• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    奎寧手性催化合成苯并噻唑氨基酸酯反應(yīng)機(jī)理研究

    2021-01-13 05:04謝承衛(wèi)高弦

    謝承衛(wèi) 高弦

    Abstract: The dissymmetric Mannich reaction of benzothiazol-β-amino esters is of great importance for exploring effective enantioisomer with good bioactivity. The mechanism for Mannich reaction of benzothiazol-β-amino esters catalyzed by simple chiral quinine organocatalyst was investigated through a combination of experiment with theoretical approaches (DFT). With solvent effect taken into consideration, transition states TS (S or R) were confirmed with potent strategy of hybrid density functional M06-2X at the level of 6-311G(d, p) basis set. The key feature of dual activation mechanism lies in the formation of one hydrogen bond O (12)—H (25)—N (57) related to quinine hydroxyl (Cat) and benzothiazol imines (EI) N (57) and the other hydrogen bond N(1)—H(90)—O(79) formation related to tertiary amine of quinine (Cat), by which diethyl malonate is able to be activated into enolic Nu simultaneously. The result obtained through energetic calculation was identified further by IR vibrating frequency to convince of transition state attained to be accurate. As a comparison of (R)TS pathway with (S)TS pathway in potential energy profile, it enables to elaborate that (S) TS pathway executes to afford unique enantioisomer (S). At the same time, one of reacting factors was optimized for increasing enantio-and distereoselectivity using DFT calculations, that is reacting temperature. The lower the temperature is going on, the more the enantio-and distereoselectivity are upgraded.

    Key words: chiral quinine; benzothiazol-β-amino esters; DFT; transition state; mechanism

    中圖分類號(hào):O643.3? 文獻(xiàn)標(biāo)志碼:A

    基金項(xiàng)目:貴州省自然科學(xué)基金資助項(xiàng)目([2017]1028)

    Dissymmetric organocatalysis has been exploited as a potent approach for the various synthesis of chiral compounds. Design, application and mechanistic investigation on new activation modes (such as enamine, iminium, and hydrogen bonding catalysis) have dramatically advanced the development in this field[1-3]. In 2010, the highly enantioselective organocatalytic Friedel-Crafts-type addition of indole to isatin catalyzed by cinchona alkaloid derivatives was reported by CHAUHAN and co-worker[2]. This group also had proposed rational mechanism relying on hydrogen bonding interaction. In the following year, ALESSIO and ALESSANDRA[3] used unmodified cinchona alkaloid as organocatalyst to asymmetric conjugate addition of diarylphosphane oxides to chalcones with good yield and up to 89% ee. It’s worthy to note that, since entering modern era, computation science has been developed fast, computational calculation has been serving as a reliable strategy for analyzing reacting mechanism instead of traditional theoretic inference. To the best of our knowledge, mechanism plays an important role in dissymmetric transformation. Mechanism as theoretic guidance explains detail process for reactions in functionality. In 2012, ZHU and co-workers[1] investigated on dual activation mechanism for the direct vinylogous Michael reaction of α, β-unsaturated γ-butyrolactam and chalcone catalyzed by the bifunctional cinchona alkaloid thiourea orgnaocatalysts by NMR and DFT calculations, which stated N-HB bond of thiourea moiety activating EI was weaker than both of N-H bond of protonated amine and N-HA bond of thiourea moiety activating Nu to gain agreeable results via theory calculation. In 2008, BUSYGIN and co-workers[4] explored some cinchona alkaloid o-ethers conformation by means of combining methods NMR, DFT and X-ray.

    Benzothiazol-β-amino esters, acted as β-amino acids derivatives, perform excellent bioactivity in antibacterial and antivirus[5-7]. To gain highly and purely optical single enantioisomer of benzothiazol-β-amino esters with simple organocatalyst, recently, the development for an classic Mannich reaction of diethyl malonate (Nu) with benzothiazol imine (EI) in the presence of cinchona alkaloid derivatives as organocatalyst, including chiral quinine organocatalyst, cinchona alkaloid thiourea organocatalyst was reported by LI and BAI[8-9] with good enatioselectivity of up to 81%~99% ee. In this paper, we carry out mechanistic investigation on representative example (Scheme 1) of this reaction via experiment and theoretic approaches (DFT). Through analyzing potential energy profile of transition state, the most stable transition state is confirmed to get preferable pathway for this reaction. To obtain more reliability for revealing truly reacting process, we originally applied the newly method M06-2X to the calculation of potential energy, bond-length, and hydrogen-bonding intensity at the level of 6-311G(d, p) basis set to confirm the most transition state in asymmetric organocatalysis.

