• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    奎寧手性催化合成苯并噻唑氨基酸酯反應(yīng)機(jī)理研究

    2021-01-13 05:04謝承衛(wèi)高弦

    謝承衛(wèi) 高弦

    Abstract: The dissymmetric Mannich reaction of benzothiazol-β-amino esters is of great importance for exploring effective enantioisomer with good bioactivity. The mechanism for Mannich reaction of benzothiazol-β-amino esters catalyzed by simple chiral quinine organocatalyst was investigated through a combination of experiment with theoretical approaches (DFT). With solvent effect taken into consideration, transition states TS (S or R) were confirmed with potent strategy of hybrid density functional M06-2X at the level of 6-311G(d, p) basis set. The key feature of dual activation mechanism lies in the formation of one hydrogen bond O (12)—H (25)—N (57) related to quinine hydroxyl (Cat) and benzothiazol imines (EI) N (57) and the other hydrogen bond N(1)—H(90)—O(79) formation related to tertiary amine of quinine (Cat), by which diethyl malonate is able to be activated into enolic Nu simultaneously. The result obtained through energetic calculation was identified further by IR vibrating frequency to convince of transition state attained to be accurate. As a comparison of (R)TS pathway with (S)TS pathway in potential energy profile, it enables to elaborate that (S) TS pathway executes to afford unique enantioisomer (S). At the same time, one of reacting factors was optimized for increasing enantio-and distereoselectivity using DFT calculations, that is reacting temperature. The lower the temperature is going on, the more the enantio-and distereoselectivity are upgraded.

    Key words: chiral quinine; benzothiazol-β-amino esters; DFT; transition state; mechanism

    中圖分類號(hào):O643.3? 文獻(xiàn)標(biāo)志碼:A

    基金項(xiàng)目:貴州省自然科學(xué)基金資助項(xiàng)目([2017]1028)

    Dissymmetric organocatalysis has been exploited as a potent approach for the various synthesis of chiral compounds. Design, application and mechanistic investigation on new activation modes (such as enamine, iminium, and hydrogen bonding catalysis) have dramatically advanced the development in this field[1-3]. In 2010, the highly enantioselective organocatalytic Friedel-Crafts-type addition of indole to isatin catalyzed by cinchona alkaloid derivatives was reported by CHAUHAN and co-worker[2]. This group also had proposed rational mechanism relying on hydrogen bonding interaction. In the following year, ALESSIO and ALESSANDRA[3] used unmodified cinchona alkaloid as organocatalyst to asymmetric conjugate addition of diarylphosphane oxides to chalcones with good yield and up to 89% ee. It’s worthy to note that, since entering modern era, computation science has been developed fast, computational calculation has been serving as a reliable strategy for analyzing reacting mechanism instead of traditional theoretic inference. To the best of our knowledge, mechanism plays an important role in dissymmetric transformation. Mechanism as theoretic guidance explains detail process for reactions in functionality. In 2012, ZHU and co-workers[1] investigated on dual activation mechanism for the direct vinylogous Michael reaction of α, β-unsaturated γ-butyrolactam and chalcone catalyzed by the bifunctional cinchona alkaloid thiourea orgnaocatalysts by NMR and DFT calculations, which stated N-HB bond of thiourea moiety activating EI was weaker than both of N-H bond of protonated amine and N-HA bond of thiourea moiety activating Nu to gain agreeable results via theory calculation. In 2008, BUSYGIN and co-workers[4] explored some cinchona alkaloid o-ethers conformation by means of combining methods NMR, DFT and X-ray.

    Benzothiazol-β-amino esters, acted as β-amino acids derivatives, perform excellent bioactivity in antibacterial and antivirus[5-7]. To gain highly and purely optical single enantioisomer of benzothiazol-β-amino esters with simple organocatalyst, recently, the development for an classic Mannich reaction of diethyl malonate (Nu) with benzothiazol imine (EI) in the presence of cinchona alkaloid derivatives as organocatalyst, including chiral quinine organocatalyst, cinchona alkaloid thiourea organocatalyst was reported by LI and BAI[8-9] with good enatioselectivity of up to 81%~99% ee. In this paper, we carry out mechanistic investigation on representative example (Scheme 1) of this reaction via experiment and theoretic approaches (DFT). Through analyzing potential energy profile of transition state, the most stable transition state is confirmed to get preferable pathway for this reaction. To obtain more reliability for revealing truly reacting process, we originally applied the newly method M06-2X to the calculation of potential energy, bond-length, and hydrogen-bonding intensity at the level of 6-311G(d, p) basis set to confirm the most transition state in asymmetric organocatalysis.

    1 Materials and methods

    1.1 Experimental Section

    Scheme 1. Asymmetric Mannich reaction of benzothiazol-β-amino esters catalyzed by chiral quinine

    To solute the benzothiazol imine (1.0 mmol) in DCM (3.0 mL) chiral quinine catalyst, loading equivalent 10 mol% was added to stir at room temperature. After 5 min, diethyl malonate (1.2 mmol) was put into reacting system dropwise and keeping stirring for 72~96 h. After working up, target compound was separated and purified by column chromatography with hexane/ethyl acetate=5/1 to 3/1 as elute.

