• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pt/TiO2–x nanofibrous aerogel for effective nitrogen reduction: A simple strategy for simultaneous Pt formation and TiO2–x vacancy engineering

    2022-06-18 03:00:54MengZhngJinDiShengmeiHungDnFngYitoLiuJinyongYuBinDingAndresGreiner
    Chinese Chemical Letters 2022年2期

    Meng Zhng, Jin Di, Shengmei Hung, Dn Fng, Yito Liu,*, Jinyong Yu,Bin Ding,*, Andres Greiner

    a Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China

    b Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95440, Germany

    ABSTRACT Electrocatalysis plays an increasingly important role in converting atmospheric molecules (e.g., N2, CO2 and H2O) to value-added products (e.g., NH3, C2H4 and H2).However, developing a simple strategy for preparing catalysts with high performance for the effective conversion of clean energy is still full of challenges.Herein, we describe a straightforward, one-step reduction method to achieve the formation of Pt nanoparticles (NPs) and the vacancy engineering of TiO2–x nanofibers (NFs) simultaneously, which can be accomplished in 5 min.Furthermore, a Pt/TiO2–x nanofibrous aerogel (NA) with an ordered cellular architecture is prepared through a directional freezing technology.The Pt/TiO2–x NA with excellent mechanical properties can be made into a self-supporting electrode for electrocatalytic N2 reduction reaction (NRR),showing high NH3 yield rate (4.81 × 10–10 mol/s cm–2) and Faraday efficiency (14.9%) at –0.35 V vs. RHE.

    Keywords:Vacancy engineering Pt nanoparticles TiO2–x nanofibers Nanofibrous aerogel Electrocatalysis Nitrogen reduction

    Energy, which vitally relates to human life from manufacturing to transportation, is essential for modern economies.With the growth of global population, the increase of energy demand and intensification of global climate change, developing sustainable pathways with fossils to produce fuels and chemicals is crucial to energy security [1].Electrocatalysis, which can utilize renewable power (solar, wind and hydro) as the driving force to convert atmospheric molecules (e.g., N2, CO2and H2O) to products with higher values (e.g., NH3, C2H4and H2), is a good choice [2–4].During the conversion process, catalysts for improving the reaction rate, efficiency and selectivity play a key role.Hence, developing advanced catalysts with high performance is imperative.

    In recent years, supported metal catalysts have been widely concerned in electrocatalysis benefiting from the strong metal–support interaction (SMSI), which is very important to tune the stability and selectivity of catalysts [5].Currently, two approaches are mainly adopted to improve the SMSI: reducing the size of the loaded metal particles and constructing vacancies (e.g., by heteroatom doping or amorphization) on the support [6,7].Decreasing the particle size to nanoscale, especially to single atoms (SAs), can ensure the maximum exposure of active sites and improve the catalyst performance, since the processes of reactants adsorption and products desorption take place on the active sites [8].However,the unachievable high-loading and difficulty in large-scale production of SAs greatly limit their practical applications [9].Loading ultrasmall-size nanoparticles (NPs) on the support still dominates current research.

    Vacancy engineering of the support is another approach to enhance the SMSI by changing the chemical structure of the support and improving the charge transfer [7,10].However, the present vacancy engineering strategies are either time-consuming with multiple steps or energy-consuming with harsh synthesis conditions[11–13].Although the introduction of doping ions is a simple method to construct vacancies in the support, one more process is needed to load metal NPs [14].Besides, carbon fiber paper is usually used as the matrix to load the catalyst by polymer binder,which makes most active sites unable to contact the reactants in electrocatalysis [15].Under these circumstances, developing a new method for metal NPs loading and vacancy engineering simultaneously is imperative.

    Fig.1.(a) Illustration of the preparation procedure of Pt/TiO2–x NA.(b) Digital image showing the ultralight feature of Pt/TiO2–x NA (2 mg/cm3).FESEM images showing (c)the ordered lamellar structure, (d) the interlaminar cellular structure and (e) the lamellar wall of Pt/TiO2–x NA.(f) Low- and (g) high-magnification TEM images of Pt/TiO2–x NF and the inset in (g) presents the size distribution of Pt NPs.(h) HRTEM image and (i) HAADF image and the corresponding EDX maps of Pt/TiO2–x NF.

    Herein, the formation of Pt NPs and the vacancy engineering of TiO2–xNFs are implemented simultaneously through a simple NaBH4reduction.By pouring NaBH4solution (80 °C) into the dispersion with H2PtCl6and TiO2NFs without other harsh conditions,the Pt4+is reduced and loaded on the TiO2NFs immediately, and the TiO2NFs are reduced by NaBH4in 5 min to form TiO2–xNFs with abundant oxygen vacancies (OVs).Furthermore, the Pt/TiO2–xNFs are prepared into a Pt/TiO2–xNA with good mechanical properties by a freeze-drying process.As an application presentation, the Pt/TiO2–xNA is used as a self-supporting catalyst for the N2reduction reaction (NRR) and the optimum NH3yield rate and Faraday efficiency (FE) are at –0.35 Vvs.RHE, being 4.81 × 10–10mol s–1cm–2and 14.9%, respectively.