    1 Materials and methods

    1.1 Experimental Section

    Scheme 1. Asymmetric Mannich reaction of benzothiazol-β-amino esters catalyzed by chiral quinine

    To solute the benzothiazol imine (1.0 mmol) in DCM (3.0 mL) chiral quinine catalyst, loading equivalent 10 mol% was added to stir at room temperature. After 5 min, diethyl malonate (1.2 mmol) was put into reacting system dropwise and keeping stirring for 72~96 h. After working up, target compound was separated and purified by column chromatography with hexane/ethyl acetate=5/1 to 3/1 as elute.

    1.2 Computational Methods

    In depth to understanding the real reacting process, all geometry structures of Cat, two substrates(Nu and EI)were first optimized completely with the moderate 6-311G(d, p) basis set in the gas phase. Quantum chemical calculations were exhibited by means of the hybrid density functional approach M06-2X in the Gaussian 09 program suite. The reacting transition states were confirmed by calculating its vibrating frequency at the same level of 6-311G(d,p) basis set as implemented[10-11]. As a result of calculating inaccuracy for hydrogen bonding interaction of catalyst with substrates by employing hybrid density functional method B3LYP[12-16], a method M06-2X was utilized further to improve calculating accuracy for hydrogen bonding interaction in variable molecular system with moderate 6-311G(d,p) basis set.With effect of DCM as solvent,CPCM polarization continuum model[17] was used. Afterward, frequency calculation were performed at the same level of 6-311G(d, p) basis set as the geometry optimizations to confirm the minimum and transition state (TS) structure (zero and only one imaginary frequency respectively), and then to ascertain activating combination of catalyst with substrates that is involved in calculation for all saddles placed on potential energy surface in frequency. Intrinsic reaction coordinates (IRC)[18-19] were employed for monitoring progress of reaction, verifying formation of transition state, so that all saddle points were connected to reactant and product at the same level of basis set. Finally, the energy data were derived from moderate approach M06-2X/6-311G(d,p), including the zero-point energy (ZPE) correction from frequency calculation and the solvent CH2Cl2 effect(CPCM). All of structure images were generated using Gaussian 09 program suite[20]. All of the bond lengths are in angstroms (A), and the energies are in kJ/mol.

    2 Results and Discussion

    2.1 Molecular Structures of Substrates

    The formation of hydrogen bonds among Cat, Nu and EI in distereoselectivity is regarded as a predominant feature. Once the combination of catalyst with substrates through hydrogen bonding interaction takes place, spatial orientation of collision between Nu and EI has to proceed at one direction to increase distereoselectivity in presence of chiral quinine organocatalyst. Because formation of hydrogen bonds between substrates and catalyst requires strong electronegative atoms as participants, it is a core for dissymmetric transformation. We first carried out optimization to the two substrates structure of nucleophiles and eletrophiles to afford their most stable conformations. One of substrates, diethyl malonate (Fig.1) as nucleophile containing four sorts of oxygen atoms O(3),O(4),O(8),O(9) are to be possible active sites; the other is benzothiazol imine(Fig.2)as electrophile having four strong electronegative atoms S(7),N(9),N(10),F(xiàn)(19) are also to be possible active sites. On one hand, as described in Fig.3, in the view of energy, the energy barrier of isomer ketone is almost equal to that of the other isomer enol in process of inter-conversion of diethyl malonate(△E1=39.237 kJ/mol), so it is easy to make conversion of ketone isomer of diethyl malonate into corresponding enolic isomer as intermediate state 1(int.1). The enolic isomer is able to donate an active proton, considered as a donor in the formation of hydrogen bonds. On the other hand, the structure frame of benzothiazol imine performs the most stable configuration through optimization to illustrate that it is not planar molecular, even though executing p orbits conjugation, as depicted in Fig.2.

    In addition, before benzothiazol-β-amino esters obtained, reacting substrate benzothiazol imines and diethyl malonate are allowed to afford intermediate state 2(int. 2), and then to make inter-conversion between ketone isomer and enolic isomer. The result is determined by △E(S)(-26.091 kJ/mol) or △E(R)(-55.464 kJ/mol)as shown in Fig. 4.