    1.2 Computational Methods

    In depth to understanding the real reacting process, all geometry structures of Cat, two substrates(Nu and EI)were first optimized completely with the moderate 6-311G(d, p) basis set in the gas phase. Quantum chemical calculations were exhibited by means of the hybrid density functional approach M06-2X in the Gaussian 09 program suite. The reacting transition states were confirmed by calculating its vibrating frequency at the same level of 6-311G(d,p) basis set as implemented[10-11]. As a result of calculating inaccuracy for hydrogen bonding interaction of catalyst with substrates by employing hybrid density functional method B3LYP[12-16], a method M06-2X was utilized further to improve calculating accuracy for hydrogen bonding interaction in variable molecular system with moderate 6-311G(d,p) basis set.With effect of DCM as solvent,CPCM polarization continuum model[17] was used. Afterward, frequency calculation were performed at the same level of 6-311G(d, p) basis set as the geometry optimizations to confirm the minimum and transition state (TS) structure (zero and only one imaginary frequency respectively), and then to ascertain activating combination of catalyst with substrates that is involved in calculation for all saddles placed on potential energy surface in frequency. Intrinsic reaction coordinates (IRC)[18-19] were employed for monitoring progress of reaction, verifying formation of transition state, so that all saddle points were connected to reactant and product at the same level of basis set. Finally, the energy data were derived from moderate approach M06-2X/6-311G(d,p), including the zero-point energy (ZPE) correction from frequency calculation and the solvent CH2Cl2 effect(CPCM). All of structure images were generated using Gaussian 09 program suite[20]. All of the bond lengths are in angstroms (A), and the energies are in kJ/mol.

    2 Results and Discussion

    2.1 Molecular Structures of Substrates

    The formation of hydrogen bonds among Cat, Nu and EI in distereoselectivity is regarded as a predominant feature. Once the combination of catalyst with substrates through hydrogen bonding interaction takes place, spatial orientation of collision between Nu and EI has to proceed at one direction to increase distereoselectivity in presence of chiral quinine organocatalyst. Because formation of hydrogen bonds between substrates and catalyst requires strong electronegative atoms as participants, it is a core for dissymmetric transformation. We first carried out optimization to the two substrates structure of nucleophiles and eletrophiles to afford their most stable conformations. One of substrates, diethyl malonate (Fig.1) as nucleophile containing four sorts of oxygen atoms O(3),O(4),O(8),O(9) are to be possible active sites; the other is benzothiazol imine(Fig.2)as electrophile having four strong electronegative atoms S(7),N(9),N(10),F(xiàn)(19) are also to be possible active sites. On one hand, as described in Fig.3, in the view of energy, the energy barrier of isomer ketone is almost equal to that of the other isomer enol in process of inter-conversion of diethyl malonate(△E1=39.237 kJ/mol), so it is easy to make conversion of ketone isomer of diethyl malonate into corresponding enolic isomer as intermediate state 1(int.1). The enolic isomer is able to donate an active proton, considered as a donor in the formation of hydrogen bonds. On the other hand, the structure frame of benzothiazol imine performs the most stable configuration through optimization to illustrate that it is not planar molecular, even though executing p orbits conjugation, as depicted in Fig.2.

    In addition, before benzothiazol-β-amino esters obtained, reacting substrate benzothiazol imines and diethyl malonate are allowed to afford intermediate state 2(int. 2), and then to make inter-conversion between ketone isomer and enolic isomer. The result is determined by △E(S)(-26.091 kJ/mol) or △E(R)(-55.464 kJ/mol)as shown in Fig. 4.

    2.2 Quinine Reaction Coordination

    In application of chiral quinine as organocatalyst to dissymmetric Mannich reaction of benzothiazol-β-amino esters, there are two possibilities exhibited in enantio-and distereoselcetivity. In order to directly put insight into asymmetric transformation, the calculating potential energy profiles of two pathways (S)TS and (R)TS are compared to discover more stable transition state. All energies are relevant with the total energy of the most stable conformer of Cat, EI and enolic Nu. The total energy of catalyst and reactant is 13.4 kJ/mol at the outset of reaction. The energy barrier for transition state (S) TS is 173.0 kJ/mol, lower obviously than that of (R) TS with 193.1 kJ/mol, which explicitly indicates pathway (S)TS is predominant procedure as shown in Fig.5.

    Since the active energies differ little between them, increasing the temperature would result in an accelerated rate-determining step of the pathway (R) TS, thereby reducing the distereoselectivity.Therefore, controlling reacting temperature is one of the vital factors for high distereoselectivity. The factor is completely in agreement with experimental results under reacting temperature lower than 25 ℃, product was afforded with S configuration, arriving at 79% ee.

    2.3 Violating Diagnosis and Confirmation of Transition?States

    2.3.1 Analysis of Imaginary Vibrating Frequency

    In this section, we discussed about vibrating frequency of transition states to confirm active sites. We employed the DFT calculations to explore active sites among catalyst, EI and enolic Nu. According to the results of calculations, the values of vibrating frequency of reactants, intermediates (int.1 and int.2) and products are positive, which demonstrate that they are in certain area of lowest point. As for calculations for transition state (R) TS and (S) TS, both of them are equipped with unique imaginary frequency respectively. That frequency derives from H(91) atom of diethyl malonate vibration in the area between C(81) of diethyl malonate and N(58)atom of benzothiazol imine as shown in Fig.6. Consequently, by diagnosis for intensity of imaginary frequency and vibrating positions of corresponding atoms, we find out the most stable transition state.? (a)Transition state ((R)-TS)? ? ? ? ? ? ? ? ? (b)Transition state ((S)-TS)

    2.3.2 IR Vibrating Frequency

    To further validate reliability of transition state obtained, we conducted the DFT calculation for transition states (R)TS and (S)TS with moderate approach IR vibrating frequency, as shown in Fig.7 and 8. The points a, b, c, and d respectively represent maximum peaks of transition state (S)TS and (R)TS in IR vibrating intensity (shown in Tab. 1 and 2 in the supporting information).

