• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-dimensional MgSiP2 with anisotropic electronic properties and good performances for Na-ion batteries

    2021-07-01 05:29:22ChunyingPuJiahuiYuLingFuJiaWangHouyongYangDaweiZhouChaozhengHe
    Chinese Chemical Letters 2021年3期

    Chunying Pu,Jiahui Yu,Ling Fu,Jia Wang,Houyong Yang,Dawei Zhou*,Chaozheng He,**

    a Institute of Environment and Energy Catalysis,School of Materials Science and Chemical Engineering,Xi’an Technological University,Xi’an 710021,China

    b College of Physics and Electronic Engineering,Nanyang Normal University,Nanyang 473061,China

    c Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices,School of Materials Science and Chemical Engineering,Xi'an Technological University,Xi'an 710021,China

    ABSTRACT Using the global particle-swarm optimization method and density functional theory,we predict a new stable two-dimensional layered material:MgSiP2 with a low-buckled honeycomb lattice.Our HSE06 calculation shows that MgSiP2 is an indirect-gap semiconductor with a band-gap of 1.20 eV,closed to that of bulk silicon.More remarkably,MgSiP2 exhibits worthwhile anisotropy along with electron and hole carrier mobility.A ultrahigh electron mobility is even up to 1.29×104 cm2 V-1 s-1,while the hole mobility is nearly zero along the a direction.The large difference of the mobility between electron and hole together with the suitable band-gap suggest that MgSiP2 may be a good candidate for solar cell or photochemical catalysis material.Furthermore,we explore MgSiP2 as an anode for sodium-ion batteries.Upon Na adsorption,the semiconducting MgSiP2 transforms to a metallic state,ensuring good electrical conductivity.A maximum theoretical capacity of 1406 mAh/g,a small volume change(within 9.5%),a small diffusion barrier(~0.16 eV)and low average open-circuit voltages(~0.15 V)were found for MgSiP2 as an anode for sodium-ion batteries.These results are helpful to deepen the understanding of MgSiP2 as a nanoelectronic device and a potential anode for Na-ion batteries.

    Keywords:First-principles calculations Two-dimensional MgSiP2 Anode materials Sodium-ion batteries Carrier mobility

    The discovery of graphene[1]opens the door of twodimensional(2D)materials,after that,a great deal of 2D materials such as hexagonal boron nitride[2],Mxenes[3–5],transitionalmetal dichalcogenides(TMDs)[6,7],and black phosphorene[8,9]were discovered.Differ from their bulk counter-parts,2D materials shows extraordinary properties and have great potentials for various applications including nanoelectronics and optoelectronics devices,field effect transistors(FET),sensor,p–n junctions,energy conversion and storage,and catalyst[10–16].Especially,the 2D monolayer black phosphorene(BP),which can be mechanically exfoliated from black phosphorus and have a tunable thicknessdependent direct band gap and high carrier(hole)mobility,has emerged as a promising FET material[17–20].Following the success of black phosphorene,2D phosphides received increasing attention with both moderate band gaps and high carrier mobility.For example,the monolayer BP5[21]with an indirect band gap(1.34 eV)exhibits an anisotropic visible-light absorption and high electron mobility of 7.1×103cm2V-1s-1.2D GeP3[22]is also discovered to have the hole and electron mobility of 0.85×104and 0.88×104cm2V-1s-1,respectively.Other 2D phosphides such as 2D InP3[23,24],SnP3[25,26]and CaP3[27]were also predicted to have high carrier mobility and have potential applications in optoelectronics and gas sensor.

    2D materials also exhibit unique advantages as anodes due to their large surface-volume ratio,broad electrochemical window,fascinating chemical activity,and excellent mechanical strength.Some 2D materials(e.g.,graphene[28],transition metal dichalcogenides[29],borophene[30,31],phosphides[32])have exhibited excellent performance in LIBs.However,the storage of lithium sources on Earth is rather limited.A potential candidate to replace LIBs is the rechargeable sodium-ion batteries(SIBs),which have attracted increasing attention because of the abundance of Na in earth(28,400 mg/kg)[33]and low cost.Therefore,SIBs are deemed to be promising energy storage devices[34–38].Up to now,a large number of 2D materials,such as graphene systems[39,40],phosphorene[41,42],borophene[43],transition-metal dichalcogenides and nitrides[44–48],and MXene[49,50]have been explored as potential anode for SIBs.For example,phosphorene as anode in SIBs achieves the theoretical capacity of 865 mAh/g[41,42],and borophene gain a maximum theoretical capacity of 1984 mAh/g[43].Furthermore,there are extensive researches on searching for other 2D anode materials,including defective graphene(1450 mAh/g)[51],B-doped graphene(762 mAh/g)[52],nitrogen holey graphene(2469 mAh/g)[53],borocarbonitride based anode(810 mAh/g)[54],silicene,germanene and stanene(954,369 and 226 mAh/g,respectively)[55,56].The ion diffusion barrier of most these 2D materials is in the range of 0.1 eV to 0.6 eV.

    So the unique performances of 2D materials encourage more theoretical works to predict and design new 2D materials with novel properties for further expanding the 2D family.We noticed that the phosphorus-correlated 2D materials usually show good performances in both electronic properties and anode materials.In this paper,through a first principles swarm structural research,we design a stable 2D semiconductor material MgSiP2,which exhibits novel electronic properties and also shows outstanding electrode performance for SIBs.The MgSiP2monolayer is an indirect-gap semiconductor with a band-gap of 1.20 eV.The mobility of electron and hole shows strong anisotropy.The electron mobility is as large as 1.29×104cm2V-1s-1,while the hole mobility is very small.In addition,the predicted MgSiP2show an ultrahigh theoretical storage capacity(1480 mAh/g)and small diffusion energy barriers(0.16 eV).The physical properties of MgSiP2such as electronic properties are also discussed in this paper.

