• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    通過無量綱化方法分析實(shí)驗(yàn)條件對鋰離子電池?zé)釁?shù)辨識精度的影響

    2021-01-19 08:07:24滕冠興戚俊毅張劍波
    關(guān)鍵詞:綱化北京理工大學(xué)無量

    滕冠興,戚俊毅,葛 昊,李 哲,張劍波,2

    (1清華大學(xué)汽車安全與節(jié)能國家重點(diǎn)實(shí)驗(yàn)室,北京100084;2北京理工大學(xué)北京電動(dòng)汽車聯(lián)合創(chuàng)新中心,北京100081)

    Lithium-ion batteries (LIBs) have become the mainstream energy storage system for propulsion of electric vehicles due to their high voltage, high energy density, long life span and low self-discharging rate.The performance, degradation, and safety of LIBs are sensitive to temperature and hence thermal design and management of LIBs are of paramount importance in vehicular application[1-4]. Thermal modeling can speed up the optimization of cell design and battery management. The governing equation for the thermal behavior of LIBs reads,

    where ρ is the density, Cpthe specific heat capacity, T the temperature, k the thermal conductivity and q the heat generation rate of the cell. Thermal parameters, namely, the specific heat capacity and the thermal conductivity, determine the reliability and accuracy of thermal modeling[5].As a result, accurate estimation of thermal parameters is an issue of central importance in thermal modeling, which is though very challenging. First, each cell is composed of multiple layers with different thermal properties, hence,thermal parameters are intrinsically anisotropic.Notably, parallel and perpendicular (axial and radial)thermal conductivities should be distinguished for laminated(spiral-wound)cells.Second,the cell core is soaked with the electrolyte, causing the thermal properties to be different from the dry state and hence additional difficulties in estimating them; in-situ estimation is therefore required. Third, the cell core is encased by a layer of Al-plastic film, the thermal properties of which differs greatly from that of the core.In a word,the cell is by no means homogenous.

    There are several approaches of varied complexities and accuracies to estimate the thermal parameters of LIBs. At the first approximation, the ensemble average method calculates a mass average value of components with thermal parameters known as prior[6-9]. This approach has been proved to estimate the specific heat capacity with an acceptable accuracy, as calibrated with more accurate methods such as accelerating rate calorimeter (ARC) and isothermal battery calorimeter (IBC) [10]. Yet it severely overestimated the thermal conductivity. This discrepancy has its root in the fact that thermal contact resistance and electrolyte wetting environment is not taken into consideration[11].

    To overcome the difficulties in estimating the thermal conductivity, the xenon flash technique (XFT)[12] and transient plane source (TPS) methods[13] are proposed. These two methods suffer from several limitations, notably that they treat the LIB as a homogeneous object, which is at odds with the fact that the LIB has highly heterogeneous features, e.g.,the cell is made of multiple layers with distinct thermal properties in different directions. Moreover,they both need a known specific heat capacity as an input, which, nevertheless, is not always known and hence introduces additional errors.

    To address these limitations, we developed a new method, termed modified transient plane source(MPTS) method, which is able to estimate multiple thermal parameters simultaneously via a combined experimental and computational approach[5]. In this method, as shown in Figure 1, a circular planar heater is sandwiched by two cells under approximately adiabatic environment. Thermocouples are placed at multiple predefined locations on the cell surface. The cells are heated for a duration of time and the temperatures at the thermocouples are recorded. To extract thermal parameters from experimental data, a 2D axisymmetric thermal model capturing key features of LIBs including the Al-film encasing and the contact thermal resistance between the casing and the cell cores is employed, and optimization methods are used to estimate the parameters simultaneously.Table 1 summarizes the features of the methods.

    Fig.1 Schematic diagram of the experimental setup and the model.A circular heater is sandwiched by two cells.Poly‐foam is used to cover the cells for creating approximately adiabatic environment.Thermocouples are attached at multi‐ple deliberately-chosen locations on the cell surface.The cells are heated for a duration of time and the corresponding temperature evolution is recorded.In the model,the r and z axis are in-plane and though-plane directions of the LIBs,respectively.The origin locates at the center of the circular heater.Domain A and C represent the Al-plastic films enfold‐ing the cell core,denoted as Domain B,composed of electrolyte soaked electrodes and separators

    Table 1 The comparison of methods for thermal parameters estimation

    The MTPS method was validated by other methods[14-15], and our results are also referred to by other groups[16-20]. In our previous work, the parameter sensitivity was examined using the dimensional governing equations. Such results only hold to the specific dimension of the cell used in that paper. When the MTPS method is to be applied to a cell with different dimension, the corresponding sensitivity has to be checked again. In contrast, if non-dimensional governing equations are used in parameter sensitivity analysis, the obtained results apply to all the cases satisfying the similarity criteria. This general applicability of the results will be more valuable to the practitioners estimating LIB thermal parameters.