    As for transition state (S)TS to be illustrated, at the point of a, it indicates that flexible vibration of proton H(25) originated form chiral quinine oriented to N(57) atom of benzothiazol imines. At the point of b, it identifies that flexible vibration of enolic diethyl malonate’s proton H(90) oriented to tertiary amine N(1) of quinine. All of data demonstrate that both of hydroxyl and tertiary amine N (1) from chiral quinine are active sites relying on strong flexible vibration of hydrogen bonding interaction. At the point of c, it agrees to flexible vibration of C(56)—N(58) and C(56)—N(57); At d point, it promises flexible vibration of C(80)—O(79). In both of c and d points data, the hydroxyl O(12)—H(25) and tertiary amine N (1) attained from chiral quinine regarded as the active sites are affirmative further. Vibrating diagnosis for transition state (R)TS is similar to that of transition state (S)TS.

    2.3.3 Main Parameters and Reaction Mechanism of Transition State Molecules? Via the DFT calculation, we successfully confirmed the most stable transition sate of catalyst-substrates complexes through hydrogen bonding interaction. Theoretical calculation predicted that the stable transition state (R)TS and (S)TS are involved in formation of hydrogen bonds among Cat, EI and enolic Nu. In term of transition state (S)TS, the calculating bonding length of hydrogen bond N(1)—H(90)—O(79) is 2.725 ?; the angle of ∠N(1)—H(90)—O(79) is 157.7°, which represents strong hydrogen bond existed between tertiary amine of chiral quinine and enolic isomer of diethyl malonate. The calculating bonding length of hydrogen bond O(12)—H(25)—N(57) is 2.806 ?; the angle of ∠O(12)—H(25)—N(57) is 156.6°, that is, the information indicates formation of strong hydrogen bond. After combination among Cat, EI and Nu by hydrogen bonds, the length of diethyl malonate C(80)—C(81) is increased from 1.355 ? to 1.454 ? that achieves the range of C—C single bond’s formation. Simultaneously, C(81) of diethyl malonate attacked to C(59) of benzothiazol imine to form C—C single bond with the bonding length 1.552 ?. The double bond length between N(58)—C(59) is increased from 1.274 ? to 1.469 ?, which reached the range of C—N single bond formation. The proton H(91) placed in the middle of C(81) and N(58) produces vibration. The distance of C(81)—H(91) and N(58)—H(91) are 1.404 ? and 1.329 ? respectively; the angle of ∠N(58)—H(91)—C(81) is 111.0° in Fig.9.

    The diagnosis of transition state (R)TS is similar to that of transition state (S)TS. The hydrogen bonding length N(1)—H(90)—O(79) is 2.774 ?, close to that of O(12)—H(90)—N(57) with 2.724 ?. Both of corresponding angles ∠N(1)—H(90)—O(79) and ∠O(12)—H(25)—N(57) are 157.6° and 170.6° respectively.

    2.4 Result of IRC Analysis

    To illustrate reacting mechanism with transition state, we applied the method of IRC to explore further relationship among reactant, transition state and product at the same level of basis set as shown in Fig.10 and 11.

    a is beginning state of reaction; b is transition state; c is terminal state of reaction

    IRC approach is applied to kinetic diagnosis for each state in the whole reacting process, equipped with relative data on bond length and bond angle in Fig.12 or 13.

    3 Conclusions

    In this paper, we have investigated mechanism of asymmetric Mannich reaction of benzothiazol-β-amino esters catalyzed by chiral quinine organocatalyst (Cat). The main conclusions drawn from our investigation are summarized as follows:

    1) Chiral quinine organocatalyst containing four chiral carbons performed specific geometry, that is the determination of geometric product.

    2)Via DFT calculation for transition state, the active sites of chiral quinine organocatalyst are hydroxyl and tertiary amine, which had been confirmed.

    3)To investigate further reacting mechanism of Mannich reaction in the presence of chiral quinine organocatalyst: Firstly, diethyl malonate is converted into its enolic isomer as nucleophile to be hydrogen bonding donor, and then it is combined with tertiary amine of quinine organocatalyst through hydrogen bond. At the same time, benzothiazol imine N (57) is connected to hydroxyl of chiral quinine organocatalyst by hydrogen bond to collide with diethyl malonate combined with tertiary amine of chiral quinine organocatalyst by hydrogen bond to afford relating optical product.

    4)Since transition state (S)TS is lower than (R)TS in energy, the product is obtained mainly with S configuration.

    5)Controlling reacting temperature is one of the important factors for increasing distereoselectivity. Beforehand assuring reacting rate, the lower temperature is going on, the more enantio-and distereoselectivity are upgraded.

    Acknowledgments:We are grateful for financial support from the Science Foundation of Guizhou Province([2017]1028). We also acknowledge the key surper-computing chemistry lab of Guizhou Province.

    References:

    [1]ZHU J L, ZHANG Y, LIU C, et al. Insights into the dual activation mechanism involving bifunctional cinchona alkaloid thiourea organocatalysts: an NMR and DFT study[J]. The Journal of organic chemistry, 2012,77(21):9813-25.

    [2] CHAUHAN P, CHIMNI S S. Asymmetric addition of indoles to isatins catalysed by bifunctional modified cinchona alkaloid catalysts[J]. Chemistry-A European Journal, 2010,16(26): 7709-13.

    [3] ALESSIO R, ALESSANDRA L. Asymmetric organoca

    talytic conjugate addition of diarylphosphane oxides to chalcones[J]. European Journal of Organic Chemistry, 2010, 2010(35):6736-6739.