    The 2D structure predictions of MgSiP2monolayer are carried out using the particle-swarm optimization(PSO)method as implemented in the CALYPSO code[57,58].We performed structural searches with simulation cell sizes of 1,2 and 4 formula units(f.u.).The 2D MgSiP2were placed in the xy plane with the Z direction perpendicular to the layer plane.To make sure that there are no interactions among atoms along the Z direction,we use a very large vacuum layer of 30?during the 2D structure predictions.The structure optimization and electronic property calculations were performed with projector augmented wave(PAW)method[59,60]as implemented in the Vienna ab-initio simulation package(VASP)[61,62].The generalized gradient approximation(GGA)with Perdew-Burke-Ernzerhof(PBE)[63]function was adopted for the exchange-correlation functional.To estimate the band structures of MgSiP2more accurately,the Heyd–Scuseria–Ernzerhof(HSE06)hybrid functional[64]with the screening parameter(ω )of 0.2?-1was used.The plane wave cutoff energy of 600 eV was employed in all the computations.The convergence threshold was set as 10-6eV in energy and 10-3eV in force.The Brillouin zone was sampled with a 9×16×1 Monkhorst-Pack k-point grid.The phonon dispersion curves were calculated with the finite displacement method implemented in the phonopy package[65].The thermal stability was further tested by ab initio molecular dynamics(AIMD)simulations using the canonical ensemble(NVT)with a 2×3 supercell.In the calculation of Na-ion adsorption,we set 35?vacuum layer to avoid interactions between the neighboring images under the periodic boundary condition.To quantitatively determine the lowest energetic diffusion pathways of Na on MgSiP2,we used the climbing Nudged Elastic Band method(cNEB)method[66].

    The most stable structure of MgSiP2through the global structure searching is shown in Fig.1a(top view)and Fig.1c(side view).We can see that the 2D structure exhibits bilayer stacking system of a low-buckled honeycomb lattice.Two dimensional MgSiP2has a space group of P2/m(No.10)and the unit cell of MgSiP2contains two Mg,two Si and four P atoms in a monoclinic with lattice constants of a=7.211 and b=3.796?.Each Si atom and Mg atom binds to four P atoms forming siliconphosphorus and magnesium-phosphorus tetrahedron,respectively.The Si-P bond lengths are 2.307 and 2.331?,where the bond distances of Mg-P are 2.453,2.535 and 2.832?,respectively,indicating that the magnesium atom and silicon atom can’t form the standard sp3configuration.

    Fig.1.Schematic illustration of two dimensional MgSiP2(a)top view and(c)side view,Mg,Si and P atoms are represented by brown,blue,and pink spheres,respectively.Difference charge density plots(b)top view and(d)side view.The gold color(i.e.,0.006 e/?3)in the plot indicates an electron density increase in the electron density after bonding,and the cyan color(i.e.,0.006 e/?3)indicates a loss.

    The chemical bonding of the MgSiP2can be understood according to its charge difference density(Figs.1b and d),which is defined as the total electron density of the MgSiP2minus the electron density of isolated Mg,Si and P atoms at their respective positions.It is clearly seen from Figs.1b and d that a significant amount of electrons transfers from Mg to the nearest and nextnearest P atoms.Our Bader charge analysis suggests that the Mg-P bonds are more ionic in nature as net charges on Mg are+1.52|e|,while the atoms between Si-P are covalently bonded.

    To clarify the thermal stability of the predicted 2D MgSiP2,we calculated its formation energy defined as

    where E2d(MgSiP2),E2d(SiP2),and Ebulk(Mg)are the total energies of 2D MgSiP2,2D SiP2reported in the previous work[67],and the bulk hcp-Mg material,respectively.n2d(MgSiP2),n2d(SiP2)and nbulk(Mg)are the number of atoms present in the unit cell considered for the calculation.The calculated formation energy for the MgSiP2monolayer is-0.49 eV per f.u.The negative formation energy implies that the synthesis of the MgSiP2monolayer under ambient conditions is feasible.

    The dynamical stability of MgSiP2was also checked by calculating the phonon dispersion curves.As shown in Fig.S1a(Supporting information),no imaginary frequency in the first Brillouin zone was found,which confirms the dynamical stability of MgSiP2.To further evaluate the thermal stability,we performed AIMD simulations of the MgSiP2with a 2×3 supercell at the temperature of 600 K and 900 K.The fluctuation of the total potential energy with simulation time is plotted in Fig.S1b(Supporting information)and Fig.S1c(Supporting information),respectively,which shows that the average value of the total potential energy remains nearly constant during the entire simulation.Snapshots taken at the end of 10 ps are also shown in Figs.S1b and c,respectively.From the snapshots,one can see that the original geometry of MgSiP2is generally well-kept and no bond is broken at 600 K.As temperature increase to 900 K,the distortion become more and more evident and the framework of MgSiP2started to collapse.The above results reveal that the MgSiP2monolayer can maintain its structural integrity even at a temperature of 600 K.

    The mechanical stability of MgSiP2was examine,and the four independent elastic constants C11,C22,C12and C66are calculated to be C11=83.7 N/m,C22=81.0 N/m,C12=25.5 N/m and C66=10.1 N/m,respectively.All the calculated elastic constants meet the necessary mechanical equilibrium conditions[68]for mechanical stability:C11C22->0 and C11,C22and C66>0.Thus the 2D MgSiP2also meet mechanical stability criteria.