    The purpose of this paper is to systematically study the precision of the MTPS method through the sensitivity analysis using non-dimensional equations,trying to identify the key experimental conditions determining the resolution of the method. Specifically,the radius and the power of the heater, the placement of thermocouples and the heating protocol, etc., will be examined. Understandings of these effects will facilitate the application of MTPS method at desired precision.

    The remainder of this paper is organized as follows. Section two presents the model development,namely the governing equations and boundary conditions of the 2D axisymmetric numerical thermal model used in MTPS method, followed with model nondimensionalization which is a new development here. Section three discusses how the experimental conditions affect the estimation precision of the MTPS method, resulting in several general principles for optimizing the experimental setup and detailed analysis on the applicability of the MTPS method,which are major contribution of this paper. Section four concludes the paper.

    1 Methodology

    In MTPS method, the diameter of the disk heater is one order of magnitude smaller than the cell width.Hence, the temperature is symmetrically distributed before the edge of the cell takes effect on the temperature field, which will lead to the failing of the 2D axisymmetric assumption of the thermal model,and then a 2D axisymmetric thermal model is adopted to simulate the temperature distribution in this work,which reduce the computational overhead, as shown in Figure 1.The r and z axis are in-plane and though-plane directions of the LIBs, respectively. The origin locates at the center of the circular heater. Domain A and C represent the Al-plastic films encasing the cell core,denoted as Domain B, composed of electrolyte-soaked electrodes and separators. The governing equations and boundary conditions of the model are given by,

    for the domain A,and,

    for the domain B,and,

    for the domain C. Equations (2)~(4) are also mentioned in our previous work[1]. Terms with the subscript of film correspond to the Al-plastic film.d is the thickness of the whole cell in m. ρ is the mass density in kg·m-3. Cpis the specific heat capacity in J·kg-1·K-1. kinand kthrare the parallel (in-plane) and perpendicular (through-plane) thermal conductivities in W·m-1·K-1, respectively. λ is the thermal conductance between the core and the film in W·m-2·K-1. q is the heat flux in W·m-2. P is the applied power to samples in W. R is the radius of the axisymmetric 2D model in m, which is equal to one half of the cell width. Rhis the radius of the circular heater in m.T is the temperature solution to Eq. (2)~(4) in K. T0is the initial temperature of the whole experimental system.

    1.1 Model nondimensionalization

    The model is now subjected to nondimensionalization for the sake of generalization and simplification. Below are dimensionless variables to be used in later development

    where θ is the dimensionless temperature,r’and Z are the dimensionless spatial coordinate, e is the thickness-width ratio defined as the thickness d divided by R, c is the ratio of heater radius Rhto R, g is the ratio of the thickness of the Al-plastic film to the cell thickness,Fo is the dimensionless time, β, κ, φ and Bi are four dimensionless thermal parameters corresponding to kin,kthr,Cpand λ,respectively.β is the dimensionless in-plane thermal conductivity relative to the through-plane counterpart, named as thermal conductivity ratio in this paper.

    Given above definitions, Eq. (2) ~(4) are transformed to,

    Equation (6)~(8) are not amenable to analytical solutions. As a result, we resort to numerical solution below. Now, we can write the dimensionless temperature solution θ to Eq.(6)~(8)as follows,

    Note that θ is independent of the heat flux q but determined by the intrinsic characteristics of the system, instead. The dimensional solution T is transformed back from θ by,

    which linearly depends on the heat flux, i.e. the applied power.

    1.2 Sensitivity analysis

    The primary concern of the presented study is to figure out the correlation between sensitivity of T with respect to thermal parameters and the experimental conditions. The sensitivity of thermal parameters is intended to characterize the response of temperature distribution to the change of these parameters.In other words, the sensitivity of thermal parameters is the impact factors of these parameters on temperature distribution. Accordingly, the higher sensitivity of thermal parameters is desirable since it means the higher resolution of the MTPS for these thermal parameters. Therefore, the correlation between the sensitivity of thermal parameters and the experimental conditions can be utilized to identify how the experimental conditions determine the resolution of the MTPS method. For a thermal parameter η, its sensitivity coefficient STηis defined as

    where the first-order differential is replaced by the first-order finite difference in numerical analysis,

    T (η) and T [η (1+ε )] correspond to a reference case and a case where only the parameter η under examination is varied by an amount of ε, respectively.On the experimental side, a meaningful analysis is possible only when the absolute ΔT is larger than the precision of thermocouples,say 0.1 K.

    A dimensionless sensitivity coefficientreads

    Considering the relation between T and θ,andare correlated via,

    2 Results and discussion

    In what follows, we are to employ the dimensionless model to evaluate how experimental conditions such as the heating protocol(flux and duration),the placement of thermocouples, and the geometry of samples affect the estimation precision of the MTPS method.