    [4] BUSYGIN I, NIEMINEN V, TASKINEN A, et al. A combined NMR, DFT, and X-ray investigation of some cinchona alkaloid O-ethers[J]. The Journal of organic chemistry, 2008,73(17):6559-69.

    [5] WANG W, ZHANG G P, SONG B A, et al. Synthesis and anti-tobacco mosaic virus activity of O,O'-Dialkyl-a-(substituted benzothiazol-2-yl)amino-(substituted phenyl

    methy1)phosphonate[J]. Chin J Org Chem, 2007, 27(2): 279-284.

    [6] LONG N, CAI X J, SONG B A, et al. Synthesis and antiviral activities of cyanoacrylate derivatives containing an α-aminophosphonate moiety[J]. J Agric Food Chem, 2008, 56: 5242-5246.

    [7] HU D Y, WAN Q Q, YANG S, et al. Synthesis and antiviral activities of amide derivatives containing the α-aminophosphonate moiety[J]. J Agric Food Chem, 2008, 56(3): 998-1001.

    [8] LI L, SONG B A, BHADURY P S, et al. Enantioselective synthesis of β-amino esters bearing a benzothiazole moiety via a Mannich-type reaction catalyzed by a cinchona alkaloid derivative[J]. Eur J Org Chem, 2011: 4743-4746.

    [9] BAI S, LIANG X P, SONG B A, et al.Asymmetric Mannich reactions catalyzed by cinchona alkaloid thiourea: enantioselective one-pot synthesis of novel β-amino ester derivatives[J]. Tetra: Asym, 2011, 22: 518-523.

    [10]McLean A D, Chandler G S.Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18[J].J Chem Phys, 1980, 72: 5639-5648.

    [11]RAGHAVACHARI K, BINKLEY J S, SEEGER R, et al.Self-consistent molecular orbital methods. 20. basis set for correlated wave-functions[J].J Chem Phys, 1980, 72: 650-54.

    [12]TUMA C, BOESE A D, HANDY N C.Predicting the binding energies of H-bonded complexes:a comparative DFT study[J]. Phys Chem Chem Phys, 1999,1: 3939-3947.

    [13]RABUCK A D, SCUSERIA G E. Performance of recently developed kinetic energy density functionals for the calculation of hydrogen binding strengths and hydrogen-bonded structures[J].Theor Chem Ace, 2000, 104: 439-444.

    [14]SHERER E C, YORK D M, CRAMER C J. Fast approximate methods for calculating nucleic acid base pair interaction energies[J]. J Comput Chem, 2003, 24: 57-67.

    [15]XU X, GODDARD W A. Bonding properties of the water dimer: a comparative study of density functional theories[J].J Phys Chem, 2004, 108: 2305-2313.

    [16]ZHAO Y, TRUHLAR D G. Benchmark databases for nonbonded interactions and their use to test density functional theory[J].J Chem Theory Comput, 2005, 1: 415-432.

    [17]SUN T, WANG Y B. Calculation of the binding energies of diferent types of hydrogen bonds using GGA density functional and its long-range,empirical dispersion correction methods[J]. Acta Phys-Chim Sin, 2011, 27(11): 2553-2558.

    [18]FUKUI K. The path of chemical-reactions-the IRC approach[J]. Acc Chem Res, 1981, 14: 363-68.

    [19]HRATCHIAN H P, SCHLEGEL H B. Accurate reaction paths using a hessian based predictor-corrector integrator[J]. J Chem Phys, 2004, 120: 9918-24.

    [20]FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, SCALMANI G, BARONE V, MENNUCCI B, PETERSSON G A, NAKATSUJI H, CARICATO M, LI X, HRATCHIAN H P, IZMAYLOV A F, BLOINO J, ZHENG G, SONNENBERG J L, HADA M, EHARA M, TOYOTA K, FUKUDA R, HASEGAWA J, ISHIDA M, NAKAJIMA T, HONDA Y, KITAO O, NAKAI H, VREVEN T, MONTGOMERY J A, PERALTA J E, OGLIARO F, BEARPARK M, HEYD J J, BROTHERS E, KUDIN K N, STAROVEROV V N, KOBAYASHI R, NORMAND J, RAGHAVACHARI K, RENDELL A, BURANT J C, IYENGAR S S, TOMASI J, COSSI M, REGA N, MILLAM J M, KLENE M, KNOX J E, CROSS J B, BAKKEN V, ADAMO C, JARAMILLO J, GOMPERTS R, STRATMANN R E, YAZYEV O, AUSTIN A J, CAMMI R, POMELLI C, OCHTERSKI J W, MARTIN R L, MOROKUMA K, ZAKRZEWSKI V G, VOTH G A, SALVADOR P, DANNENBERG J J, S DAPPRICH, A D DANIELS, O FARKAS, J B FORESMAN J V, CIOSLOWSKI O J, FOX D J. Gaussian 09(Revision A.02),Gaussian, Inc., Wallingford CT,2009.

    (責(zé)任編輯:于慧梅)

    作者簡(jiǎn)介:謝承衛(wèi)(1964—),男,教授,博士,研究方向:手性合成反應(yīng)機(jī)理,E-mail:cwxie@gzu.edu.cn.

    通訊作者:謝承衛(wèi),E-mail:cwxie@gzu.edu.cn.