    To get insight into the electronic properties of MgSiP2,the calculated band structure together with its projected density of states are shown in Fig.S2a(Supporting information).The calculation of energy band structure reveals that MgSiP2is an indirect band gap semiconductor.The conduction band minimum(CBM)is located at S point,while the valence band maximum(VBM)is located at theΓpoint.The band gap of MgSiP2is 0.51 eV by the PBE calculation.Due to the band gap underestimation of PBE,we have also estimated the band gap using the non-local hybrid functional,and the obtained band gap value of 1.20 eV.The suitable band gap width makes the 2D MgSiP2might can be used to solar cell device.Furthermore,anisotropic band-structured features can be seen from Fig.S2a,the lowest conduct band has a very large dispersion in both S-X and S-Y directions,whereas the highest valence band is very flat in theΓ-X direction.As we all known,the larger the band curvature,the smaller the effective mass,and this is true reciprocally.So the 2D MgSiP2has a very small effective mass of electron,while a very large effective mass of the hole in theΓ-X direction.In fact,the small effective mass of electron of MgSiP2results in large electron mobility and we will discuss later.We also pointed out that the larger difference effective mass between electron and hole is usually favorable to reduce electron-hole recombination rate,suggesting the 2D MgSiP2may also show good performance as a photochemical catalysis material.

    The projected densities of states(PDOS)show that the VBM are mainly contributed by the P 2p states,while the unoccupied conduction band is contributed by the hybridized 3s and 3p orbitals of Si and P atoms.The partial charge densities associated with the VBM and CBM(Figs.S2b and c in Supporting information)for MgSiP2reveal that the VBM mainly distributes on the P atoms nearest to Si atoms,while the CBM mainly distributes on both P and Si atoms and the middle of a square consisting of Si and P atoms.Therefore,the Si and P atoms could provide empty orbitals for electron-donor alkali metal and could have better adsorption capacity for alkali metal atoms,suggesting that 2D MgSiP2can be used to design high-performance alkalimetal-ion batteries.

    We further evaluate the effective mass and carrier mobility of MgSiP2quantitatively based on the calculated band structure along a and b directions.Schematic of structure of MgSiP2is shown in Fig.2a.However,since the hole effective mass along a direction is very large,we only calculated the effective mass of the electron by fitting the band dispersion along a and b directions and hole along b direction to the following formula:

    The effective masses are calculated to be 0.385m0(0.258m0)for electron along the a(b)direction and 0.156m0for hole along the b direction,where m0is the effective mass of a free electron.The effective mass of electron is different along the a and b directions.So the effective mass of electron is anisotropic,and the effective mass along the a direction is higher than that along the b direction.

    The carrier mobility of MgSiP2were described by the deformation potential approximation[69]using the following formula[70]:

    Fig.2.(a)Schematic of the strain along the a and b directions.(b)The total energy shift as a function of lattice deformation along a and b directions in MgSiP2.(c)Shift of the conduction band under uniaxial strain along the a direction and b direction.(d)Shift of the valence band under uniaxial strain along the b direction.

    where m*is the effective mass in the transport direction,T is the temperature of 300 K,is the deformation potential constant.C2dis the elastic modulus derived fromwhere E is the total energy and E0,S0are the total energy and lattice area at equilibrium for the MgSiP2,respectively.

    The changes of total energy versus strains are shown in Fig.2b.We obtained the in-plane stiffness C2dby fitting the energy-strain curves.The C2dare 83.3 and 81.5 N/m for a and b directions,respectively.The shift of band edges as a function of strain is shown in Figs.2c and d.The deformation potentials are equal to the slope of the fitting lines.Based on the obtainedC2dand m*,the mobility at T=300 K are calculated and listed in Table 1.The electron mobility of MgSiP2are predicted to be 2.50×103and 1.29×104cm2V-1s-1along a direction and b direction,respectively.The hole mobility is only 837 cm2V-1s-1along the b direction.The electron mobility of 2D MgSiP2along b direction is significantly higher than that of MoS2mono-layer nanosheets(~200 cm2V-1s-1)[71]and can comparable with that of XP3(X=Ca,In,Ge and Sb)[22–27,72],which suggests its promising potential applications in nanoelectronics.We want to pointed that the large carrier mobility(electrons along b direction)originates from the small deformation potential constant E1of the conduction band.The MgSiP2has high carrier mobility along b direction than that along a direction,which shown an anisotropic character in-plane.

    Table 1 Calculated deformation potential constant(El),2D elastic modulus(C2d),effective mass(m*),and mobility for electron(e)and hole(h)along a and b directions at 300 K.

    Since both silicon and phosphorus elements show good integration with sodium,2D Phosphorene and silicene exhibit large capacities as anode sodium battery.Considering theelemental and structural similarity,we further estimated the performance of MgSiP2as an anode material.

    We first estimated Na absorption behaviors on 2D MgSiP2using a 2×3 supercell as the substrate,which is tested to be large enough to weaken their interactions.After adsorption of one Na atom,the adsorption energy Eadsis calculated using the following formula

    where ENa+MgSiP2and EMgSiP2refer to the total energy of MgSiP2with and without adsorbed Na atom,respectively,ENarepresents the average energy of a Na atom in bulk Na metal.Considering the structural symmetry of MgSiP2lattice,nine possible sites for Na atom adsorption are shown in Fig.3a.After the geometry optimizations of the adsorbed MgSiP2systems,we found that some Na atoms would spontaneously transfer from one site to another site,and the equivalent sites are listed as following:S2=S1,S3=S4=S5=S6,S8=S9=S10.So only S1,S3,S7 and S8 sites are left.The adsorbed energies for Na atoms are calculated to be -0.581 eV(S1),-0.611 eV(S3),-0.720 eV (S7),and-0.357 eV(S8),respectively.The negative Eadsfor all four sites indicates the dispersive distribution of adsorbed Na atoms instead of forming a cluster.