    2.1 Heat flux

    2.2 Placement of thermocouples

    The placement of thermocouples on the sample surface has a major effect on identification of thermal parameters. In Figure 2, the sensitivity of four dimensionless thermal parameters φ,κ,β and Bi versus dimensionless time Fo is shown for the case with the parameters as listed in Table 2. The location of thermocouples varies from r=0 to 105 mm with a step of 10 mm.

    Regarding φ, the sensitivity profiles first diverge and then converge into a single sloping line. On the contrary, the sensitivity profiles of κ, β and Bi are remarkably different during the whole period for different thermocouple locations. Quite interestingly,the sensitivity of κ, β and Bi levels off after a certain period of time. This difference lies in that κ, β and Bi are relevant to the heat conduction process while φ is relevant to the heat accumulation process. At the initial stage the temperature field is expanding due to 2D heat conduction, thus, the sensitivity profiles vary significantly.After the equilibrium of heat conduction,the temperature still increases linearly whereas the heat flux distribution is stationary. Therefore, the sensitivities of thermal parameters associated with heat conduction (κ, β and Bi) remain constant, while that of the thermal parameter (φ) associated with heat accumulation grows linearly.

    Also of note,sensitivity profiles of β and Bi show transition between positive and negative values when r changes from 0 to 105 mm. This phenomenon is an inherent feature of 2D heat conduction process.As an immediate consequence, there must exist a special location at which point the sensitivity is 0, meaning that the temperature at this location is insensitive to thermal parameters.A word of caution is necessary to avoid these points in the selection of temperature monitoring locations.

    The sensitivity magnitude of Bi is smaller than those of the other three. This difference is due to the fact that the influencing region of Bi is restricted to the interface between the core and the Al-plastic film,while those of the other three cover the whole core. In this model, we have introduced a thermal conductance λ to describe the thermal contact between the core and the film.λ,though being significant,has little effect on the temperature distribution as known from our previous work[5]. Hence, Bi and λ cannot be reliably identified from the presented method.

    As the sensitivity magnitude of φ keeps increasing at the same rate after the initial stage, the placement of thermocouples has little effect on it. On the contrary, the placement of thermocouples has a pronounced effect on the identification of κ and β.As to κ, the sensitivity analysis suggests that thermocouples should be located as close as possible to the center of the heater.However,such placement is not always good for β, which matters more since it

    Fig.2 Dimensionless sensitivity of four dimensionless thermal parameters((a)-(d)for φ,κ,β and Bi,respectively)versus di‐mensionless time Fo. The thermocouple locations vary from r’=0~0.95 with the step of 0.095.The red and the green lines are the threshold for dimensionless sensitivity magnitude when the applied power is 20 W and 80 W,respectively.characterizes anisotropic heat conduction in the core of LIBs.

    Table 2 Model parameters for analysis on the effect of thermocouple placement

    It is known from Eq. (14), given a specific heating power, the sensitivity magnitude should exceed a threshold to ensure that the absolute temperature difference ΔT is larger than the precision of thermocouples. In Fig. 6 (c), the green and red dotted lines denote the threshold for β when the applied power is 20 W and 80 W, respectively. This threshold lines defines the forbidden region of thermocouple placement, for example, 0.48<r′<0.67 is the forbidden region for 20 W. This forbidden region could be narrowed by intensifying the applied power.

    2.3 Heating duration

    Once the heat flux and placement of thermocouples are determined, the next step is to determine the heating duration. A duration of 200 s was used in the previous work[5]. A more general principle for determining the heating duration is proposed here. The sensitivity of β at the location of(0, 0), named as the sensitivity of β at the pivot for convenience, is selected to evaluate the effect of the heat duration. Given the model input parameters as listed in Table 2, β is varied by adjusting kin, and the sensitivity is calculated then,as shown in Figure 3.

    Fig.3 The sensitivity of β at the pivot at various levels of β.The green dotted line represents the threshold line for the case P=20 W.The intersection of this threshold line with the sensitivity profiles gives out the minimal heating duration.The red line gives out the maximal heating duration

    At greater β, the initial stage in which the sensitivity ramps up is shortened. This phenomenon is attributed to the fact that the temperature difference in the horizontal plane vanishes quickly with a greater β.The green dotted line represents the threshold line for the case P=20 W. The intersection of this threshold line with the sensitivity profiles gives out the minimal heating duration. In other words, these intersection points define the lower bound of the heating duration.There is also an upper bound of the heating duration to ensure the axisymmetric temperature distribution.Therefore,the heating duration yields

    According to Eq. (15), the maximum heating duration increase with decrease in thermal conductivity ratio β and thickness-thickness ratio e.Therefore, the allowable range of the heating duration can be reduced at greater β.