    The illustration for the preparation of Pt/TiO2–xNA is shown in Fig.1a.Firstly, 0.5 g of flexible TiO2nanofibrous membrane, whose average fiber diameter was 184 nm (Fig.S1 in Supporting information), was cut into small pieces and dispersed in 20 mL of water to prepare a TiO2NFs dispersion.Then, a small amount of H2PtCl6solution was dropped into the dispersion.After being sonicated for 1 h and stirred for another 2 h, the dispersion was transferred to a screw bottle.Subsequently, 180 mL of hot water (80 °C) with NaBH4was poured into the screw bottle under vigorous stirring.The dispersion was changed from yellow to gray immediately and the TiO2NFs were reduced in 5 min in the presence of NaBH4[16].After being cooled naturally to ambient temperature, the dispersion was centrifuged and washed several times alternately with 0.1 mol/L HCl and water to obtain 47.5 mL of Pt/TiO2–xNFs dispersion.After that, 2.5 mL of SiO2sol working as the binder was dropped into the dispersion and stirred for 2 h [13].The color of the dispersion remained unchanged during this process, showing the stability of the Pt/TiO2–xNFs (Fig.S2 in Supporting information).Finally, the dispersion was poured into a homemade mold, directionally frozen by a cold plate, and freeze-dried to obtain a Pt/TiO2–xNA.For comparison, TiO2–xNA and TiO2NA were also prepared (Fig.S3 in Supporting information).Benefiting from its ultralight feature, the Pt/TiO2–xNA can stand on the tip of a flower (Fig.1b).An ordered cellular architecture of Pt/TiO2–xNA can be seen in Figs.1c and d, the field emission scanning electron microscopy (FESEM) images, which is caused by the fiber selfassembly with oriented growth of ice crystals during the directional freezing progress [13,17].The bonding structure caused by the SiO2sol wrapping around the TiO2NFs in Fig.1e can maintain the stability of the Pt/TiO2–xNA [18].Under the transmission electron microscopy (TEM) observation in Figs.1f–h, it can be seen the successful loading of Pt NPs (3.9 nm) on the surface of TiO2NFs.The energy dispersive X-ray (EDX) mapping spectra of a Pt/TiO2–xnanofiber in Fig.1i further prove the uniform distribution of Pt NPs.The loading amount of Pt NPs is 4.9 wt%, as tested by inductively coupled plasma optical emission spectrometer (ICP–OES).Moreover, the Pt/TiO2–xNA has a large Brunauer-Emmett-Teller(BET) surface area of 70.99 m2/g (Fig.S4 in Supporting information), which is a vital factor to the electrocatalytic reaction.

    Fig.2.(a) Digital images showing the compression and resilience process at a large compressive strain (ε = 40%).(b) Compressive stress–strain plots of Pt/TiO2–x NA under different maximum strains.(c) Selected compressive stress–strain plots of Pt/TiO2–x NA over 100 cycles compression (ε = 25%).(d) Dynamic mechanical property of Pt/TiO2–x NA at an oscillatory ε = 1%.(e) In-situ FESEM images showing the microstructure evolution of Pt/TiO2–x NA during the compression and resilience process (compressive ε = 40%).

    Good mechanical properties are the prerequisite for selfsupporting catalysts.Benefiting from the excellent mechanical properties of TiO2NFs (Fig.S5 in Supporting information) and the resilient bonding among the TiO2NFs caused by the elastic Si-O-Si bonds, the Pt/TiO2–xNA (10 mg/cm3, bulk density)can bear a compression strain up to 40% (Fig.2a) [13,19].From the quantitative characterization of the mechanical properties, the Pt/TiO2–xNA has a plastic deformation about 16.9% at a compression strain up to 40% during the first stress–strain cycle under different maximum compression (Fig.2b).Furthermore, the stability of the mechanical properties was measured through a compression–resilience cycle test at 25% compression strain in Fig.2c and more than 12% plastic deformation occurs after 100 compressions.The viscoelastic properties of the Pt/TiO2–xNA were also demonstrated in Fig.2d, and the stability of modulus and damping ratio from the frequency-dependent tests (0.1–1 Hz) indicates the dynamic mechanical response of the Pt/TiO2–xNA is good [19].Unmissably, the mechanical properties and viscoelastic properties of the Pt/TiO2–xNA are not so good as those of the TiO2NA in our previous work because of the poor mechanical properties of TiO2nanofibrous membrane (Fig.S5) and the shorter average fiber length (Fig.S6 in Supporting information)in the Pt/TiO2–xNA, which is not conducive to enhance the interaction among fibers through entanglement [13,20,21].To provide insight into the elasticity mechanism,in-situFESEM observations at a maximum compression strain of 40% were performed in Fig.2e.During the compression process, the compression work was transformed into elastic potential energy by the bending of nanofiber bundles among the ordered cellular architecture (Fig.S7 in Supporting information).The elastic potential energy was released with the stress decreasing during the resilience process [15].However, when the bending degree exceeded the bearing limit, the fiber bundles would be broken, as marked by the yellow circles in Fig.2e and caused the plastic deformation of the Pt/TiO2–xNA.