    To get better understanding of electronic interactions between Na ions and MgSiP2electrode,we have investigated the charge density difference between metal ions and MgSiP2,as presented in Fig.3b.The charge density difference can be expressed as Δρ=ρNaMgSiP2-ρMgSiP2-ρNa,where ρNaMgSiP2,ρMgSiP2and ρNarefer to the charge density of MgSiP2layer with adsorbed Na atom,pristine MgSiP2and the isolated Na atom,respectively.The cyan and yellow areas represent electron depletion and accumulation,respectively.Obvious electron localization can be observed with remarkable electron accumulation around P atoms and depletion around the metal atoms,which indicates the formation of the strong ionic bond.The total and partial density of states of NaMgSiP2are also shown in Fig.3c.It can be seen that there are considerable electronic states at the Fermi level,which indicates that the adsorption of Na atom changes 2D MgSiP2from a semiconductor to a metal.The metal character of NaMgSiP2is also advantageous for making 2D MgSiP2electrode material.

    The storage capacity is one of the most concerned parameters for the electrode materials.In order to calculate the storage capacity,we first calculated the average adsorption energy layer by layer,which is defined by

    Fig.3.(a)The possible sites for Na adsorption of 2D MgSiP2 material.(b)The charge density differenceΔρ with the absorption of Na atom with the isosurface level of 0.001e/?3.(c)The total and partial density of states of MgSiP2Na.

    where ENais the total energy per atom in bulk Na,while ENa12nMg12Si12P24and ENa12(n-1)Mg12Si12P24represent the total energies of EMg12Si12P24(2×3 supercell of MgSiP2)with the absorption of n and n-1 Na atom layers,respectively.If Enis negative,then the adsorption of n layers is more favorable energetically rather than forming Na clusters.The one-layer,two-layer,and three-layer adsorptions of Na atoms on both sides of 2×3 supercell of 2D MgSiP2were estimated.As shown in Fig.S3(Supporting information),for the first adsorption layer,the metal atoms are adsorbed above the vacancies S1 and S7,which is the most stable Na adsorption sites with the lowest energy.The corresponding adsorption energy for the first adsorption layer is calculated to be -0.324 eV.For the second adsorption layer,the S3 and S4 sites are found to be the most stable adsorption sites,and the adsorption energy is-0.148 eV.When the third layer Na atoms is added,the S1 and S7 becomes the most stable adsorption sites again,the absorption energy still can keep negative with a value of -0.011 eV.However,when the fourth layer is added,the absorption energy becomes a positive value of 0.02 eV.So MgSiP2can adsorb maximum three layers of Na atoms in theory.Then we can calculate maximum capacity(CM)by the following equation

    where x represents the number of adsorbed Na ions on the MgSiP2per formula unit,F derives from the Faraday constant with the value of 26,798 mAh/mol,and M is the mass of MgSiP2in g/mol.The stoichiometry MgSiP2Na6reaches a maximum theoretical capacity of 1406.2 mAh/g,Even if the final product of sodium could not achieves MgSiP2Na6,the stable MgSiP2Na4stoichiometry can also get a theoretical capacity of 937 mAh/g.The capacity of MgSiP2is much higher than that of reported 2D anode materials(e.g.,132 mAh/g for Mo2C[73],146 mAh/g for MoS2[46],253 mAh/g SnP3[74]and 751 mAh/g for ReN2[75]).We also estimated the volume changes of sodiation MgSiP2.According to previous work,although some 2D materials such as Si and P have a large capacity,however,the huge volume change of Si limited their application as good anodes.For MgSiP2,the volume change is within 9.5% with the increasing of Na adsorbing layers.The small change in volume after the adsorption of one,two and three layers of Na ions indicates that the MgSiP2is robust.

    We further turn our focus on the open circuit voltage (OCV)in fact,the charge/discharge process of MgSiP2can be described as

    Based on this reaction,the average open circuit voltage can be defined by

    where ENanMgSiP2and EMgSiP2refer to the total energy of MgSiP2with and without adsorbed Na atom,respectively,n and ENarepresents the number of Na atom and average energy of a Na atom in bulk Na metal assuming volume and entropy effects are negligible.The calculated OCV value decreases from 0.23 V to 0.15 V with the increase of the adsorbed Na concentration from 48 atoms to 72 atoms on the 2×3 supercell.So the MgSiP2is suitable to serve as an anode material because of its relatively low average OCV.

    The diffusion barrier of metal ion is as essential parameter to estimate the performance of the battery.A low diffusion barrier means a fast charging/discharging process for ion batteries.We first investigate the diffusion of one Na ion on the MgSiP2surface.Two possible diffusion paths between the lowest energy adsorption sites and the calculated results are shown in Fig.4.The diffusion barrier of the path 1 is 0.16 eV,which lower than that of path 2(0.36 eV)and other anode materials,such as BP(0.22 eV)[76],MoN2(0.56 eV)[77],NiC3(0.23 eV)[78]comparable with that of TiC3(0.18 eV)[79],P3C(0.19 eV)[80]and ReS2(0.16 eV)[81].The low diffusion can result in ultrafast charging/discharging cycles in the Na ion batteries.