    The heating duration should be chosen between the lower bound in green and upper bound in red, as shown in Figure 3. Note that the sensitivity magnitude reflects the importance of the collected temperature data at corresponding time to parameter recognition.The monitored temperature data at various periods can be given various weighting scales according to the sensitivity magnitude. The data before the lower bound should weight on the lowest scale. The data at the time which exceeds the lower bound should weight on higher scale when the corresponding sensitivity is higher.

    Besides the theoretical upper bound, a practical upper bound of the heating duration is considered to ensure the adiabatic boundary, to avoid disfunction of devices used in the experiment, and to prevent possible thermal hazard of LIBs.

    2.4 Sample structure

    Table 3 Nine cases for evaluation of the structural effects

    Fig.4 The sensitivity of β at the pivot at several levels of β corresponding to the selected cases with different combinations of(d,R).The dotted green line represents the threshold for the case of an applied power of 20 W.The case whose sensitivity profile transcends the threshold line is applicable to the MTPS method

    3 Conclusions

    This study investigated how experimental conditions affect the precision of the MTPS method.The precision of thermocouples defines a threshold,severing as the criterion for sensitivity analysis. The precision of the MTPS method is positively correlated with the power of the circular heater, which should be high but still under a threshold value defined by the safety criterion. There is an unfavorable region where thermocouples should not be arranged. This region is narrowed down by increasing the applied power. The lower bound of the heating duration increases at greater ratio of the parallel to perpendicular thermal conductivity. There is also an upper bound of the heating duration to ensure the axisymmetric temperature distribution. The MTPS method enjoys a much wider applicability of thermal conductivity ratio β for the LIBs with lower thickness-width ratio.Specifically, LIBs with the thickness-width ratio e larger than ~0.41 are suitable for the MTPS method,given c=0.1 and an applied power of 20 W. For LIBs beyond the application scope of the MTPS method, a thinner surrogate with the same mas1s ratio of each component and manufacture process as those of the original cell are required. Methodologically, the derived dimensionless solution and sensitivity is flexible to other methods of thermal parameter estimation.