    The X-ray diffraction (XRD) patterns of the TiO2NA, TiO2–xNA and Pt/TiO2–xNA are shown in Fig.3a, revealing that the crystalline structures of TiO2remain unchanged after NaBH4reduction.The diffraction peaks of Pt (JCPDS #04–0802) can be observed, in consistent with the above TEM results [22].The TiO2NA displays the typical Raman active modes of anatase TiO2with the characteristic peaks at 143.9, 197.2 and 639.8 cm–1(Eg), 397.3 cm–1(B1g), and 515.6 cm–1(A1g) in Fig.3b [23].Compared to the TiO2NA, the strongest band coming from external vibration of the Ti–O bond at 143.9 cm–1shifts to higher wavenumbers in the TiO2–xNA and Pt/TiO2–xNA by 5.01 cm–1and 2.92 cm–1, respectively (Fig.3b, inset), demonstrating the existence of oxygen vacancies caused by the decrease of oxygen species [24].Because of the charge balance, the formation of each OV will, in turn, produce a pair of Ti3+,which can be confirmed by the electron paramagnetic resonance(EPR) and X-ray photoelectron spectroscopy (XPS) measurements[25].The distinct signal at g = 2.003 and g = 1.96 corresponding to OVs and Ti3+, respectively, can be found in Fig.3c [26].Notably,the instability of surface Ti3+makes it easy to be oxidized in aerobic environment (air or water) [27].So the obvious Ti3+EPR signals in Fig.3c indicate the presence of bulk Ti3+, accounting for its high stability during the NA preparation process, which is inevitably illuminated in air or water.In the high-resolution Ti 2p XPS spectrum of TiO2NA (Fig.3d), two peaks assigned to Ti4+at 457.5 and 464.3 eV can be observed, corresponding to Ti 2p3/2and Ti 2p1/2, respectively.After reduction, these peaks shift to lower binding energies in the TiO2–xNA and Pt/TiO2–xNA, demonstrating that electrons are withdrawn from deficient oxygen atoms [28].The O 1s XPS spectra (Fig.3e) for the three samples contain two peaks which are associated with lattice oxygen (529.9 eV) and OVs (531.8 eV) [12].The increased peak area of OVs in the TiO2–xNA and Pt/TiO2–xNA indicates that more surface defects were produced after NaBH4reduction.The Pt 4f XPS spectrum in Fig.3f provides further evidence for the presence of metallic Pt in Pt/TiO2xNA from the peaks of Pt0at 71.2 and 74.5 eV [29].Considering that H2PtCl6(Pt4+) was chosen as the Pt source, some metallic Pt species should be reduced by the surface OVs of TiO2–xwith charge transfer from OVs to Pt NPs, causing the peak intensity or shift degree of the Pt/TiO2–xNA lower than that of the TiO2–xNA in Figs.3b–e [30].

    An H-type cell (three-electrode system), separated by a Nafion 212 membrane, was used for the NRR performance.According to the linear sweep voltammetry (LSV) curves (Fig.4a), the current density in N2-saturated 0.1 mol/L Na2SO4electrolyte is much higher than that in Ar-saturated 0.1 mol/L Na2SO4electrolyte between –0.8 V to –0.2 Vvs.RHE, implying the effective N2reduction performance of the Pt/TiO2–xNA [31].From Fig.4b, the chronoamperometric curves, no obvious fluctuation in the current can be observed at different potentials, indicating good stability during the electrocatalytic process [32,33].In order to quantify the NH3yield of the Pt/TiO2–xNA at different potentials, indophenol blue method was employed.According to the standard curves and UVvis absorption spectra of electrolyte, which were dyed by indophenol blue, after 2 h reaction in Fig.S8 (Supporting information),the NH3yield rate and FE could be further calculated.As plotted in Fig.4c, the optimum NH3yield rate occurred at –0.35 Vvs.RHE for the Pt/TiO2–xNA, which were 4.81 × 10–10mol s–1cm–2and 14.9%, respectively.These values rank our Pt/TiO2–xNA as an advanced catalyst towards electrocatalytic NRR, as compared with other noble metal/TiO2or TiO2-based catalysts (Table S1 in Supporting information).As a comparison, the NRR performance for TiO2NA, TiO2–xNA and Pt/TiO2–xNA at –0.35 Vvs.RHE were also measured in Fig.4d.The Pt/TiO2–xNA shows the best performance,proving that the higher vacancy concentration and the interaction between Pt and TiO2–xis beneficial to improve the catalytic activity in electrocatalytic NRR.It is also proved by the N2temperatureprogrammed desorption (N2–TPD) spectra in Fig.S9 (Supporting information) that the Pt/TiO2–xNA has the highest desorption temperature, meaning that the presence of Pt NPs and OVs effectively enhance the N2chemisorption, which is favorable for the improvement of NRR performance [34].Considering the stability of catalysts is a critical parameter in practical applications, cycling tests and a longtime electrolysis for the Pt/TiO2–xNA at –0.35 Vvs.RHE were assessed.As observed in Fig.4e, the NH3yield rate and FE do not significantly change during 5 successive tests, showing the excellent recyclability for N2reduction.Besides, no obvious fluctuation of current density and FE after 12 h electrolysis in Fig.4f suggests that the Pt/TiO2–xNA has good electrochemical durability.The possible byproduct hydrazine was not detected after 12 h electrolysis by the Watt and Chrisp method (Fig.S10 in Supporting information).