    Fig.4.Energy profile of Na diffusion on path 1 and path 2.The inserted figures show the possible sites for Na adsorption in MgSiP2,and the corresponding diffusion pathways are also shown.

    In summary,we predicted a stable 2D MgSiP2with bilayer stacking system of a low-buckled honeycomb lattice by using the PSO-based global structure search method and first-principles calculations.The phonon spectrum,molecular dynamics,and elastic constants simulation confirm its dynamical,thermal,and mechanical stabilities,respectively.It has an indirect band gap with the value of 1.20 eV,which is promising candidate for solar cell.The highest electron mobility(1.29×104cm2V-1s-1)of MgSiP2is comparable with that of XP3(X=Ca,Ge,Sb),showing the potential application in nano electronic devices.Furthermore,we investigate 2D MgSiP2as an anode for NIBs.The metallicity of the MgSiP2with Na adsorption provides good electron conductivity.The MgSiP2can spontaneously adsorb Na ions with an unexpected stoichiometry of Na6MgSiP2,leading to a large theoretical capacity of 1406 mAh/g.Its Na ion diffusion barrier is as low as 0.16 eV,ensuring a quick charge/discharge rate capacity for SIBs.These results could enhance the understanding of 2D MgSiP2,which is important for the designing of anode materials for SIBs.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This research was supported by Henan Joint Funds of the National Natural Science Foundation of China(Nos.U1904179,U1404608 and U1404216),the National Natural Science Foundation of China(No.21603109),the Key Science Fund of Educational Department of Henan Province of China(No.20B140010).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.08.042.