    2.2 Quinine Reaction Coordination

    In application of chiral quinine as organocatalyst to dissymmetric Mannich reaction of benzothiazol-β-amino esters, there are two possibilities exhibited in enantio-and distereoselcetivity. In order to directly put insight into asymmetric transformation, the calculating potential energy profiles of two pathways (S)TS and (R)TS are compared to discover more stable transition state. All energies are relevant with the total energy of the most stable conformer of Cat, EI and enolic Nu. The total energy of catalyst and reactant is 13.4 kJ/mol at the outset of reaction. The energy barrier for transition state (S) TS is 173.0 kJ/mol, lower obviously than that of (R) TS with 193.1 kJ/mol, which explicitly indicates pathway (S)TS is predominant procedure as shown in Fig.5.

    Since the active energies differ little between them, increasing the temperature would result in an accelerated rate-determining step of the pathway (R) TS, thereby reducing the distereoselectivity.Therefore, controlling reacting temperature is one of the vital factors for high distereoselectivity. The factor is completely in agreement with experimental results under reacting temperature lower than 25 ℃, product was afforded with S configuration, arriving at 79% ee.

    2.3 Violating Diagnosis and Confirmation of Transition?States

    2.3.1 Analysis of Imaginary Vibrating Frequency

    In this section, we discussed about vibrating frequency of transition states to confirm active sites. We employed the DFT calculations to explore active sites among catalyst, EI and enolic Nu. According to the results of calculations, the values of vibrating frequency of reactants, intermediates (int.1 and int.2) and products are positive, which demonstrate that they are in certain area of lowest point. As for calculations for transition state (R) TS and (S) TS, both of them are equipped with unique imaginary frequency respectively. That frequency derives from H(91) atom of diethyl malonate vibration in the area between C(81) of diethyl malonate and N(58)atom of benzothiazol imine as shown in Fig.6. Consequently, by diagnosis for intensity of imaginary frequency and vibrating positions of corresponding atoms, we find out the most stable transition state.? (a)Transition state ((R)-TS)? ? ? ? ? ? ? ? ? (b)Transition state ((S)-TS)

    2.3.2 IR Vibrating Frequency

    To further validate reliability of transition state obtained, we conducted the DFT calculation for transition states (R)TS and (S)TS with moderate approach IR vibrating frequency, as shown in Fig.7 and 8. The points a, b, c, and d respectively represent maximum peaks of transition state (S)TS and (R)TS in IR vibrating intensity (shown in Tab. 1 and 2 in the supporting information).

    As for transition state (S)TS to be illustrated, at the point of a, it indicates that flexible vibration of proton H(25) originated form chiral quinine oriented to N(57) atom of benzothiazol imines. At the point of b, it identifies that flexible vibration of enolic diethyl malonate’s proton H(90) oriented to tertiary amine N(1) of quinine. All of data demonstrate that both of hydroxyl and tertiary amine N (1) from chiral quinine are active sites relying on strong flexible vibration of hydrogen bonding interaction. At the point of c, it agrees to flexible vibration of C(56)—N(58) and C(56)—N(57); At d point, it promises flexible vibration of C(80)—O(79). In both of c and d points data, the hydroxyl O(12)—H(25) and tertiary amine N (1) attained from chiral quinine regarded as the active sites are affirmative further. Vibrating diagnosis for transition state (R)TS is similar to that of transition state (S)TS.

    2.3.3 Main Parameters and Reaction Mechanism of Transition State Molecules? Via the DFT calculation, we successfully confirmed the most stable transition sate of catalyst-substrates complexes through hydrogen bonding interaction. Theoretical calculation predicted that the stable transition state (R)TS and (S)TS are involved in formation of hydrogen bonds among Cat, EI and enolic Nu. In term of transition state (S)TS, the calculating bonding length of hydrogen bond N(1)—H(90)—O(79) is 2.725 ?; the angle of ∠N(1)—H(90)—O(79) is 157.7°, which represents strong hydrogen bond existed between tertiary amine of chiral quinine and enolic isomer of diethyl malonate. The calculating bonding length of hydrogen bond O(12)—H(25)—N(57) is 2.806 ?; the angle of ∠O(12)—H(25)—N(57) is 156.6°, that is, the information indicates formation of strong hydrogen bond. After combination among Cat, EI and Nu by hydrogen bonds, the length of diethyl malonate C(80)—C(81) is increased from 1.355 ? to 1.454 ? that achieves the range of C—C single bond’s formation. Simultaneously, C(81) of diethyl malonate attacked to C(59) of benzothiazol imine to form C—C single bond with the bonding length 1.552 ?. The double bond length between N(58)—C(59) is increased from 1.274 ? to 1.469 ?, which reached the range of C—N single bond formation. The proton H(91) placed in the middle of C(81) and N(58) produces vibration. The distance of C(81)—H(91) and N(58)—H(91) are 1.404 ? and 1.329 ? respectively; the angle of ∠N(58)—H(91)—C(81) is 111.0° in Fig.9.

