪动态图| 亚洲精品一二三| 丰满乱子伦码专区| 国产午夜精品一二区理论片| 中文字幕最新亚洲高清| 18禁国产床啪视频网站| 美女xxoo啪啪120秒动态图| 国产av一区二区精品久久| 有码 亚洲区| 国产又爽黄色视频| 日韩中文字幕视频在线看片| 精品一区二区三卡| 夫妻午夜视频| 18+在线观看网站| www.熟女人妻精品国产 | 免费观看无遮挡的男女| videosex国产| 性色avwww在线观看| 大陆偷拍与自拍| 亚洲成人手机| 黑丝袜美女国产一区| 国产免费一区二区三区四区乱码| 熟女电影av网| 在现免费观看毛片| 国产永久视频网站| 麻豆乱淫一区二区| 国产精品一国产av| 狠狠精品人妻久久久久久综合| 波多野结衣一区麻豆| 黄色 视频免费看| 制服诱惑二区| 一级黄片播放器| 日韩熟女老妇一区二区性免费视频| 日韩av不卡免费在线播放| 高清黄色对白视频在线免费看| 又粗又硬又长又爽又黄的视频| 一二三四在线观看免费中文在 | 一级,二级,三级黄色视频| 在线观看三级黄色| 一级黄片播放器| 亚洲人成77777在线视频| 国产国拍精品亚洲av在线观看| 热re99久久精品国产66热6| 国产熟女欧美一区二区| 男女国产视频网站| 十八禁高潮呻吟视频| 免费人妻精品一区二区三区视频| 国内精品宾馆在线| 久久精品国产亚洲av涩爱| 精品午夜福利在线看| 国产又爽黄色视频| 黑人猛操日本美女一级片| 另类亚洲欧美激情| 欧美性感艳星| 国产在线免费精品| 日韩欧美精品免费久久| 日本黄大片高清| 下体分泌物呈黄色| 免费人妻精品一区二区三区视频| 国产无遮挡羞羞视频在线观看| 成人黄色视频免费在线看| 飞空精品影院首页| 国产成人91sexporn| 老女人水多毛片| 18禁裸乳无遮挡动漫免费视频| 亚洲第一av免费看| 精品一区在线观看国产| 久久久久久久久久成人| av卡一久久| 欧美日韩综合久久久久久| 午夜老司机福利剧场| 亚洲第一区二区三区不卡| 国产老妇伦熟女老妇高清| 22中文网久久字幕| 啦啦啦啦在线视频资源| 人人妻人人澡人人看| 国产日韩欧美亚洲二区| 自拍欧美九色日韩亚洲蝌蚪91| 成人综合一区亚洲| 欧美精品av麻豆av| 久久精品国产亚洲av涩爱| 日日摸夜夜添夜夜爱| 国产精品一区二区在线观看99| av电影中文网址| 大话2 男鬼变身卡| 一边摸一边做爽爽视频免费| 国产一区二区在线观看日韩| 在线观看人妻少妇| 免费av中文字幕在线| 免费在线观看完整版高清| 亚洲,一卡二卡三卡| 国产高清不卡午夜福利| 亚洲国产精品成人久久小说| 国产精品偷伦视频观看了| 婷婷成人精品国产| www.色视频.com| 久久国产精品男人的天堂亚洲 | 国产精品.久久久| 一级毛片我不卡| 亚洲欧美精品自产自拍| 侵犯人妻中文字幕一二三四区| 国产精品无大码| 天天躁夜夜躁狠狠躁躁| 亚洲精品色激情综合| 人妻 亚洲 视频| 免费大片18禁| 久久久久久久久久人人人人人人| 久久久久精品性色| 香蕉国产在线看| 欧美成人午夜免费资源| 亚洲综合色网址| 少妇被粗大的猛进出69影院 | 国产又色又爽无遮挡免| 日日爽夜夜爽网站| 天堂中文最新版在线下载| 97精品久久久久久久久久精品| 蜜臀久久99精品久久宅男| 久久久久久人人人人人| 亚洲av.av天堂| 亚洲精品久久成人aⅴ小说| 欧美性感艳星| 波野结衣二区三区在线| 丝袜脚勾引网站| av播播在线观看一区| 黑人猛操日本美女一级片| 99国产精品免费福利视频| 在线观看免费高清a一片| 精品熟女少妇av免费看| 国产乱来视频区| 久久久久精品久久久久真实原创| 天天影视国产精品| 两个人看的免费小视频| 黑人猛操日本美女一级片| a级片在线免费高清观看视频| 亚洲 欧美一区二区三区| 九九在线视频观看精品| 久久精品夜色国产| 99香蕉大伊视频| 丁香六月天网| 国产片内射在线| 国产在线免费精品| 色婷婷久久久亚洲欧美| 免费高清在线观看视频在线观看| 九九爱精品视频在线观看| 