    国产乱人视频| 国产精品一区二区三区四区久久| 十八禁网站免费在线| 18禁在线播放成人免费| 欧美日韩福利视频一区二区| 99热这里只有精品一区| 婷婷亚洲欧美| 日韩成人在线观看一区二区三区| 露出奶头的视频| 午夜老司机福利剧场| 老司机午夜福利在线观看视频| 丁香六月欧美| 在线观看av片永久免费下载| 久久精品综合一区二区三区| 日韩 亚洲 欧美在线| av黄色大香蕉| 女同久久另类99精品国产91| 欧美午夜高清在线| 18禁裸乳无遮挡免费网站照片| 久久草成人影院| 赤兔流量卡办理| 永久网站在线| 一二三四社区在线视频社区8| 欧美xxxx黑人xx丫x性爽| 男人狂女人下面高潮的视频| 91九色精品人成在线观看| 成人毛片a级毛片在线播放| 久久久久精品国产欧美久久久| 亚洲一区二区三区不卡视频| 久久久久久九九精品二区国产| 国产91精品成人一区二区三区| 欧美激情在线99| 夜夜夜夜夜久久久久| 高潮久久久久久久久久久不卡| 婷婷精品国产亚洲av| 国产午夜精品久久久久久一区二区三区 | 亚州av有码| 欧美激情在线99| 性色avwww在线观看| 国产精品av视频在线免费观看| 观看免费一级毛片| 国产伦人伦偷精品视频| 一进一出抽搐gif免费好疼| 成年版毛片免费区| 熟妇人妻久久中文字幕3abv| 99精品在免费线老司机午夜| 直男gayav资源| 精品午夜福利视频在线观看一区| 国产v大片淫在线免费观看| 亚洲人与动物交配视频| 午夜精品久久久久久毛片777| 日本一二三区视频观看| 成年人黄色毛片网站| 1024手机看黄色片| 高潮久久久久久久久久久不卡| 国产乱人伦免费视频| 18禁黄网站禁片免费观看直播| 亚洲性夜色夜夜综合| 少妇人妻精品综合一区二区 | 成年女人看的毛片在线观看| 亚洲av成人av| 很黄的视频免费| 天堂av国产一区二区熟女人妻| 日本黄大片高清| 国产精品一及| 18禁裸乳无遮挡免费网站照片| 日本三级黄在线观看| 成人国产综合亚洲| 久久精品国产清高在天天线| 欧美色视频一区免费| 精品久久久久久久久久免费视频| 大型黄色视频在线免费观看| 美女xxoo啪啪120秒动态图 | 欧美黑人欧美精品刺激| 无人区码免费观看不卡| 国产激情偷乱视频一区二区| 午夜福利18| 欧美一区二区亚洲| 亚洲美女搞黄在线观看 | 少妇的逼水好多| 91字幕亚洲| 波多野结衣高清作品| 日本精品一区二区三区蜜桃| 18+在线观看网站| 午夜免费男女啪啪视频观看 | 久久中文看片网| 亚洲av成人av| 久久久久久久午夜电影| 午夜a级毛片| 久久精品影院6| 宅男免费午夜| 亚洲三级黄色毛片| 中文字幕高清在线视频| 国产精品亚洲美女久久久| 国产美女午夜福利| 欧美一区二区亚洲| 日日干狠狠操夜夜爽| 变态另类成人亚洲欧美熟女| 中文资源天堂在线| 成年版毛片免费区| 亚洲av二区三区四区| 国产精品久久久久久久电影| 波多野结衣高清无吗| 午夜福利欧美成人| 亚洲内射少妇av| 精品免费久久久久久久清纯| 午夜精品在线福利| 国产v大片淫在线免费观看| 亚洲欧美日韩高清在线视频| 欧美乱色亚洲激情| 亚洲精品在线美女| 久久国产乱子免费精品| 亚洲熟妇中文字幕五十中出| 久久久久久久精品吃奶| 一级作爱视频免费观看| 人妻久久中文字幕网| xxxwww97欧美| 欧美在线黄色| 欧美三级亚洲精品| 国内少妇人妻偷人精品xxx网站| 国产一区二区三区视频了| 动漫黄色视频在线观看| 成人国产一区最新在线观看| 精品人妻1区二区| 我的女老师完整版在线观看| 噜噜噜噜噜久久久久久91| 亚洲精品久久国产高清桃花| 欧美色欧美亚洲另类二区| 国产av一区在线观看免费| 久久久久久久久中文| 在线观看免费视频日本深夜| 亚洲美女黄片视频| 国产欧美日韩精品亚洲av| 亚洲欧美日韩卡通动漫| 好男人在线观看高清免费视频| 欧美丝袜亚洲另类 | 久久久国产成人精品二区| 少妇熟女aⅴ在线视频| 国产高清激情床上av| 久久久久国内视频| 成人精品一区二区免费| 久久精品国产亚洲av香蕉五月| 俺也久久电影网| 美女被艹到高潮喷水动态| 欧美+亚洲+日韩+国产| 免费观看人在逋| 校园春色视频在线观看| 国产免费一级a男人的天堂| 国产一区二区亚洲精品在线观看| 如何舔出高潮| 国产极品精品免费视频能看的| 精品久久久久久久久av| 极品教师在线视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲熟妇熟女久久| 亚洲avbb在线观看| 久久久久久九九精品二区国产| 嫩草影院精品99| 又爽又黄无遮挡网站| 免费无遮挡裸体视频| 美女黄网站色视频| 成人鲁丝片一二三区免费| 国产精品1区2区在线观看.| 成年版毛片免费区| 久久精品综合一区二区三区| 色尼玛亚洲综合影院| 亚洲中文字幕一区二区三区有码在线看| 国产亚洲欧美在线一区二区| 欧美丝袜亚洲另类 | 国产高清激情床上av| 亚洲av免费高清在线观看| 精品久久久久久久人妻蜜臀av| 亚洲美女黄片视频| 国产欧美日韩一区二区精品| 亚洲最大成人中文| 色吧在线观看| 三级毛片av免费| 日本熟妇午夜| 99在线人妻在线中文字幕| 欧美丝袜亚洲另类 | 香蕉av资源在线| 成人性生交大片免费视频hd| 一个人看的www免费观看视频| 日韩欧美三级三区| 久久精品国产99精品国产亚洲性色| h日本视频在线播放| 天堂动漫精品| 内地一区二区视频在线| 此物有八面人人有两片| 99久久无色码亚洲精品果冻| 看黄色毛片网站| 久久精品国产自在天天线| 亚洲av免费高清在线观看| 9191精品国产免费久久| 国产精品一及| 性欧美人与动物交配| 国产亚洲精品久久久久久毛片| 亚洲av日韩精品久久久久久密| 99久国产av精品| 日韩中文字幕欧美一区二区| 一夜夜www| av在线老鸭窝| 亚洲国产精品sss在线观看| 最后的刺客免费高清国语| 国产激情偷乱视频一区二区| 高清日韩中文字幕在线| 