    The diagnosis of transition state (R)TS is similar to that of transition state (S)TS. The hydrogen bonding length N(1)—H(90)—O(79) is 2.774 ?, close to that of O(12)—H(90)—N(57) with 2.724 ?. Both of corresponding angles ∠N(1)—H(90)—O(79) and ∠O(12)—H(25)—N(57) are 157.6° and 170.6° respectively.

    2.4 Result of IRC Analysis

    To illustrate reacting mechanism with transition state, we applied the method of IRC to explore further relationship among reactant, transition state and product at the same level of basis set as shown in Fig.10 and 11.

    a is beginning state of reaction; b is transition state; c is terminal state of reaction

    IRC approach is applied to kinetic diagnosis for each state in the whole reacting process, equipped with relative data on bond length and bond angle in Fig.12 or 13.

    3 Conclusions

    In this paper, we have investigated mechanism of asymmetric Mannich reaction of benzothiazol-β-amino esters catalyzed by chiral quinine organocatalyst (Cat). The main conclusions drawn from our investigation are summarized as follows:

    1) Chiral quinine organocatalyst containing four chiral carbons performed specific geometry, that is the determination of geometric product.

    2)Via DFT calculation for transition state, the active sites of chiral quinine organocatalyst are hydroxyl and tertiary amine, which had been confirmed.

    3)To investigate further reacting mechanism of Mannich reaction in the presence of chiral quinine organocatalyst: Firstly, diethyl malonate is converted into its enolic isomer as nucleophile to be hydrogen bonding donor, and then it is combined with tertiary amine of quinine organocatalyst through hydrogen bond. At the same time, benzothiazol imine N (57) is connected to hydroxyl of chiral quinine organocatalyst by hydrogen bond to collide with diethyl malonate combined with tertiary amine of chiral quinine organocatalyst by hydrogen bond to afford relating optical product.

    4)Since transition state (S)TS is lower than (R)TS in energy, the product is obtained mainly with S configuration.

    5)Controlling reacting temperature is one of the important factors for increasing distereoselectivity. Beforehand assuring reacting rate, the lower temperature is going on, the more enantio-and distereoselectivity are upgraded.

    Acknowledgments:We are grateful for financial support from the Science Foundation of Guizhou Province([2017]1028). We also acknowledge the key surper-computing chemistry lab of Guizhou Province.

    References:

    [1]ZHU J L, ZHANG Y, LIU C, et al. Insights into the dual activation mechanism involving bifunctional cinchona alkaloid thiourea organocatalysts: an NMR and DFT study[J]. The Journal of organic chemistry, 2012,77(21):9813-25.

    [2] CHAUHAN P, CHIMNI S S. Asymmetric addition of indoles to isatins catalysed by bifunctional modified cinchona alkaloid catalysts[J]. Chemistry-A European Journal, 2010,16(26): 7709-13.

    [3] ALESSIO R, ALESSANDRA L. Asymmetric organoca

    talytic conjugate addition of diarylphosphane oxides to chalcones[J]. European Journal of Organic Chemistry, 2010, 2010(35):6736-6739.

    [4] BUSYGIN I, NIEMINEN V, TASKINEN A, et al. A combined NMR, DFT, and X-ray investigation of some cinchona alkaloid O-ethers[J]. The Journal of organic chemistry, 2008,73(17):6559-69.

    [5] WANG W, ZHANG G P, SONG B A, et al. Synthesis and anti-tobacco mosaic virus activity of O,O'-Dialkyl-a-(substituted benzothiazol-2-yl)amino-(substituted phenyl

    methy1)phosphonate[J]. Chin J Org Chem, 2007, 27(2): 279-284.