    猜你喜歡
    綱化北京理工大學(xué)無量
    無量綱化方法選擇及最優(yōu)無量綱化方法構(gòu)建
    北京理工大學(xué)機(jī)械與車輛學(xué)院簡介
    烏雷:無量之物
    北京理工大學(xué)通信與網(wǎng)絡(luò)實(shí)驗(yàn)室
    劉少白
    藝術(shù)品(2020年8期)2020-10-29 02:50:02
    論書絕句·評謝無量(1884—1964)
    炳靈寺第70 窟無量壽經(jīng)變辨識
    西藏研究(2017年3期)2017-09-05 09:45:07
    線性無量綱化方法比較研究
    Design of Two-wheeled Mobile Control Robot with Holographic Projection
    無量綱化方法的選取原則
    精品少妇一区二区三区视频日本电影| 十八禁网站免费在线| 国产在线一区二区三区精| 老熟妇乱子伦视频在线观看| av国产精品久久久久影院| 精品一区二区三区四区五区乱码| 久久久久国内视频| 黄频高清免费视频| 国产一区二区激情短视频| 18禁国产床啪视频网站| 欧美av亚洲av综合av国产av| 国产精品免费视频内射| 欧美乱码精品一区二区三区| 国产高清国产精品国产三级| av片东京热男人的天堂| 日韩人妻精品一区2区三区| 成人免费观看视频高清| 久久精品国产亚洲av香蕉五月 | 国产精品 国内视频| 天天添夜夜摸| 午夜福利在线免费观看网站| 亚洲精品美女久久久久99蜜臀| 在线免费观看的www视频| 丝瓜视频免费看黄片| 久久精品亚洲精品国产色婷小说| 久久久精品国产亚洲av高清涩受| 免费看十八禁软件| 国产精品久久视频播放| 一夜夜www| 亚洲九九香蕉| 国产av精品麻豆| 成人亚洲精品一区在线观看| 亚洲精品美女久久av网站| 在线观看免费视频网站a站| 国产成人系列免费观看| 乱人伦中国视频| 国产精品久久久久久精品古装| 亚洲欧美激情在线| av免费在线观看网站| 搡老熟女国产l中国老女人| 99久久99久久久精品蜜桃| 天天躁日日躁夜夜躁夜夜| av国产精品久久久久影院| 午夜免费鲁丝| 欧美精品av麻豆av| 国产精品欧美亚洲77777| 亚洲一区高清亚洲精品| 日韩有码中文字幕| 视频区图区小说| 久久久久久亚洲精品国产蜜桃av| x7x7x7水蜜桃| 国产国语露脸激情在线看| 免费在线观看黄色视频的| 黄片大片在线免费观看| 亚洲欧美一区二区三区黑人| 亚洲黑人精品在线| 精品福利永久在线观看| 欧美在线一区亚洲| 最近最新免费中文字幕在线| 天堂中文最新版在线下载| 午夜亚洲福利在线播放| 久久人妻福利社区极品人妻图片| 亚洲av日韩在线播放| av网站免费在线观看视频| 精品福利永久在线观看| 国产成人影院久久av| 亚洲av熟女| 69av精品久久久久久| 欧美精品人与动牲交sv欧美| 久久人妻熟女aⅴ| 男女下面插进去视频免费观看| 国产成人精品久久二区二区91| 国产精品 国内视频| 中亚洲国语对白在线视频| 国产伦人伦偷精品视频| 亚洲av熟女| 视频在线观看一区二区三区| 桃红色精品国产亚洲av| 中文欧美无线码| 超色免费av| 一区二区三区精品91| 黄片大片在线免费观看| 免费在线观看黄色视频的| 免费不卡黄色视频| 少妇的丰满在线观看| 成熟少妇高潮喷水视频| 一级片'在线观看视频| 国产成人啪精品午夜网站| av一本久久久久| av天堂久久9| 国产激情欧美一区二区| 久久 成人 亚洲| 老司机在亚洲福利影院| 色老头精品视频在线观看| 女性被躁到高潮视频| 国产精品1区2区在线观看. | 少妇粗大呻吟视频| 12—13女人毛片做爰片一| 女人高潮潮喷娇喘18禁视频| 色在线成人网| 亚洲成人免费av在线播放| 精品一区二区三卡| 欧美黑人精品巨大| av欧美777| 国产精品国产av在线观看| 在线免费观看的www视频| 午夜福利乱码中文字幕| 欧美黑人精品巨大| 在线免费观看的www视频| 丝袜人妻中文字幕| 亚洲九九香蕉| 亚洲欧美一区二区三区黑人| 午夜福利在线观看吧| 香蕉国产在线看| 制服诱惑二区| 免费在线观看黄色视频的| 亚洲人成伊人成综合网2020| x7x7x7水蜜桃| 成年女人毛片免费观看观看9 | 丝袜美足系列| 色婷婷久久久亚洲欧美| 激情视频va一区二区三区| 999精品在线视频| av天堂在线播放| 精品一区二区三卡| 亚洲,欧美精品.