亚洲第一欧美日韩一区二区三区| 亚洲精品在线美女| 一个人观看的视频www高清免费观看| 国产 一区 欧美 日韩| 亚洲真实伦在线观看| 天天躁日日操中文字幕| 韩国av一区二区三区四区| 国产欧美日韩一区二区三| 一进一出抽搐动态| 久久香蕉精品热| 一个人免费在线观看的高清视频| 国产综合懂色| 成人三级黄色视频| 国产人妻一区二区三区在| 欧美精品啪啪一区二区三区| 亚洲无线在线观看| 观看免费一级毛片| 一a级毛片在线观看| 真人一进一出gif抽搐免费| 亚洲va日本ⅴa欧美va伊人久久| 黄片小视频在线播放| aaaaa片日本免费| 国产精品亚洲一级av第二区| 一区二区三区四区激情视频 | 中文字幕熟女人妻在线| 国产在线精品亚洲第一网站| 亚洲乱码一区二区免费版| 午夜福利视频1000在线观看| 日韩精品中文字幕看吧| 国产亚洲欧美在线一区二区| 亚洲人成网站高清观看| 国产伦精品一区二区三区视频9| 三级毛片av免费| av天堂中文字幕网| 成人午夜高清在线视频| 18+在线观看网站| 色吧在线观看| 免费黄网站久久成人精品 | 精品日产1卡2卡| 日韩欧美 国产精品| 亚洲国产精品成人综合色| 夜夜躁狠狠躁天天躁| 亚洲国产精品sss在线观看| 精品欧美国产一区二区三| 成人高潮视频无遮挡免费网站| 亚洲熟妇熟女久久| 国产精品一区二区免费欧美| 久久久成人免费电影| 亚洲欧美激情综合另类| 亚洲国产高清在线一区二区三| 欧美日韩乱码在线| 国产av麻豆久久久久久久| 久久精品久久久久久噜噜老黄 | 中文字幕人妻熟人妻熟丝袜美| 欧美三级亚洲精品| avwww免费| 99国产精品一区二区蜜桃av| 亚洲成人久久爱视频| 老女人水多毛片| 中文亚洲av片在线观看爽| 亚洲熟妇中文字幕五十中出| 给我免费播放毛片高清在线观看| 久久久久久久亚洲中文字幕 | 中国美女看黄片| 成年女人毛片免费观看观看9| 内射极品少妇av片p| 男人舔奶头视频| 日本免费a在线| 国内久久婷婷六月综合欲色啪| 老司机深夜福利视频在线观看| 亚洲欧美日韩无卡精品| 91在线精品国自产拍蜜月| 色综合欧美亚洲国产小说| 婷婷亚洲欧美| 丰满的人妻完整版| 俺也久久电影网| 免费一级毛片在线播放高清视频| 久久热精品热| 国产欧美日韩一区二区精品| av天堂中文字幕网| 天美传媒精品一区二区| 欧美日韩国产亚洲二区| 欧美日韩中文字幕国产精品一区二区三区| 最近最新中文字幕大全电影3| 97人妻精品一区二区三区麻豆| 久99久视频精品免费| 99久久九九国产精品国产免费| 中文字幕熟女人妻在线| 小蜜桃在线观看免费完整版高清| 麻豆国产97在线/欧美| 在线播放国产精品三级| 欧美在线黄色| 99久国产av精品| 国产精品久久久久久亚洲av鲁大| 亚洲成人久久爱视频| 精品一区二区三区视频在线观看免费| 成人无遮挡网站| 老司机深夜福利视频在线观看| 国产一区二区亚洲精品在线观看| 窝窝影院91人妻| 黄片小视频在线播放| 免费黄网站久久成人精品 | 免费在线观看成人毛片| 国产黄片美女视频| 亚洲熟妇熟女久久| 成年版毛片免费区| 国产av在哪里看| 少妇高潮的动态图| 高清日韩中文字幕在线| 成年免费大片在线观看| 久久久久精品国产欧美久久久| 国产精品亚洲一级av第二区| 国产高清激情床上av| 一个人免费在线观看的高清视频| 精品人妻一区二区三区麻豆 | 国产精品99久久久久久久久| 88av欧美| 校园春色视频在线观看| 一个人看的www免费观看视频| 亚洲无线在线观看| 又爽又黄a免费视频| 久久欧美精品欧美久久欧美| 欧美成人一区二区免费高清观看| 人人妻人人看人人澡| 久久中文看片网| 久久久久性生活片| 黄色日韩在线| 欧美精品国产亚洲| 成人鲁丝片一二三区免费| 九九在线视频观看精品| 90打野战视频偷拍视频| 亚洲美女搞黄在线观看 | 丰满人妻熟妇乱又伦精品不卡| 日本黄大片高清| 观看美女的网站| 十八禁国产超污无遮挡网站| 亚洲精品一区av在线观看| 欧美黑人巨大hd| av专区在线播放| 国内揄拍国产精品人妻在线| 成人av在线播放网站| 欧美日韩瑟瑟在线播放| 欧美黑人欧美精品刺激| 成人鲁丝片一二三区免费| 一区二区三区激情视频| 亚洲性夜色夜夜综合| 国产在视频线在精品| 嫩草影视91久久| 精品久久久久久久末码| 国产精品人妻久久久久久| 亚洲自偷自拍三级| 久久精品国产99精品国产亚洲性色| 精品国产亚洲在线| 制服丝袜大香蕉在线| 精品一区二区三区av网在线观看| 2021天堂中文幕一二区在线观| 丝袜美腿在线中文| 人妻丰满熟妇av一区二区三区| 精品久久久久久,| 国产亚洲精品久久久com| 99久久精品一区二区三区| 少妇被粗大猛烈的视频| 能在线免费观看的黄片| 亚洲经典国产精华液单 | 9191精品国产免费久久| 国产91精品成人一区二区三区| 国产精品嫩草影院av在线观看 | 黄色日韩在线| 十八禁网站免费在线| 午夜福利成人在线免费观看| 国产乱人视频| 99久久无色码亚洲精品果冻| 国产激情偷乱视频一区二区| 久久久久久久久大av| 特大巨黑吊av在线直播| 999久久久精品免费观看国产| 亚洲国产精品成人综合色| 一本综合久久免费| 国产三级黄色录像| 又黄又爽又刺激的免费视频.| 久久精品夜夜夜夜夜久久蜜豆| 欧美色视频一区免费| 国产精品1区2区在线观看.| 亚洲熟妇中文字幕五十中出| 亚洲avbb在线观看| 午夜免费成人在线视频| 日韩亚洲欧美综合| 一级黄色大片毛片| 91在线精品国自产拍蜜月| 精品久久久久久久久久免费视频| 婷婷色综合大香蕉| 亚洲国产高清在线一区二区三| 亚洲美女黄片视频| 国产高潮美女av| 偷拍熟女少妇极品色| 国产av麻豆久久久久久久| 在线观看66精品国产| 最新中文字幕久久久久| 午夜精品久久久久久毛片777| av专区在线播放| 国产高清激情床上av| 99热6这里只有精品| 国产一级毛片七仙女欲春2| 亚洲五月天丁香| 国产午夜精品论理片| 久久婷婷人人爽人人干人人爱| 18禁裸乳无遮挡免费网站照片| 中文字幕高清在线视频| 久久这里只有精品中国| 三级毛片av免费| 在线观看免费视频日本深夜| 我要看日韩黄色一级片| 国产高清三级在线| 国产三级中文精品| 久久性视频一级片| 国产免费男女视频| 亚洲av成人av| www.