    Fig.3.(a) XRD patterns of TiO2 NA, TiO2–x NA and Pt/TiO2–x NA.(b) Raman spectra of TiO2 NA, TiO2–x NA and Pt/TiO2–x NA and inset is the magnification of Eg peak.(c) EPR spectra of TiO2 NA, TiO2–x NA and Pt/TiO2–x NA.(d) Ti 2p and (e) O 1s XPS spectra of TiO2 NA, TiO2–x NA and Pt/TiO2–x NA.(f) Pt 4f XPS spectrum for Pt/TiO2–x NA.

    Fig.4.(a) LSV curves of Pt/TiO2–x NA in N2- and Ar-saturated 0.1 mol/L Na2SO4 electrolytes.(b) Chronoamperometric curves and (c) NH3 yield rates and FE for Pt/TiO2–x NA at different potentials (V vs. RHE).(d) The comparison of NH3 yield rates and FE at optimum potential for TiO2 NA, TiO2–x NA and Pt/TiO2–x NA at –0.35 V vs. RHE.(e) Cycling tests and (f) a longtime electrolysis for Pt/TiO2–x NA at –0.35 V vs. RHE.

    In conclusion, we utilize a convenient strategy to achieve the Pt NPs formation and the vacancy engineering of TiO2–xNFs simultaneously.Under the function of NaBH4, the whole reduction process can be completed in 5 min.Benefiting from the high stability of OVs in the Pt/TiO2–xNFs in air and water, the Pt/TiO2–xNA can be prepared after a freeze-drying process.The nanofiber bundles among the ordered cellular architecture, induced by the oriented growth of ice crystals,endow the Pt/TiO2–xNA with excellent mechanical properties to work as a self-supporting electrode for electrocatalysis,achieving high NH3yield rate (4.81 × 10–10mol s–1cm–2)and FE (14.9%) at –0.35 Vvs.RHE with excellent stability for electrocatalytic NRR.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.52173055, 21961132024 and 51925302), the Natural Science Foundation of Shanghai(No.19ZR1401100), the Innovation Program of Shanghai Municipal Education Commission (No.2017-01-07-00-03-E00024), the Fundamental Research Funds for the Central Universities (No.CUSF-DH-D-2019028), and the DHU Distinguished Young Professor Program (No.LZA2020001).D.Fang and A.Greiner acknowledge financial support from DFG (No.431073172).

    Supplementary materials

    Supplementary data associated with this article can be found,in the online version, at 10.1016/j.cclet.2021.08.069.