| 亚洲性夜色夜夜综合| 精品免费久久久久久久清纯 | 在线国产一区二区在线| 亚洲欧美一区二区三区久久| 久久精品亚洲精品国产色婷小说| 成年版毛片免费区| 麻豆乱淫一区二区| 老熟女久久久| 午夜福利乱码中文字幕| 亚洲第一青青草原| 欧美日韩中文字幕国产精品一区二区三区 | 少妇猛男粗大的猛烈进出视频| 国产成人精品久久二区二区免费| 欧美精品啪啪一区二区三区| 国产精品99久久99久久久不卡| 热re99久久精品国产66热6| 成人国产一区最新在线观看| 99re在线观看精品视频| 黄片小视频在线播放| 亚洲精品粉嫩美女一区| 国产精品九九99| 狠狠婷婷综合久久久久久88av| 精品久久久久久久毛片微露脸| 俄罗斯特黄特色一大片| 亚洲aⅴ乱码一区二区在线播放 | 在线观看www视频免费| 好男人电影高清在线观看| 色在线成人网| 日韩欧美一区二区三区在线观看 | 午夜精品在线福利| 国产欧美日韩一区二区精品| 精品无人区乱码1区二区| 久久精品国产99精品国产亚洲性色 | 成人手机av| 国产精品偷伦视频观看了| 别揉我奶头~嗯~啊~动态视频| 久99久视频精品免费| 亚洲免费av在线视频| 色尼玛亚洲综合影院| 久久青草综合色| netflix在线观看网站| 色婷婷久久久亚洲欧美| 亚洲精品在线美女| 亚洲全国av大片| 亚洲伊人色综图| 久久精品国产清高在天天线| 99国产精品免费福利视频| 俄罗斯特黄特色一大片| 嫁个100分男人电影在线观看| 两人在一起打扑克的视频| 免费久久久久久久精品成人欧美视频| 国产精品免费大片| 丁香六月欧美| 中文字幕精品免费在线观看视频| 国产精品亚洲一级av第二区| 国产在线一区二区三区精| 国产不卡一卡二| videosex国产| 亚洲aⅴ乱码一区二区在线播放 | www日本在线高清视频| 欧美人与性动交α欧美软件| 黑人巨大精品欧美一区二区mp4| 天天躁夜夜躁狠狠躁躁| 久久狼人影院| 成人亚洲精品一区在线观看| 国产精品久久久久久人妻精品电影| 男人操女人黄网站| 精品久久久久久电影网| svipshipincom国产片| 中文字幕高清在线视频| 亚洲三区欧美一区| 搡老岳熟女国产| 黄色视频不卡| 一区二区三区精品91| 国产精品免费大片| 99久久99久久久精品蜜桃| 12—13女人毛片做爰片一| 在线观看免费视频网站a站| 亚洲性夜色夜夜综合| 后天国语完整版免费观看| av网站免费在线观看视频| 久久香蕉激情| 丰满人妻熟妇乱又伦精品不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜影院日韩av| 亚洲视频免费观看视频| 十八禁网站免费在线| 久久久久国内视频| 亚洲一区高清亚洲精品| 免费观看精品视频网站| 欧美日韩精品网址| 午夜影院日韩av| 亚洲av电影在线进入| 在线观看免费日韩欧美大片| 午夜久久久在线观看| 一本大道久久a久久精品| 18禁观看日本| 99re6热这里在线精品视频| 久久久久久久久久久久大奶| 国产成人欧美在线观看 | 亚洲av美国av| cao死你这个sao货| 国产亚洲欧美98| 亚洲精品av麻豆狂野| 一区二区三区激情视频| 两个人免费观看高清视频| 亚洲九九香蕉| 无人区码免费观看不卡| 99精品在免费线老司机午夜| 精品国产亚洲在线| 国产淫语在线视频| 国产男女超爽视频在线观看| 一级作爱视频免费观看| 亚洲在线自拍视频| 欧美日韩精品网址| 伊人久久大香线蕉亚洲五| 亚洲成人国产一区在线观看| 久久人妻熟女aⅴ| 久久午夜亚洲精品久久| 国产成人啪精品午夜网站| 黄色毛片三级朝国网站| 又黄又爽又免费观看的视频| 大型黄色视频在线免费观看| 他把我摸到了高潮在线观看| 亚洲av欧美aⅴ国产| 国产成人免费观看mmmm| 看免费av毛片| 丰满饥渴人妻一区二区三| 一级a爱片免费观看的视频| 深夜精品福利| 亚洲av第一区精品v没综合| 99香蕉大伊视频| 国产成人啪精品午夜网站| 搡老乐熟女国产| 岛国在线观看网站| 亚洲 国产 在线| 高清视频免费观看一区二区| 天天操日日干夜夜撸| 免费在线观看亚洲国产| 夫妻午夜视频| 欧美性长视频在线观看| 亚洲 国产 在线| 老汉色av国产亚洲站长工具| 精品免费久久久久久久清纯 | 久久国产精品影院| 国产日韩欧美亚洲二区| 久久精品人人爽人人爽视色| 视频在线观看一区二区三区| 一级片'在线观看视频| 一本综合久久免费| 12—13女人毛片做爰片一| 国产高清激情床上av| 中文字幕人妻丝袜制服| 免费在线观看黄色视频的| 国产aⅴ精品一区二区三区波| 久热爱精品视频在线9| 亚洲精品久久成人aⅴ小说| 最近最新中文字幕大全免费视频| 99热国产这里只有精品6| 人人澡人人妻人| 精品国产亚洲在线| www.