熟女人妻精品国产| 人人妻人人澡欧美一区二区| 午夜福利在线观看吧| 成人美女网站在线观看视频| 最新中文字幕久久久久| 很黄的视频免费| 一区二区三区激情视频| 搡老妇女老女人老熟妇| 国产探花在线观看一区二区| 少妇丰满av| 热99re8久久精品国产| 久久香蕉精品热| 天美传媒精品一区二区| av在线老鸭窝| 男女做爰动态图高潮gif福利片| 99热6这里只有精品| 色哟哟哟哟哟哟| 欧美黑人欧美精品刺激| 一二三四社区在线视频社区8| 国产精品伦人一区二区| 国产极品精品免费视频能看的| 91久久精品国产一区二区成人| 久久久久久久久久成人| 琪琪午夜伦伦电影理论片6080| 精品日产1卡2卡| av中文乱码字幕在线| 无人区码免费观看不卡| 国产高潮美女av| www.www免费av| 国产伦一二天堂av在线观看| 成年女人永久免费观看视频| 中文在线观看免费www的网站| 99久久精品热视频| 成年女人毛片免费观看观看9| 午夜激情欧美在线| 亚洲精华国产精华精| 精品无人区乱码1区二区| 日本黄大片高清| 99国产精品一区二区蜜桃av| 国产熟女xx| a级毛片a级免费在线| 夜夜躁狠狠躁天天躁| 国产精品,欧美在线| 极品教师在线视频| 最好的美女福利视频网| 精品人妻1区二区| 18禁在线播放成人免费| 特大巨黑吊av在线直播| 午夜福利高清视频| 一区二区三区免费毛片| 国产精品国产高清国产av| 少妇的逼好多水| 男人狂女人下面高潮的视频| 成人国产一区最新在线观看| 亚洲aⅴ乱码一区二区在线播放| 可以在线观看毛片的网站| 日本精品一区二区三区蜜桃| 一本精品99久久精品77| 色噜噜av男人的天堂激情| 欧美丝袜亚洲另类 | 丁香六月欧美| 国产又黄又爽又无遮挡在线| 搡老岳熟女国产| 午夜激情福利司机影院| 三级男女做爰猛烈吃奶摸视频| 51午夜福利影视在线观看| 国产精品人妻久久久久久| www.999成人在线观看| 午夜久久久久精精品| 午夜a级毛片| 国产精品伦人一区二区| 国产三级中文精品| 国产精品美女特级片免费视频播放器| 人妻夜夜爽99麻豆av| 欧美成狂野欧美在线观看| 日韩精品中文字幕看吧| 亚洲av第一区精品v没综合| 成人永久免费在线观看视频| av在线天堂中文字幕| 18+在线观看网站| 亚洲无线在线观看| 成人精品一区二区免费| 久久精品综合一区二区三区| 免费一级毛片在线播放高清视频| 亚洲内射少妇av| 欧美最黄视频在线播放免费| 国产精品一区二区三区四区久久| 日本一本二区三区精品| 黄片小视频在线播放| 高清在线国产一区| 亚洲18禁久久av| 一本综合久久免费| 男插女下体视频免费在线播放| 国产精品影院久久| 黄色丝袜av网址大全| 亚洲熟妇熟女久久| 黄色配什么色好看| 久久久国产成人免费| 久久国产乱子免费精品| 成人美女网站在线观看视频| 日本免费a在线| 熟女电影av网| 国产亚洲欧美98| 国产精品一及| 亚洲无线观看免费| 亚洲精品久久国产高清桃花| 久久久久亚洲av毛片大全| 久久伊人香网站| 琪琪午夜伦伦电影理论片6080| 成人国产综合亚洲| 久99久视频精品免费| 午夜福利欧美成人| av专区在线播放| 69av精品久久久久久| 一区二区三区高清视频在线| 色av中文字幕| 色哟哟·www| 日本熟妇午夜| 亚洲国产色片| 国产一区二区在线观看日韩| 日日夜夜操网爽| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美 国产精品| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久久久av| 亚洲色图av天堂| 可以在线观看的亚洲视频| av欧美777| 波多野结衣巨乳人妻| 亚洲精华国产精华精| 日韩精品青青久久久久久| 国内久久婷婷六月综合欲色啪| 90打野战视频偷拍视频| 女同久久另类99精品国产91| 桃色一区二区三区在线观看| 在线免费观看的www视频| 久久久久久久久久成人| 好男人在线观看高清免费视频| 五月伊人婷婷丁香| 国产探花在线观看一区二区| 日韩av在线大香蕉| 男人舔奶头视频| 午夜久久久久精精品| 免费看美女性在线毛片视频| 国产一区二区三区视频了| 色综合欧美亚洲国产小说| 国产成人福利小说| 亚洲精品一卡2卡三卡4卡5卡| x7x7x7水蜜桃| 日韩欧美三级三区| 国产精品乱码一区二三区的特点| 国产欧美日韩一区二区精品| 日本 av在线| 天堂av国产一区二区熟女人妻| 色精品久久人妻99蜜桃| 国产男靠女视频免费网站| 精品久久久久久久久久免费视频| 成人午夜高清在线视频| 亚洲 国产 在线| 国内久久婷婷六月综合欲色啪| 听说在线观看完整版免费高清| 精品国产亚洲在线| 色av中文字幕| 露出奶头的视频| 日本黄色视频三级网站网址| 91麻豆av在线| 欧美性猛交黑人性爽| 在线天堂最新版资源| 国产精品久久久久久久久免 | 亚洲人与动物交配视频| 国产精品久久久久久精品电影| 欧美潮喷喷水| 欧美一区二区亚洲| 久久国产精品人妻蜜桃| 又紧又爽又黄一区二区| 欧美日韩中文字幕国产精品一区二区三区| 真人做人爱边吃奶动态| 深爱激情五月婷婷| 亚洲国产精品合色在线| 亚洲av熟女| 亚洲av二区三区四区| 国产亚洲av嫩草精品影院| 亚洲专区中文字幕在线| 夜夜夜夜夜久久久久| eeuss影院久久| 99久久成人亚洲精品观看| 欧美黑人欧美精品刺激| 日韩欧美在线乱码| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产高清在线一区二区三| 无人区码免费观看不卡| av国产免费在线观看|