    [6] LONG N, CAI X J, SONG B A, et al. Synthesis and antiviral activities of cyanoacrylate derivatives containing an α-aminophosphonate moiety[J]. J Agric Food Chem, 2008, 56: 5242-5246.

    [7] HU D Y, WAN Q Q, YANG S, et al. Synthesis and antiviral activities of amide derivatives containing the α-aminophosphonate moiety[J]. J Agric Food Chem, 2008, 56(3): 998-1001.

    [8] LI L, SONG B A, BHADURY P S, et al. Enantioselective synthesis of β-amino esters bearing a benzothiazole moiety via a Mannich-type reaction catalyzed by a cinchona alkaloid derivative[J]. Eur J Org Chem, 2011: 4743-4746.

    [9] BAI S, LIANG X P, SONG B A, et al.Asymmetric Mannich reactions catalyzed by cinchona alkaloid thiourea: enantioselective one-pot synthesis of novel β-amino ester derivatives[J]. Tetra: Asym, 2011, 22: 518-523.

    [10]McLean A D, Chandler G S.Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18[J].J Chem Phys, 1980, 72: 5639-5648.

    [11]RAGHAVACHARI K, BINKLEY J S, SEEGER R, et al.Self-consistent molecular orbital methods. 20. basis set for correlated wave-functions[J].J Chem Phys, 1980, 72: 650-54.

    [12]TUMA C, BOESE A D, HANDY N C.Predicting the binding energies of H-bonded complexes:a comparative DFT study[J]. Phys Chem Chem Phys, 1999,1: 3939-3947.

    [13]RABUCK A D, SCUSERIA G E. Performance of recently developed kinetic energy density functionals for the calculation of hydrogen binding strengths and hydrogen-bonded structures[J].Theor Chem Ace, 2000, 104: 439-444.

    [14]SHERER E C, YORK D M, CRAMER C J. Fast approximate methods for calculating nucleic acid base pair interaction energies[J]. J Comput Chem, 2003, 24: 57-67.

    [15]XU X, GODDARD W A. Bonding properties of the water dimer: a comparative study of density functional theories[J].J Phys Chem, 2004, 108: 2305-2313.

    [16]ZHAO Y, TRUHLAR D G. Benchmark databases for nonbonded interactions and their use to test density functional theory[J].J Chem Theory Comput, 2005, 1: 415-432.

    [17]SUN T, WANG Y B. Calculation of the binding energies of diferent types of hydrogen bonds using GGA density functional and its long-range,empirical dispersion correction methods[J]. Acta Phys-Chim Sin, 2011, 27(11): 2553-2558.

    [18]FUKUI K. The path of chemical-reactions-the IRC approach[J]. Acc Chem Res, 1981, 14: 363-68.

    [19]HRATCHIAN H P, SCHLEGEL H B. Accurate reaction paths using a hessian based predictor-corrector integrator[J]. J Chem Phys, 2004, 120: 9918-24.

    [20]FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, SCALMANI G, BARONE V, MENNUCCI B, PETERSSON G A, NAKATSUJI H, CARICATO M, LI X, HRATCHIAN H P, IZMAYLOV A F, BLOINO J, ZHENG G, SONNENBERG J L, HADA M, EHARA M, TOYOTA K, FUKUDA R, HASEGAWA J, ISHIDA M, NAKAJIMA T, HONDA Y, KITAO O, NAKAI H, VREVEN T, MONTGOMERY J A, PERALTA J E, OGLIARO F, BEARPARK M, HEYD J J, BROTHERS E, KUDIN K N, STAROVEROV V N, KOBAYASHI R, NORMAND J, RAGHAVACHARI K, RENDELL A, BURANT J C, IYENGAR S S, TOMASI J, COSSI M, REGA N, MILLAM J M, KLENE M, KNOX J E, CROSS J B, BAKKEN V, ADAMO C, JARAMILLO J, GOMPERTS R, STRATMANN R E, YAZYEV O, AUSTIN A J, CAMMI R, POMELLI C, OCHTERSKI J W, MARTIN R L, MOROKUMA K, ZAKRZEWSKI V G, VOTH G A, SALVADOR P, DANNENBERG J J, S DAPPRICH, A D DANIELS, O FARKAS, J B FORESMAN J V, CIOSLOWSKI O J, FOX D J. Gaussian 09(Revision A.02),Gaussian, Inc., Wallingford CT,2009.