自偷自拍.com| 久久久久国产精品人妻aⅴ院 | 又黄又粗又硬又大视频| 国内毛片毛片毛片毛片毛片| 久热爱精品视频在线9| 国产亚洲精品一区二区www | 99精国产麻豆久久婷婷| 欧美日韩一级在线毛片| 国产在线精品亚洲第一网站| 在线观看www视频免费| 天堂动漫精品| 99热国产这里只有精品6| 高潮久久久久久久久久久不卡| 12—13女人毛片做爰片一| 午夜福利免费观看在线| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美一区二区三区久久| 99国产极品粉嫩在线观看| 大陆偷拍与自拍| 久久久久久亚洲精品国产蜜桃av| 9191精品国产免费久久| 男女午夜视频在线观看| 极品教师在线免费播放| 少妇的丰满在线观看| 岛国在线观看网站| 久久天堂一区二区三区四区| 黄片大片在线免费观看| 亚洲情色 制服丝袜| 国产精品久久久久久精品古装| 久久香蕉国产精品| 亚洲五月婷婷丁香| 国产亚洲欧美98| 国产乱人伦免费视频| a级片在线免费高清观看视频| 69精品国产乱码久久久| 黄色a级毛片大全视频| 伊人久久大香线蕉亚洲五| 天堂中文最新版在线下载| 中出人妻视频一区二区| 少妇 在线观看| 精品人妻在线不人妻| 在线观看午夜福利视频| 久久人人爽av亚洲精品天堂| 每晚都被弄得嗷嗷叫到高潮| 国产精品.久久久| 午夜老司机福利片| 精品高清国产在线一区| av天堂在线播放| 交换朋友夫妻互换小说| www.熟女人妻精品国产| 黄网站色视频无遮挡免费观看| 国产欧美日韩精品亚洲av| 操出白浆在线播放| 亚洲专区字幕在线| 国产xxxxx性猛交| 在线观看午夜福利视频| 9色porny在线观看| 美女视频免费永久观看网站| 久久久久精品人妻al黑| 国产成人一区二区三区免费视频网站| 国产成人精品久久二区二区免费| 亚洲美女黄片视频| 夜夜爽天天搞| 久久国产精品人妻蜜桃| 一进一出抽搐gif免费好疼 | 久久久久精品人妻al黑| 国产成人影院久久av| 中文字幕最新亚洲高清| 国产精品久久久久久精品古装| 国产成人精品在线电影| 最新在线观看一区二区三区| 下体分泌物呈黄色| 一本一本久久a久久精品综合妖精| 久99久视频精品免费| 一本大道久久a久久精品| 久久精品国产亚洲av香蕉五月 | 亚洲色图av天堂| 亚洲精品一二三| 日韩有码中文字幕| 一本综合久久免费| 精品一区二区三卡| 国产色视频综合| 免费在线观看日本一区| 日韩制服丝袜自拍偷拍| 一夜夜www| 欧美大码av| 自线自在国产av| 国产伦人伦偷精品视频| www.精华液| 在线观看www视频免费| 成人亚洲精品一区在线观看| 在线av久久热| 侵犯人妻中文字幕一二三四区| 深夜精品福利| 极品人妻少妇av视频| 777久久人妻少妇嫩草av网站| 高清视频免费观看一区二区| 久久这里只有精品19| 曰老女人黄片| 亚洲熟妇中文字幕五十中出 | 日本一区二区免费在线视频| 美国免费a级毛片| 国产精品国产av在线观看| tocl精华| 丝袜美足系列| 久热这里只有精品99| 制服诱惑二区| 久久精品亚洲精品国产色婷小说| 两个人免费观看高清视频| 成年人黄色毛片网站| netflix在线观看网站| 久久亚洲精品不卡| 国产精品美女特级片免费视频播放器 | 99久久国产精品久久久| 国产成人精品久久二区二区免费| 无遮挡黄片免费观看| 又大又爽又粗| 色综合婷婷激情| 精品视频人人做人人爽| tocl精华| 精品久久久精品久久久| 国产不卡一卡二| 后天国语完整版免费观看| 免费在线观看视频国产中文字幕亚洲| 热99久久久久精品小说推荐| 日本wwww免费看| 精品福利观看| 国产午夜精品久久久久久| 可以免费在线观看a视频的电影网站| 97人妻天天添夜夜摸| 欧美激情 高清一区二区三区| 精品无人区乱码1区二区| 97人妻天天添夜夜摸| 老汉色av国产亚洲站长工具| 久久草成人影院| 精品一区二区三区视频在线观看免费 | 日本一区二区免费在线视频| 欧美日韩瑟瑟在线播放| 国产一卡二卡三卡精品| 在线av久久热| 老司机在亚洲福利影院| 俄罗斯特黄特色一大片| 伦理电影免费视频| 国产在线一区二区三区精| 老鸭窝网址在线观看| 亚洲成人手机| 久热这里只有精品99| 女警被强在线播放| 欧美人与性动交α欧美软件| 国产蜜桃级精品一区二区三区 | 少妇 在线观看| 色94色欧美一区二区| 欧美大码av| 涩涩av久久男人的天堂| 国产精品久久视频播放| 一区二区三区国产精品乱码| 亚洲片人在线观看| 久久午夜亚洲精品久久| 老司机深夜福利视频在线观看| 久久精品国产亚洲av香蕉五月 | 国产99白浆流出| 狠狠狠狠99中文字幕| 丁香六月欧美| 久久精品国产亚洲av香蕉五月 | 热re99久久精品国产66热6| 啦啦啦 在线观看视频| 久久久久久久午夜电影 | 国产精品亚洲av一区麻豆| 亚洲中文字幕日韩| 欧美日韩亚洲综合一区二区三区_| 久久影院123| 国产日韩欧美亚洲二区| 国产精品偷伦视频观看了| 亚洲一区二区三区不卡视频| 亚洲成av片中文字幕在线观看| 亚洲国产中文字幕在线视频| www.