    午夜老司机福利剧场| 观看免费一级毛片| 天天躁日日操中文字幕| 国产黄a三级三级三级人| 亚洲av成人精品一二三区| 亚洲精品久久久久久婷婷小说 | av黄色大香蕉| 蜜桃亚洲精品一区二区三区| 婷婷色av中文字幕| 久久99热6这里只有精品| 久久久久性生活片| 国产视频内射| 国产乱来视频区| 蜜桃亚洲精品一区二区三区| 亚洲一区高清亚洲精品| 女的被弄到高潮叫床怎么办| 欧美xxxx性猛交bbbb| 99久国产av精品国产电影| 国产精品熟女久久久久浪| 精华霜和精华液先用哪个| 久久欧美精品欧美久久欧美| 国产精品福利在线免费观看| 亚洲精品日韩av片在线观看| 哪个播放器可以免费观看大片| av.在线天堂| 天堂中文最新版在线下载 | 亚洲欧洲国产日韩| 亚洲精品成人久久久久久| 久久99蜜桃精品久久| 久久精品人妻少妇| 久久欧美精品欧美久久欧美| 欧美日韩在线观看h| 国产 一区精品| 久久精品久久久久久噜噜老黄 | 欧美色视频一区免费| 国产精品一区www在线观看| av国产久精品久网站免费入址| 欧美精品国产亚洲| 亚洲在久久综合| 人妻制服诱惑在线中文字幕| 欧美不卡视频在线免费观看| 精品国产一区二区三区久久久樱花 | 亚洲精品乱码久久久久久按摩| 午夜福利在线观看免费完整高清在| 99久久九九国产精品国产免费| 看免费成人av毛片| 成年版毛片免费区| 成人亚洲欧美一区二区av| 边亲边吃奶的免费视频| 国产av在哪里看| 精品久久久久久久久亚洲| 国产精品av视频在线免费观看| 欧美bdsm另类| 国产精品国产三级国产av玫瑰| 亚洲av成人av| 舔av片在线| 卡戴珊不雅视频在线播放| 99久久无色码亚洲精品果冻| 男人的好看免费观看在线视频| 男人的好看免费观看在线视频| 亚洲av免费高清在线观看| 精品一区二区三区视频在线| 老司机影院成人| 日韩一区二区三区影片| 99久国产av精品| 欧美一级a爱片免费观看看| 波多野结衣巨乳人妻| 国产免费又黄又爽又色| 国产69精品久久久久777片| 国产视频内射| 国产在视频线精品| 三级毛片av免费| 蜜桃亚洲精品一区二区三区| 国产在线一区二区三区精 | 久久久久久久久久成人| 久久久久免费精品人妻一区二区| 亚洲无线观看免费| 伦理电影大哥的女人| 老司机影院毛片| 身体一侧抽搐| 22中文网久久字幕| 免费看a级黄色片| 成人国产麻豆网| 我的女老师完整版在线观看| 床上黄色一级片| 日本av手机在线免费观看| 一个人观看的视频www高清免费观看| 亚洲高清免费不卡视频| 麻豆成人午夜福利视频| 国产乱来视频区| 99热这里只有精品一区| 亚洲在线观看片| 成人午夜精彩视频在线观看| 亚洲,欧美,日韩| 欧美区成人在线视频| 麻豆久久精品国产亚洲av| 亚洲av中文av极速乱| 亚洲精品,欧美精品| 男女下面进入的视频免费午夜| 国产精品无大码| 91久久精品国产一区二区三区| 一个人免费在线观看电影| 国产精品一区www在线观看| 91精品国产九色| 国产精品久久电影中文字幕| 国产又黄又爽又无遮挡在线| 99久久精品一区二区三区| 黄色一级大片看看| 天堂中文最新版在线下载 | 亚洲av电影在线观看一区二区三区 | 能在线免费看毛片的网站| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久末码| 亚洲欧美清纯卡通| 51国产日韩欧美| 少妇熟女欧美另类| 欧美97在线视频| 人体艺术视频欧美日本| 亚洲av日韩在线播放| 午夜日本视频在线| 久久这里只有精品中国| 国产av不卡久久| 久久久久久大精品| 欧美zozozo另类| 久久6这里有精品| 久久久久九九精品影院| 国产美女午夜福利| 国产久久久一区二区三区| 亚洲av中文字字幕乱码综合| www.av在线官网国产| 我的老师免费观看完整版| 只有这里有精品99| 高清日韩中文字幕在线| 日本av手机在线免费观看| 久99久视频精品免费| 亚洲av不卡在线观看| 夜夜爽夜夜爽视频| 亚洲国产精品合色在线| 成人亚洲欧美一区二区av| 日日啪夜夜撸| 搡女人真爽免费视频火全软件| 精品久久久久久久久亚洲| 又粗又硬又长又爽又黄的视频| 一级毛片电影观看 | 亚洲最大成人手机在线| 成年免费大片在线观看| 亚洲av电影不卡..