    (責(zé)任編輯:于慧梅)

    作者簡(jiǎn)介:謝承衛(wèi)(1964—),男,教授,博士,研究方向:手性合成反應(yīng)機(jī)理,E-mail:cwxie@gzu.edu.cn.

    通訊作者:謝承衛(wèi),E-mail:cwxie@gzu.edu.cn.

    奎寧手性催化合成苯并噻唑氨基酸酯反應(yīng)機(jī)理研究

    摘 要:苯并噻唑-β-氨基酸酯不對(duì)稱Mannich反應(yīng)研究,對(duì)尋找具有良好生物活性的對(duì)映異構(gòu)體具有重要意義。本文采用高精度量化計(jì)算和試驗(yàn)相結(jié)合的方法,研究了奎寧手性催化合成苯并噻唑-β-氨基酸酯的Mannich反應(yīng)機(jī)理。利用密度泛函理論(DFT)M06-2X方法,溶劑采用CPCM模型,在6-311G(d,p)基組水平上,對(duì)反應(yīng)的過渡態(tài)TS(S,R)進(jìn)行了詳細(xì)的研究。結(jié)果表明,奎寧手性催化作用位點(diǎn)有兩個(gè),分別形成O(12)—H(25)—N(57)和N(1)—H(90)—O(79) 氫鍵。通過過渡態(tài)紅外振動(dòng)頻率計(jì)算與分析進(jìn)一步驗(yàn)證了過渡態(tài)的準(zhǔn)確性。計(jì)算結(jié)果與試驗(yàn)結(jié)果能很好吻合,反應(yīng)體系的溫度是提高立體選擇性的關(guān)鍵因素之一,溫度越低立體選擇性越好。