    奎寧手性催化合成苯并噻唑氨基酸酯反應(yīng)機(jī)理研究

    摘 要:苯并噻唑-β-氨基酸酯不對(duì)稱Mannich反應(yīng)研究,對(duì)尋找具有良好生物活性的對(duì)映異構(gòu)體具有重要意義。本文采用高精度量化計(jì)算和試驗(yàn)相結(jié)合的方法,研究了奎寧手性催化合成苯并噻唑-β-氨基酸酯的Mannich反應(yīng)機(jī)理。利用密度泛函理論(DFT)M06-2X方法,溶劑采用CPCM模型,在6-311G(d,p)基組水平上,對(duì)反應(yīng)的過渡態(tài)TS(S,R)進(jìn)行了詳細(xì)的研究。結(jié)果表明,奎寧手性催化作用位點(diǎn)有兩個(gè),分別形成O(12)—H(25)—N(57)和N(1)—H(90)—O(79) 氫鍵。通過過渡態(tài)紅外振動(dòng)頻率計(jì)算與分析進(jìn)一步驗(yàn)證了過渡態(tài)的準(zhǔn)確性。計(jì)算結(jié)果與試驗(yàn)結(jié)果能很好吻合,反應(yīng)體系的溫度是提高立體選擇性的關(guān)鍵因素之一,溫度越低立體選擇性越好。