在线观看| 国产 一区 欧美 日韩| 国产精品不卡视频一区二区| 国产精品一区二区在线观看99 | 亚洲人成网站在线观看播放| 一级黄色大片毛片| 又粗又爽又猛毛片免费看| 亚洲成人中文字幕在线播放| 精品午夜福利在线看| 日韩强制内射视频| 亚洲最大成人手机在线| 蜜桃亚洲精品一区二区三区| 午夜精品一区二区三区免费看| 国产午夜精品论理片| 国产一级毛片七仙女欲春2| 亚洲欧美日韩无卡精品| 色综合亚洲欧美另类图片| 中文字幕熟女人妻在线| 一边摸一边抽搐一进一小说| 少妇熟女欧美另类| videos熟女内射| 久久精品国产亚洲av涩爱| 大话2 男鬼变身卡| 日韩精品有码人妻一区| 国产精品三级大全| 69av精品久久久久久| 好男人在线观看高清免费视频| 国产视频内射| 亚洲在线自拍视频| 看免费成人av毛片| 日韩人妻高清精品专区| 亚洲怡红院男人天堂| 少妇裸体淫交视频免费看高清| 国语对白做爰xxxⅹ性视频网站| 国产精品美女特级片免费视频播放器| 婷婷色av中文字幕| 联通29元200g的流量卡| 国内精品一区二区在线观看| 婷婷色麻豆天堂久久 | 一边摸一边抽搐一进一小说| 午夜激情欧美在线| 午夜精品一区二区三区免费看| 国产伦一二天堂av在线观看| 国产精品久久久久久久电影| 国产不卡一卡二| 深爱激情五月婷婷| 在线免费十八禁| 日本三级黄在线观看| 麻豆成人av视频| 又粗又爽又猛毛片免费看| 国产一区亚洲一区在线观看| 日日摸夜夜添夜夜爱| 熟女人妻精品中文字幕| 国产在线一区二区三区精 | 身体一侧抽搐| 免费播放大片免费观看视频在线观看 | 自拍偷自拍亚洲精品老妇| 亚洲精品自拍成人| 美女国产视频在线观看| 成人午夜高清在线视频| 三级国产精品片| 亚洲三级黄色毛片| 久久久久久久久久久免费av| av在线观看视频网站免费| 亚洲av成人av| 亚洲国产最新在线播放| 男人狂女人下面高潮的视频| 91精品一卡2卡3卡4卡| 亚洲精品aⅴ在线观看| 最近最新中文字幕免费大全7| 最近最新中文字幕免费大全7| 嫩草影院精品99| 国产美女午夜福利| 国产综合懂色| av黄色大香蕉| 国产精品一区二区三区四区免费观看| 国产午夜福利久久久久久| 久久久久精品久久久久真实原创| 九九热线精品视视频播放| 99久国产av精品国产电影| 99久久成人亚洲精品观看| 不卡视频在线观看欧美| 日产精品乱码卡一卡2卡三| 综合色av麻豆| 国产老妇伦熟女老妇高清| 直男gayav资源| 国产白丝娇喘喷水9色精品| 黄片wwwwww| 乱人视频在线观看| 青春草国产在线视频| 欧美变态另类bdsm刘玥| 国产免费一级a男人的天堂| 久久久久久久久久黄片| 丰满少妇做爰视频| 亚洲av不卡在线观看| 黄色一级大片看看| 亚洲国产精品sss在线观看| a级毛片免费高清观看在线播放| 亚洲高清免费不卡视频| 精品久久久久久成人av| av在线亚洲专区| 久久欧美精品欧美久久欧美| 国产亚洲91精品色在线| 毛片女人毛片| 成人综合一区亚洲| 午夜福利在线观看免费完整高清在| 欧美bdsm另类| 成人午夜高清在线视频| 婷婷色av中文字幕| 不卡视频在线观看欧美| 亚洲成人精品中文字幕电影| 国产亚洲最大av| 国产黄色视频一区二区在线观看 | 亚洲乱码一区二区免费版| 国产成人福利小说| 国产真实乱freesex| 联通29元200g的流量卡| 边亲边吃奶的免费视频| 国产高清视频在线观看网站| 午夜免费激情av| 日本一本二区三区精品| 国产熟女欧美一区二区| 色吧在线观看| 男人的好看免费观看在线视频| 亚洲国产精品国产精品| .国产精品久久| 久久99热这里只有精品18| 免费搜索国产男女视频| 一级av片app| 久久鲁丝午夜福利片| 亚洲精品成人久久久久久| 免费大片18禁| 亚洲一区高清亚洲精品| 国产精品99久久久久久久久| 亚洲欧美日韩无卡精品| 一个人免费在线观看电影| 免费看av在线观看网站| 麻豆成人av视频| 91aial.com中文字幕在线观看| 国产精品一区二区三区四区久久| 69av精品久久久久久| 精品久久久久久成人av| 三级男女做爰猛烈吃奶摸视频| 久久久午夜欧美精品| 亚洲欧洲日产国产| 51国产日韩欧美| 日韩成人伦理影院| 2021天堂中文幕一二区在线观| 精品久久久久久久久av| 久99久视频精品免费| 国产精品人妻久久久久久| 久久欧美精品欧美久久欧美| 亚洲av一区综合| 国产精品伦人一区二区| 亚洲国产精品合色在线| 99久久精品热视频| 亚洲欧美清纯卡通| 