中文精品一卡2卡3卡4更新| 欧美激情 高清一区二区三区| 久久99热这里只频精品6学生| 精品国产一区二区三区久久久樱花| 亚洲国产色片| 欧美人与性动交α欧美精品济南到 | 国产老妇伦熟女老妇高清| 大香蕉久久成人网| 亚洲美女搞黄在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲在久久综合| 午夜福利影视在线免费观看| 日产精品乱码卡一卡2卡三| 高清毛片免费看| 午夜激情久久久久久久| 99国产精品免费福利视频| 国语对白做爰xxxⅹ性视频网站| 日韩av不卡免费在线播放| 亚洲国产成人一精品久久久| 亚洲综合色网址| 欧美人与善性xxx| 一区二区三区乱码不卡18| 亚洲精品视频女| 三上悠亚av全集在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 人妻一区二区av| 人妻人人澡人人爽人人| 欧美日韩成人在线一区二区| 极品少妇高潮喷水抽搐| 久久久久人妻精品一区果冻| 久久精品人人爽人人爽视色| 日韩 亚洲 欧美在线| 26uuu在线亚洲综合色| 精品国产一区二区三区四区第35| 最近中文字幕高清免费大全6| 肉色欧美久久久久久久蜜桃| 久久精品久久久久久久性| 女人精品久久久久毛片| 国产伦理片在线播放av一区| 一区二区三区乱码不卡18| 2022亚洲国产成人精品| 亚洲少妇的诱惑av| 成人18禁高潮啪啪吃奶动态图| 黑丝袜美女国产一区| 亚洲精品第二区| 菩萨蛮人人尽说江南好唐韦庄| 久久久精品免费免费高清| 91精品伊人久久大香线蕉| 伊人亚洲综合成人网| 国产欧美日韩一区二区三区在线| 国产亚洲欧美精品永久| 久久鲁丝午夜福利片| 中文乱码字字幕精品一区二区三区| av免费观看日本| 亚洲三级黄色毛片| 免费观看性生交大片5| 亚洲一码二码三码区别大吗| 中文字幕制服av| 久久久国产一区二区| 九草在线视频观看| 97人妻天天添夜夜摸| 少妇人妻 视频| 少妇的逼水好多| 久久精品国产综合久久久 | 国产深夜福利视频在线观看| 精品一区在线观看国产| 精品国产一区二区三区久久久樱花| 国产精品国产三级国产专区5o| 国产成人免费观看mmmm| 国产精品不卡视频一区二区| 又黄又粗又硬又大视频| 男人操女人黄网站| 免费人成在线观看视频色| 久久国产亚洲av麻豆专区| 日韩av不卡免费在线播放| 乱人伦中国视频| 久久影院123| 免费观看在线日韩| 如何舔出高潮| √禁漫天堂资源中文www| 国产精品一区二区在线观看99| 韩国av在线不卡| 18禁裸乳无遮挡动漫免费视频| 欧美激情国产日韩精品一区| 久久久久网色| 日韩伦理黄色片| 国产精品国产av在线观看| 一本久久精品| 成人黄色视频免费在线看| 国产淫语在线视频| 啦啦啦中文免费视频观看日本| 母亲3免费完整高清在线观看 | 久久精品aⅴ一区二区三区四区 | 午夜激情av网站| 极品人妻少妇av视频| 人妻一区二区av| 老司机影院成人| 亚洲欧洲国产日韩| 国产又色又爽无遮挡免| 一二三四中文在线观看免费高清| 最近中文字幕2019免费版| 亚洲精品日本国产第一区| 一级,二级,三级黄色视频| a 毛片基地| 婷婷色麻豆天堂久久| 超碰97精品在线观看| 最新中文字幕久久久久| 久久精品国产鲁丝片午夜精品| xxx大片免费视频| 97超碰精品成人国产| 免费观看无遮挡的男女| 全区人妻精品视频| 欧美精品亚洲一区二区| 如日韩欧美国产精品一区二区三区| 亚洲图色成人| 777米奇影视久久| 熟女av电影| 久久韩国三级中文字幕| 你懂的网址亚洲精品在线观看| 黄色视频在线播放观看不卡| 国产精品无大码| 十八禁高潮呻吟视频| √禁漫天堂资源中文www| 精品人妻熟女毛片av久久网站| 亚洲成人手机| 交换朋友夫妻互换小说| 蜜桃国产av成人99| av免费在线看不卡| 欧美变态另类bdsm刘玥| 91精品国产国语对白视频| 免费女性裸体啪啪无遮挡网站| 黄网站色视频无遮挡免费观看|