    關(guān)鍵詞:奎寧;苯并噻唑-β-氨基酸酯;密度泛函;過渡態(tài);反應(yīng)機(jī)理

    精品午夜福利视频在线观看一区| 一级作爱视频免费观看| 草草在线视频免费看| 日韩中字成人| 国产男靠女视频免费网站| 免费在线观看影片大全网站| 一本一本综合久久| 久久久久免费精品人妻一区二区| 久久久久国内视频| 人人妻人人澡欧美一区二区| 国产激情偷乱视频一区二区| 日本免费a在线| 又爽又黄a免费视频| 国产人妻一区二区三区在| 欧美成狂野欧美在线观看| 国产伦人伦偷精品视频| www日本黄色视频网| 搞女人的毛片| 夜夜夜夜夜久久久久| 欧美成人a在线观看| 中文在线观看免费www的网站| 少妇丰满av| 脱女人内裤的视频| 欧美日韩福利视频一区二区| 国产av在哪里看| 99久国产av精品| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩无卡精品| 我要看日韩黄色一级片| 久久国产精品人妻蜜桃| 国产av不卡久久| 中出人妻视频一区二区| 精品午夜福利视频在线观看一区| 日本三级黄在线观看| 老女人水多毛片| 国产精品电影一区二区三区| 人人妻人人澡欧美一区二区| 日本免费a在线| 天堂动漫精品| 美女免费视频网站| 波野结衣二区三区在线| 亚洲中文日韩欧美视频| 亚洲第一电影网av| 国产高清三级在线| 99久久久亚洲精品蜜臀av| 色尼玛亚洲综合影院| 免费观看的影片在线观看| 麻豆国产av国片精品| 国产成人aa在线观看| 97超级碰碰碰精品色视频在线观看| 久久午夜福利片| 国产精华一区二区三区| 国内久久婷婷六月综合欲色啪| av天堂中文字幕网| 亚洲无线观看免费| 国产精品98久久久久久宅男小说| 黄色日韩在线| 一级黄色大片毛片| 精品不卡国产一区二区三区| 最新在线观看一区二区三区| 黄色视频,在线免费观看| 淫秽高清视频在线观看| 国产黄a三级三级三级人| 久久这里只有精品中国| 国产不卡一卡二| 亚洲美女视频黄频| 欧美在线黄色| 国产高清视频在线播放一区| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看日本一区| 亚洲综合色惰| 日韩中字成人| 男女下面进入的视频免费午夜| av中文乱码字幕在线| 国产三级中文精品| 久久精品人妻少妇| 亚洲欧美日韩无卡精品| 国内揄拍国产精品人妻在线| 男女下面进入的视频免费午夜| 亚洲激情在线av| 宅男免费午夜| 日韩国内少妇激情av| 午夜福利在线观看吧| 国产主播在线观看一区二区| 99热精品在线国产| 很黄的视频免费| 亚洲人成伊人成综合网2020| 国产高清有码在线观看视频| 亚洲第一电影网av| 丝袜美腿在线中文| 国产精品电影一区二区三区| 日本与韩国留学比较| 九色国产91popny在线| 毛片女人毛片| 国产午夜福利久久久久久| 日日摸夜夜添夜夜添av毛片 | 午夜福利在线观看免费完整高清在 | 欧美成狂野欧美在线观看| 国产精品伦人一区二区| 国产精品自产拍在线观看55亚洲| 91麻豆精品激情在线观看国产| 99久久无色码亚洲精品果冻| 午夜福利在线在线| 免费观看的影片在线观看| 男女做爰动态图高潮gif福利片| 国内精品久久久久精免费| 亚洲欧美日韩卡通动漫| 免费av观看视频| 国内精品久久久久久久电影| 精品不卡国产一区二区三区| 国产高清三级在线| 日韩有码中文字幕| 亚洲av免费高清在线观看| 亚洲aⅴ乱码一区二区在线播放| 精品乱码久久久久久99久播| 夜夜躁狠狠躁天天躁| 99热这里只有精品一区| 在线看三级毛片| 最近最新免费中文字幕在线| 毛片一级片免费看久久久久 | 亚洲aⅴ乱码一区二区在线播放| 一边摸一边抽搐一进一小说| 看十八女毛片水多多多| 国产精品一区二区免费欧美| 毛片女人毛片| 国产精品三级大全| 欧美乱色亚洲激情| 亚洲精华国产精华精| 午夜福利欧美成人| 欧美日本视频| 久久6这里有精品| 麻豆国产97在线/欧美| 搡老妇女老女人老熟妇| 最近视频中文字幕2019在线8| 午夜亚洲福利在线播放| 91在线精品国自产拍蜜月| 深爱激情五月婷婷| 亚洲成人精品中文字幕电影| 午夜激情欧美在线| ponron亚洲| 国产一区二区在线观看日韩| 亚洲中文字幕一区二区三区有码在线看| 怎么达到女性高潮| 国产成人影院久久av| 国产精品av视频在线免费观看| 97碰自拍视频| 国产免费一级a男人的天堂| 国产又黄又爽又无遮挡在线| 中文字幕免费在线视频6| 床上黄色一级片| 亚洲午夜理论影院| 欧美激情久久久久久爽电影| 91久久精品电影网| 欧美色欧美亚洲另类二区| 亚洲av成人不卡在线观看播放网| 在线a可以看的网站| 免费av观看视频| 亚洲精品456在线播放app | 99久久久亚洲精品蜜臀av| 午夜日韩欧美国产| 男人狂女人下面高潮的视频| 久久人人精品亚洲av| 好看av亚洲va欧美ⅴa在| av国产免费在线观看| 热99re8久久精品国产| 免费黄网站久久成人精品 | 激情在线观看视频在线高清| 国产在视频线在精品| 无人区码免费观看不卡| 高清在线国产一区| 亚洲久久久久久中文字幕| 国产精品日韩av在线免费观看| 精品久久久久久久久av| 国产精品爽爽va在线观看网站| 午夜激情福利司机影院| 香蕉av资源在线| av国产免费在线观看| 12—13女人毛片做爰片一| 悠悠久久av| 一个人看的www免费观看视频| 99热精品在线国产| 日韩av在线大香蕉| 我要搜黄色片| 国产一区二区三区在线臀色熟女| 18美女黄网站色大片免费观看| 观看免费一级毛片| 天堂av国产一区二区熟女人妻| 欧美日韩瑟瑟在线播放| 精品一区二区三区视频在线观看免费| 99久久99久久久精品蜜桃| 国产伦在线观看视频一区| 97超视频在线观看视频| 嫩草影院新地址| 性插视频无遮挡在线免费观看| 国产私拍福利视频在线观看| 久久久久久久午夜电影| 俄罗斯特黄特色一大片| 亚洲五月婷婷丁香| 中出人妻视频一区二区| 男女那种视频在线观看| 欧美一区二区精品小视频在线| 