欧美一级a爱片免费观看看| 91久久精品电影网| 亚洲最大成人av| 特大巨黑吊av在线直播| h日本视频在线播放| 久久久久久伊人网av| 最后的刺客免费高清国语| 成人综合一区亚洲| 男女啪啪激烈高潮av片| av在线天堂中文字幕| 国产精品伦人一区二区| 亚洲经典国产精华液单| 日韩三级伦理在线观看| 成人av在线播放网站| 日韩在线高清观看一区二区三区| 国产av码专区亚洲av| 国产精品一区二区三区四区久久| 亚洲四区av| 美女被艹到高潮喷水动态| 久久久午夜欧美精品| 搡老妇女老女人老熟妇| 国产单亲对白刺激| 三级男女做爰猛烈吃奶摸视频| 精品一区二区免费观看| 99久国产av精品国产电影| 看黄色毛片网站| 自拍偷自拍亚洲精品老妇| 色播亚洲综合网| 久久久a久久爽久久v久久| 一区二区三区高清视频在线| 一级毛片久久久久久久久女| 精品99又大又爽又粗少妇毛片| 色综合色国产| 国产精品,欧美在线| 久久久久网色| 久久久久免费精品人妻一区二区| 国产 一区精品| 免费观看的影片在线观看| 成人欧美大片| 久久99精品国语久久久| 久久韩国三级中文字幕| 国产色爽女视频免费观看| 久久精品人妻少妇| 精品免费久久久久久久清纯| 久久久久久久久久久丰满| 婷婷色麻豆天堂久久 | 又爽又黄无遮挡网站| 日韩,欧美,国产一区二区三区 | 欧美xxxx性猛交bbbb| 亚洲成色77777| 丰满人妻一区二区三区视频av| 一二三四中文在线观看免费高清| 久久99热6这里只有精品| 黄色日韩在线| 亚洲内射少妇av| 亚洲一区高清亚洲精品| 麻豆成人av视频| 久久精品夜夜夜夜夜久久蜜豆| 日日摸夜夜添夜夜爱| 国产又黄又爽又无遮挡在线| 欧美精品一区二区大全| or卡值多少钱| a级毛色黄片| 成年版毛片免费区| 97超视频在线观看视频| 精品人妻熟女av久视频| 欧美+日韩+精品| 国内揄拍国产精品人妻在线| 久久久国产成人免费| 亚洲欧美成人精品一区二区| 日韩欧美精品v在线| 成人无遮挡网站| 麻豆一二三区av精品| 国内揄拍国产精品人妻在线| 国产老妇伦熟女老妇高清| 国产又色又爽无遮挡免| 亚洲精品日韩av片在线观看| 一本久久精品| 日韩欧美在线乱码| 亚洲欧洲国产日韩| 亚洲欧美日韩高清专用| 国产伦理片在线播放av一区| 国产伦精品一区二区三区视频9| 校园人妻丝袜中文字幕| 亚洲天堂国产精品一区在线| 久久久久久九九精品二区国产| av在线天堂中文字幕| 亚洲天堂国产精品一区在线| 欧美又色又爽又黄视频| 精品久久久久久久末码| 99热这里只有是精品50| 日本与韩国留学比较| 午夜福利在线观看吧| 午夜免费男女啪啪视频观看| 亚洲欧美成人综合另类久久久 | 国产午夜精品论理片| 我的女老师完整版在线观看| 三级毛片av免费| 一个人看视频在线观看www免费| 精品久久久久久电影网 | 欧美激情久久久久久爽电影| 免费电影在线观看免费观看| 精品无人区乱码1区二区| 亚洲成色77777| 91久久精品国产一区二区三区| 国产麻豆成人av免费视频| 精品久久久久久久久久久久久| 国语自产精品视频在线第100页| 美女黄网站色视频| 国产精品一二三区在线看| av天堂中文字幕网| 欧美一区二区国产精品久久精品| 国产精品一二三区在线看| 精品熟女少妇av免费看| 我要搜黄色片| 亚洲人成网站高清观看| 日本五十路高清| 国产在视频线精品| 日韩成人伦理影院| 国产男人的电影天堂91| 久99久视频精品免费| 欧美一级a爱片免费观看看| 国产av一区在线观看免费| 尤物成人国产欧美一区二区三区| 啦啦啦啦在线视频资源| 成人鲁丝片一二三区免费| 婷婷色av中文字幕| 特大巨黑吊av在线直播| 国产一级毛片在线| 白带黄色成豆腐渣| 国产av不卡久久| 一级黄片播放器| 人妻制服诱惑在线中文字幕| 亚洲欧洲日产国产| 国产av一区在线观看免费| 亚洲欧美精品专区久久| 男人和女人高潮做爰伦理| 熟妇人妻久久中文字幕3abv| 亚州av有码| 亚洲图色成人| 欧美日韩在线观看h| 一本一本综合久久| 欧美不卡视频在线免费观看| 少妇的逼好多水| 亚洲精品乱码久久久v下载方式| 日韩欧美 国产精品| 精品久久久久久久末码| 高清视频免费观看一区二区 | 美女国产视频在线观看| 国产视频内射| 午夜福利网站1000一区二区三区| 精品免费久久久久久久清纯| 免费人成在线观看视频色| 岛国毛片在线播放| 波多野结衣高清无吗| 