自偷自拍.com| 成年人黄色毛片网站| 亚洲一区中文字幕在线| 一区福利在线观看| 日韩有码中文字幕| 一级a爱视频在线免费观看| 国产精品av久久久久免费| 亚洲精品久久午夜乱码| 国产高清激情床上av| 99久久精品国产亚洲精品| 成人特级黄色片久久久久久久| 国产伦人伦偷精品视频| 窝窝影院91人妻| 欧美黄色片欧美黄色片| 法律面前人人平等表现在哪些方面| 亚洲少妇的诱惑av| 欧美日韩福利视频一区二区| 国产精品亚洲一级av第二区| 免费观看人在逋| 丝袜美足系列| 捣出白浆h1v1| 成人影院久久| 精品视频人人做人人爽| 最新在线观看一区二区三区| 午夜视频精品福利| 国产精品 国内视频| 欧美乱色亚洲激情| 岛国毛片在线播放| 亚洲欧洲精品一区二区精品久久久| 在线观看一区二区三区激情| 视频区图区小说| 国产无遮挡羞羞视频在线观看| 亚洲黑人精品在线| 一本大道久久a久久精品| 国产男女超爽视频在线观看| 欧美最黄视频在线播放免费 | 亚洲五月色婷婷综合| 久久人妻熟女aⅴ| 午夜91福利影院| av有码第一页| 夜夜躁狠狠躁天天躁| 欧美激情 高清一区二区三区| 成熟少妇高潮喷水视频| 精品亚洲成a人片在线观看| 欧美日韩一级在线毛片| 日本黄色视频三级网站网址 | 精品久久久精品久久久| 国产亚洲欧美在线一区二区| 久久国产精品人妻蜜桃| 另类亚洲欧美激情| √禁漫天堂资源中文www| 久久精品国产亚洲av香蕉五月 | 另类亚洲欧美激情| 国产高清国产精品国产三级| 欧美黄色片欧美黄色片| 黄色丝袜av网址大全| 国产淫语在线视频| 中出人妻视频一区二区| 欧美精品高潮呻吟av久久| 久久久精品国产亚洲av高清涩受| 国产精品综合久久久久久久免费 | 国产成人免费无遮挡视频| 亚洲熟妇中文字幕五十中出 | xxxhd国产人妻xxx| 国产欧美日韩一区二区三| 欧美另类亚洲清纯唯美| 久久国产精品男人的天堂亚洲| 性少妇av在线| 天天躁夜夜躁狠狠躁躁| bbb黄色大片| 不卡一级毛片| 国产欧美日韩一区二区精品| 身体一侧抽搐| 两性夫妻黄色片| 国产亚洲精品久久久久久毛片 | 在线十欧美十亚洲十日本专区| 亚洲av电影在线进入| 99国产精品99久久久久| av有码第一页| 啦啦啦在线免费观看视频4| 欧美日本中文国产一区发布| 我的亚洲天堂| 亚洲成人国产一区在线观看| 成人影院久久| 亚洲第一青青草原| 欧美久久黑人一区二区| 午夜福利,免费看| av天堂久久9| 亚洲视频免费观看视频| 久久热在线av| 天堂√8在线中文| 50天的宝宝边吃奶边哭怎么回事| 国产精品免费一区二区三区在线 | 欧美激情久久久久久爽电影 | 色婷婷久久久亚洲欧美| 精品国产一区二区三区久久久樱花| 男男h啪啪无遮挡| 国产免费现黄频在线看| 成人18禁高潮啪啪吃奶动态图| 丰满的人妻完整版| 久久午夜综合久久蜜桃| 欧美老熟妇乱子伦牲交| 欧美精品av麻豆av| 91麻豆精品激情在线观看国产 | 欧美中文综合在线视频| 啦啦啦免费观看视频1| 亚洲avbb在线观看| 天天影视国产精品| 欧美黄色淫秽网站| 欧美精品高潮呻吟av久久| 中文字幕色久视频| 国产精品久久久av美女十八| 久久久久视频综合| 国产一区在线观看成人免费| 精品久久蜜臀av无| 精品国产一区二区三区四区第35| 高清av免费在线| 黄色女人牲交| 最新美女视频免费是黄的| 久久精品亚洲av国产电影网| 亚洲成人免费电影在线观看| 欧美日韩视频精品一区| 纯流量卡能插随身wifi吗| 亚洲欧美激情综合另类| 无遮挡黄片免费观看| 熟女少妇亚洲综合色aaa.| 亚洲精品久久成人aⅴ小说| 国产片内射在线| 亚洲视频免费观看视频| 精品一区二区三区av网在线观看| 99re6热这里在线精品视频| 一级毛片高清免费大全| 国产av精品麻豆| 又黄又爽又免费观看的视频| 一级片免费观看大全| 亚洲熟女毛片儿| 欧美人与性动交α欧美精品济南到| 纯流量卡能插随身wifi吗| 日韩一卡2卡3卡4卡2021年| 色在线成人网| 精品午夜福利视频在线观看一区| 黄色女人牲交| 精品国产乱子伦一区二区三区| 国产欧美亚洲国产| 好看av亚洲va欧美ⅴa在| 亚洲av熟女| 9色porny在线观看| 亚洲全国av大片| 女人被狂操c到高潮| 精品国产一区二区三区四区第35| √禁漫天堂资源中文www| 午夜福利,免费看|