国产激情偷乱视频一区二区| 99热精品在线国产| 国产熟女xx| 波野结衣二区三区在线| av在线观看视频网站免费| 在线观看一区二区三区| 亚洲激情在线av| 听说在线观看完整版免费高清| 亚洲国产精品成人综合色| 成年女人毛片免费观看观看9| 9191精品国产免费久久| 国产精品乱码一区二三区的特点| 动漫黄色视频在线观看| 2021天堂中文幕一二区在线观| 97超视频在线观看视频| 偷拍熟女少妇极品色| 亚洲无线在线观看| 国模一区二区三区四区视频| 一进一出抽搐动态| 一本精品99久久精品77| 在线观看舔阴道视频| av福利片在线观看| 午夜福利在线在线| 国产高清视频在线观看网站| 亚洲在线自拍视频| 嫁个100分男人电影在线观看| 亚洲成人久久爱视频| 老女人水多毛片| 白带黄色成豆腐渣| 日韩精品青青久久久久久| 国产真实伦视频高清在线观看 | 看黄色毛片网站| av天堂中文字幕网| 午夜免费成人在线视频| 欧美黄色片欧美黄色片| 少妇裸体淫交视频免费看高清| 97热精品久久久久久| 两人在一起打扑克的视频| 亚洲在线自拍视频| 网址你懂的国产日韩在线| 中文字幕av成人在线电影| av欧美777| 国产精品自产拍在线观看55亚洲| 嫁个100分男人电影在线观看| 国产日本99.免费观看| 日本三级黄在线观看| 国产伦精品一区二区三区四那| 两性午夜刺激爽爽歪歪视频在线观看| 三级男女做爰猛烈吃奶摸视频| 国产一级毛片七仙女欲春2| 夜夜躁狠狠躁天天躁| 国产在线男女| 亚洲中文字幕一区二区三区有码在线看| 少妇被粗大猛烈的视频| 免费大片18禁| 久久久久性生活片| 日日摸夜夜添夜夜添小说| 97超视频在线观看视频| 亚洲18禁久久av| 免费人成视频x8x8入口观看| 成年女人毛片免费观看观看9| 亚洲午夜理论影院| 美女大奶头视频| 90打野战视频偷拍视频| 最近在线观看免费完整版| 亚洲天堂国产精品一区在线| av天堂中文字幕网| 亚洲综合色惰| 最近最新免费中文字幕在线| 欧美3d第一页| 欧美+日韩+精品| 99国产极品粉嫩在线观看| 久久精品影院6| 日韩亚洲欧美综合| 日韩亚洲欧美综合| 一夜夜www| 亚洲欧美激情综合另类| av专区在线播放| 成人av一区二区三区在线看| 精品乱码久久久久久99久播| 最近最新免费中文字幕在线| 午夜福利成人在线免费观看| 国内精品一区二区在线观看| 亚洲成人精品中文字幕电影| 午夜福利免费观看在线| 国产淫片久久久久久久久 | 99热这里只有精品一区| 激情在线观看视频在线高清| 精品人妻视频免费看| 中文字幕熟女人妻在线| 能在线免费观看的黄片| 看免费av毛片| 国产午夜福利久久久久久| 亚洲av美国av| 给我免费播放毛片高清在线观看| 欧美极品一区二区三区四区| 波多野结衣巨乳人妻| 亚洲 国产 在线| 搡老岳熟女国产| 国产精品爽爽va在线观看网站| 午夜激情福利司机影院| 成人永久免费在线观看视频| 神马国产精品三级电影在线观看| 国产精品一区二区三区四区久久| 怎么达到女性高潮| 亚洲五月天丁香| 亚洲不卡免费看| 国产亚洲精品av在线| av天堂在线播放| 丰满乱子伦码专区| bbb黄色大片| 丁香六月欧美| 一进一出抽搐gif免费好疼| 久久久久亚洲av毛片大全| 美女高潮喷水抽搐中文字幕| 日本一二三区视频观看| 久久伊人香网站| av天堂中文字幕网| 国产91精品成人一区二区三区| 51午夜福利影视在线观看| 午夜福利成人在线免费观看| 久久久久国产精品人妻aⅴ院| 午夜福利18| 深爱激情五月婷婷| 亚洲人成网站高清观看| 看黄色毛片网站| 亚洲真实伦在线观看| 欧美性猛交╳xxx乱大交人| 亚洲人与动物交配视频| 国产色婷婷99| 色哟哟哟哟哟哟| 深夜精品福利| 一本一本综合久久| 18+在线观看网站| av天堂在线播放| 成人午夜高清在线视频| 丰满人妻熟妇乱又伦精品不卡| 国产精品国产高清国产av| 亚洲欧美日韩无卡精品| 成人午夜高清在线视频| 精品日产1卡2卡| 中文字幕av在线有码专区| 欧美3d第一页| x7x7x7水蜜桃| 久久精品国产亚洲av涩爱 | 亚洲av成人av| 不卡一级毛片| 美女高潮喷水抽搐中文字幕| 性色avwww在线观看| 天堂影院成人在线观看| 一个人看的www免费观看视频| 中文字幕人成人乱码亚洲影| 久久6这里有精品| 国产日本99.免费观看| 成人欧美大片| 人妻夜夜爽99麻豆av| 在线免费观看的www视频| 18美女黄网站色大片免费观看| 亚洲人成网站在线播| 99国产精品一区二区三区| 日韩成人在线观看一区二区三区| 九九热线精品视视频播放| 亚洲最大成人手机在线| 日本一本二区三区精品| 精品一区二区三区视频在线观看免费| 美女黄网站色视频| 美女cb高潮喷水在线观看| 国产 一区 欧美 日韩| 久久人妻av系列| av天堂中文字幕网| 变态另类成人亚洲欧美熟女| 国产精品久久久久久亚洲av鲁大| 成人特级av手机在线观看| 国产中年淑女户外野战色| 中文字幕av在线有码专区| 国产乱人视频| 亚洲最大成人av| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品综合一区在线观看| 日本免费一区二区三区高清不卡| 丰满乱子伦码专区| 欧美色欧美亚洲另类二区| 色5月婷婷丁香| 国产午夜精品久久久久久一区二区三区 | 国产高清视频在线播放一区| 精品免费久久久久久久清纯| 夜夜躁狠狠躁天天躁| 成人国产一区最新在线观看| 亚洲黑人精品在线| 天堂网av新在线| 色哟哟哟哟哟哟| 天堂√8在线中文| 亚洲精华国产精华精| 男女那种视频在线观看| 亚洲电影在线观看av| 亚洲av成人av| 在线看三级毛片| 国语自产精品视频在线第100页| 精品乱码久久久久久99久播| 亚洲国产色片| 免费av观看视频| 午夜福利欧美成人| 91在线观看av| 久久精品国产亚洲av天美| 变态另类成人亚洲欧美熟女| 国产成人福利小说| 中亚洲国语对白在线视频| 国内精品久久久久精免费| 免费看a级黄色片| 男女视频在线观看网站免费| 