亚洲最大成人手机在线| 高清视频免费观看一区二区 | 我的女老师完整版在线观看| 国产精品久久久久久久久免| 日本免费一区二区三区高清不卡| 欧美zozozo另类| 中国美白少妇内射xxxbb| 国产成人91sexporn| 久久草成人影院| 又粗又爽又猛毛片免费看| 男人和女人高潮做爰伦理| 国产白丝娇喘喷水9色精品| 亚洲av电影在线观看一区二区三区 | 欧美日本视频| 久久精品影院6| 在线播放国产精品三级| av国产免费在线观看| 久久精品国产亚洲网站| av在线亚洲专区| 国产精品人妻久久久影院| 亚洲精品乱码久久久v下载方式| 日韩欧美 国产精品| 欧美成人一区二区免费高清观看| 日日摸夜夜添夜夜添av毛片| 精品久久久久久久久av| 99久久人妻综合| www日本黄色视频网| 在线免费观看不下载黄p国产| 在线a可以看的网站| 色播亚洲综合网| 91狼人影院| 淫秽高清视频在线观看| 青春草视频在线免费观看| 国产成人91sexporn| 成人亚洲精品av一区二区| 亚洲自拍偷在线| 久久精品久久久久久久性| 亚洲激情五月婷婷啪啪| 最近手机中文字幕大全| 亚洲色图av天堂| 久久6这里有精品| 日韩国内少妇激情av| 99九九线精品视频在线观看视频| 国产高清三级在线| 国产精品久久久久久精品电影| 欧美丝袜亚洲另类| 九九在线视频观看精品| 卡戴珊不雅视频在线播放| 免费看光身美女| 国产精品女同一区二区软件| 久久久欧美国产精品| 床上黄色一级片| 男女那种视频在线观看| 国产成人免费观看mmmm| 国产久久久一区二区三区| 日本午夜av视频| 又爽又黄无遮挡网站| 国产av在哪里看| 午夜激情福利司机影院| 久久热精品热| 在线免费十八禁| 国产免费一级a男人的天堂| 毛片女人毛片| av.在线天堂| 插阴视频在线观看视频| av天堂中文字幕网| 久久午夜福利片| 三级经典国产精品| 欧美成人a在线观看| 网址你懂的国产日韩在线| 久久韩国三级中文字幕| 看免费成人av毛片| 嫩草影院新地址| 一个人看视频在线观看www免费| 九色成人免费人妻av| 99热精品在线国产| 久久人人爽人人爽人人片va| 老女人水多毛片| 国产精品国产三级国产av玫瑰| 亚洲美女搞黄在线观看| 日韩中字成人| 午夜福利成人在线免费观看| 亚洲精品日韩av片在线观看| 女人被狂操c到高潮| 久久国产乱子免费精品| 国产精品久久久久久久久免| 日本午夜av视频| 欧美成人精品欧美一级黄| 看非洲黑人一级黄片| 中文字幕免费在线视频6| av免费观看日本| 成人亚洲精品av一区二区| 五月伊人婷婷丁香| 91精品国产九色| 黄片wwwwww| av线在线观看网站| www.色视频.com| 又爽又黄a免费视频| av免费在线看不卡| 中文字幕人妻熟人妻熟丝袜美| 久久久久精品久久久久真实原创| 免费看av在线观看网站| 五月伊人婷婷丁香| 精品99又大又爽又粗少妇毛片| 深夜a级毛片| 国产精品久久久久久久久免| 少妇丰满av| 亚洲国产精品久久男人天堂| 久久亚洲精品不卡| 中文字幕制服av| 草草在线视频免费看| 99久久成人亚洲精品观看| 亚洲伊人久久精品综合 | 国产精品不卡视频一区二区| 亚洲av电影在线观看一区二区三区 | 精品一区二区三区人妻视频| 国产老妇伦熟女老妇高清| 永久免费av网站大全| 国产中年淑女户外野战色| 国产三级在线视频| 免费看日本二区| 国内揄拍国产精品人妻在线| 国产av一区在线观看免费| 亚洲一级一片aⅴ在线观看| videos熟女内射| 亚洲av福利一区| 免费人成在线观看视频色| 中文字幕熟女人妻在线| 国产成人freesex在线| 毛片一级片免费看久久久久| 亚洲中文字幕日韩| 国产人妻一区二区三区在| 男的添女的下面高潮视频| 51国产日韩欧美| 日韩欧美精品v在线| 国产精品久久电影中文字幕| 久久久久久伊人网av| 又黄又爽又刺激的免费视频.| 久久久久精品久久久久真实原创| 超碰97精品在线观看| eeuss影院久久| 级片在线观看| 变态另类丝袜制服| 亚洲国产日韩欧美精品在线观看| 欧美性感艳星| 两性午夜刺激爽爽歪歪视频在线观看| 综合色丁香网| 国产成人freesex在线| 亚洲高清免费不卡视频| 欧美三级亚洲精品| 亚洲国产精品成人久久小说| 日日啪夜夜撸| 国产久久久一区二区三区| 亚洲av.av天堂| 免费人成在线观看视频色| 深爱激情五月婷婷| 三级经典国产精品|