十八禁国产超污无遮挡网站| 好男人电影高清在线观看| 亚洲av一区综合| 久久久久精品国产欧美久久久| 成年女人看的毛片在线观看| 亚洲av日韩精品久久久久久密| 99热这里只有是精品在线观看 | 国产爱豆传媒在线观看| 久久久精品欧美日韩精品| 婷婷丁香在线五月| 亚洲国产高清在线一区二区三| 我要看日韩黄色一级片| 久久久精品大字幕| 搡女人真爽免费视频火全软件 | 午夜久久久久精精品| 此物有八面人人有两片| 亚洲精品影视一区二区三区av| 99精品在免费线老司机午夜| 男女下面进入的视频免费午夜| 免费观看的影片在线观看| 国模一区二区三区四区视频| 久久久久性生活片| 成人国产综合亚洲| 99热只有精品国产| 少妇人妻精品综合一区二区 | 老司机午夜十八禁免费视频| 757午夜福利合集在线观看| 国产精品,欧美在线| 99热6这里只有精品| 国产精品久久久久久久电影| 一个人免费在线观看的高清视频| 午夜福利成人在线免费观看| 两个人的视频大全免费| 观看美女的网站| 国产aⅴ精品一区二区三区波| 亚洲 国产 在线| 色播亚洲综合网| 精品国内亚洲2022精品成人| 午夜福利在线观看吧| 床上黄色一级片| 久久99热6这里只有精品| 激情在线观看视频在线高清| 深夜精品福利| 好男人在线观看高清免费视频| 日韩国内少妇激情av| 女生性感内裤真人,穿戴方法视频| 亚洲av不卡在线观看| 我的老师免费观看完整版| 免费大片18禁| 99久久精品一区二区三区| www.色视频.com| 国产单亲对白刺激| 久久热精品热| 啪啪无遮挡十八禁网站| 99精品久久久久人妻精品| 久久九九热精品免费| 国产免费男女视频| 欧美日韩中文字幕国产精品一区二区三区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 此物有八面人人有两片| 午夜免费激情av| 亚洲专区国产一区二区| 日本免费a在线| 99久久99久久久精品蜜桃| 国产成人福利小说| 午夜精品一区二区三区免费看| 免费av毛片视频| 好男人在线观看高清免费视频| 国产成+人综合+亚洲专区| 亚洲av日韩精品久久久久久密| 亚洲三级黄色毛片| 色综合站精品国产| 国产亚洲精品av在线| 免费观看人在逋| 亚洲成av人片在线播放无| 长腿黑丝高跟| 内地一区二区视频在线| 午夜a级毛片| 人妻久久中文字幕网| 精品人妻视频免费看| 国产亚洲欧美98| 美女cb高潮喷水在线观看| 色av中文字幕| 91av网一区二区| 亚洲久久久久久中文字幕| 亚洲国产欧洲综合997久久,| 久久久久久久久久成人| 97热精品久久久久久| 中文字幕av成人在线电影| 国产视频内射| 91麻豆精品激情在线观看国产| 日日摸夜夜添夜夜添小说| 亚洲七黄色美女视频| 亚洲 欧美 日韩 在线 免费| 色视频www国产| 极品教师在线免费播放| 啦啦啦观看免费观看视频高清| 听说在线观看完整版免费高清| 婷婷精品国产亚洲av| 久久久色成人| 日韩成人在线观看一区二区三区| 国产色爽女视频免费观看| 午夜福利免费观看在线| 欧美最新免费一区二区三区 | 人妻制服诱惑在线中文字幕| 久久性视频一级片| 久久国产乱子伦精品免费另类| 老女人水多毛片| 黄色视频,在线免费观看| 三级男女做爰猛烈吃奶摸视频| 亚洲人与动物交配视频| 日本 av在线| 脱女人内裤的视频| 99国产精品一区二区蜜桃av| 欧美日韩中文字幕国产精品一区二区三区| 成年版毛片免费区| 欧美xxxx性猛交bbbb| 少妇被粗大猛烈的视频| 日日夜夜操网爽| 丝袜美腿在线中文| 亚洲专区中文字幕在线| 亚洲avbb在线观看| 欧美一区二区国产精品久久精品| 国语自产精品视频在线第100页| 熟女人妻精品中文字幕| www日本黄色视频网| 99热精品在线国产| 亚洲黑人精品在线| 亚洲av成人不卡在线观看播放网| 精品久久久久久久久久久久久| 噜噜噜噜噜久久久久久91| 国产精品98久久久久久宅男小说| 非洲黑人性xxxx精品又粗又长| 丰满的人妻完整版| 搡老熟女国产l中国老女人| 一边摸一边抽搐一进一小说| 人人妻人人澡欧美一区二区| 国产在线精品亚洲第一网站| 最近中文字幕高清免费大全6 | 婷婷精品国产亚洲av在线| 亚洲不卡免费看| 首页视频小说图片口味搜索| 婷婷色综合大香蕉| 啦啦啦韩国在线观看视频| 嫩草影院新地址| 每晚都被弄得嗷嗷叫到高潮| 人妻久久中文字幕网| 国产三级黄色录像| 久久国产精品影院| 欧美黄色淫秽网站| 久久精品影院6| 白带黄色成豆腐渣| 精品无人区乱码1区二区| 午夜福利欧美成人| 亚洲性夜色夜夜综合| 亚洲欧美日韩高清在线视频| 三级男女做爰猛烈吃奶摸视频| 亚洲精品久久国产高清桃花| 亚洲第一区二区三区不卡| 亚洲av免费高清在线观看| 好男人电影高清在线观看| 长腿黑丝高跟| 免费观看人在逋| 欧美绝顶高潮抽搐喷水| 亚洲精品影视一区二区三区av| 女同久久另类99精品国产91| 国产欧美日韩一区二区精品| 神马国产精品三级电影在线观看| 亚洲欧美精品综合久久99| 久久这里只有精品中国| 99久久成人亚洲精品观看| 舔av片在线| 亚洲中文字幕一区二区三区有码在线看| 精品日产1卡2卡| 淫秽高清视频在线观看| 亚洲电影在线观看av| 色av中文字幕| 亚洲狠狠婷婷综合久久图片| 国产亚洲精品久久久久久毛片| 久久草成人影院| 久久久久久久午夜电影| 一区二区三区激情视频| 亚洲av电影不卡..在线观看| 欧美一区二区国产精品久久精品| 中文亚洲av片在线观看爽| 又爽又黄无遮挡网站| 国产三级黄色录像| 午夜两性在线视频| 欧美极品一区二区三区四区| 久久久精品欧美日韩精品| 色哟哟哟哟哟哟| 色尼玛亚洲综合影院| 男女视频在线观看网站免费| 国产探花极品一区二区| 51国产日韩欧美| 深夜精品福利| 亚洲经典国产精华液单 | 国产一区二区三区视频了| 蜜桃久久精品国产亚洲av| 国产精品精品国产色婷婷| 1000部很黄的大片| 国产av一区在线观看免费| 91在线精品国自产拍蜜月| 国产精品久久久久久亚洲av鲁大|