    關(guān)鍵詞:奎寧;苯并噻唑-β-氨基酸酯;密度泛函;過渡態(tài);反應(yīng)機(jī)理

    岛国毛片在线播放| av福利片在线| 成人18禁高潮啪啪吃奶动态图| 夜夜骑夜夜射夜夜干| 999精品在线视频| 久久狼人影院| 免费观看人在逋| 99热国产这里只有精品6| 亚洲国产精品一区三区| 国产精品免费视频内射| h视频一区二区三区| 中文字幕人妻丝袜制服| 女人精品久久久久毛片| av电影中文网址| 狠狠精品人妻久久久久久综合| 亚洲伊人色综图| 国产日韩欧美在线精品| 一区福利在线观看| 丝袜在线中文字幕| 久久久国产欧美日韩av| 他把我摸到了高潮在线观看 | 他把我摸到了高潮在线观看 | 国产在线观看jvid| 午夜影院在线不卡| 在线观看一区二区三区激情| 在线观看一区二区三区激情| 一区二区日韩欧美中文字幕| 欧美97在线视频| 亚洲精品久久成人aⅴ小说| 一区二区日韩欧美中文字幕| 两个人免费观看高清视频| 国产精品 欧美亚洲| 成年女人毛片免费观看观看9 | 亚洲精品一区蜜桃| 国产欧美日韩一区二区三 | 国产一区二区三区av在线| 国产欧美日韩一区二区精品| 一进一出抽搐动态| 精品欧美一区二区三区在线| 91大片在线观看| 看免费av毛片| 色播在线永久视频| 在线十欧美十亚洲十日本专区| 亚洲五月色婷婷综合| 人人妻,人人澡人人爽秒播| 国产成人系列免费观看| 人妻 亚洲 视频| 捣出白浆h1v1| 午夜福利在线免费观看网站| 51午夜福利影视在线观看| 一区在线观看完整版| 首页视频小说图片口味搜索| 国产亚洲午夜精品一区二区久久| 91大片在线观看| 一区二区三区乱码不卡18| 国产视频一区二区在线看| 欧美在线黄色| 中文字幕另类日韩欧美亚洲嫩草| 热99re8久久精品国产| 国产亚洲午夜精品一区二区久久| 在线观看免费高清a一片| 九色亚洲精品在线播放| 黄色 视频免费看| 精品视频人人做人人爽| 美女高潮喷水抽搐中文字幕| 性色av乱码一区二区三区2| 超色免费av| 免费不卡黄色视频| 中文字幕最新亚洲高清| 91九色精品人成在线观看| 少妇 在线观看| 久久人人爽人人片av| 婷婷成人精品国产| 天天躁夜夜躁狠狠躁躁| 国产野战对白在线观看| 日韩电影二区| 亚洲国产精品999| 国产三级黄色录像| 中文字幕人妻丝袜制服| 欧美xxⅹ黑人| 超色免费av| 精品一区二区三区四区五区乱码| www.精华液| 丝袜美足系列| 国产亚洲一区二区精品| av在线app专区| 亚洲久久久国产精品| www.av在线官网国产| 狂野欧美激情性bbbbbb| 悠悠久久av| av视频免费观看在线观看| 色94色欧美一区二区| 男女免费视频国产| 中亚洲国语对白在线视频| 这个男人来自地球电影免费观看| 国产熟女午夜一区二区三区| 在线观看免费午夜福利视频| 久久久久久亚洲精品国产蜜桃av| 午夜激情久久久久久久| 久久热在线av| 精品高清国产在线一区| 久久久久网色| 亚洲国产成人一精品久久久| 免费黄频网站在线观看国产| 国产又色又爽无遮挡免| 女人久久www免费人成看片| 人成视频在线观看免费观看| 国产欧美日韩综合在线一区二区| 高清在线国产一区| 夜夜骑夜夜射夜夜干| 搡老岳熟女国产| 99国产精品一区二区蜜桃av | 一区二区三区精品91| 看免费av毛片| 无遮挡黄片免费观看| 久久精品国产亚洲av高清一级| 日本猛色少妇xxxxx猛交久久| 久久国产精品影院| av有码第一页| 大码成人一级视频| 一二三四在线观看免费中文在| 热99久久久久精品小说推荐| 免费在线观看黄色视频的| 美国免费a级毛片| avwww免费| 久久久久国内视频| 国产一区二区 视频在线| 国产一级毛片在线| 在线看a的网站| 久久ye,这里只有精品| 欧美 日韩 精品 国产| 99精国产麻豆久久婷婷| 国产精品一区二区在线不卡| 亚洲av成人不卡在线观看播放网 | 亚洲精品第二区| 亚洲精品一二三| 麻豆国产av国片精品| 精品少妇内射三级| 欧美变态另类bdsm刘玥| tocl精华| 欧美激情久久久久久爽电影 | 国产熟女午夜一区二区三区| 亚洲欧美清纯卡通| 亚洲黑人精品在线| 亚洲国产精品一区三区| 涩涩av久久男人的天堂| 国产成人影院久久av| 国产日韩一区二区三区精品不卡| 伊人久久大香线蕉亚洲五| 久久中文字幕一级| 久久综合国产亚洲精品| 国产一区有黄有色的免费视频| 午夜福利在线观看吧| 人人妻人人添人人爽欧美一区卜| 91成人精品电影| av网站免费在线观看视频| 欧美大码av| 黑人巨大精品欧美一区二区蜜桃| 母亲3免费完整高清在线观看| 淫妇啪啪啪对白视频 | 69精品国产乱码久久久| 五月天丁香电影| 国产91精品成人一区二区三区 | 久久 成人 亚洲| 免费少妇av软件| 午夜福利在线观看吧| 亚洲精品av麻豆狂野| 国产成人系列免费观看| 精品熟女少妇八av免费久了| 老熟妇乱子伦视频在线观看 | 国产高清国产精品国产三级| 黑人巨大精品欧美一区二区蜜桃| 免费高清在线观看视频在线观看| 又黄又粗又硬又大视频| 中文字幕人妻丝袜一区二区| 国产亚洲欧美精品永久| 18禁观看日本| 久久精品成人免费网站| 天天躁日日躁夜夜躁夜夜| 午夜福利乱码中文字幕| 亚洲欧美成人综合另类久久久| 久久精品亚洲熟妇少妇任你| 欧美日本中文国产一区发布| 午夜久久久在线观看| 午夜视频精品福利| 久久久久国内视频| 夜夜骑夜夜射夜夜干| 日韩精品免费视频一区二区三区| 纵有疾风起免费观看全集完整版| 亚洲天堂av无毛| 91精品三级在线观看| 中文字幕另类日韩欧美亚洲嫩草| 18禁黄网站禁片午夜丰满| 久久人人爽av亚洲精品天堂| 色老头精品视频在线观看| av线在线观看网站| 欧美黄色片欧美黄色片| 国产欧美日韩一区二区精品| 男男h啪啪无遮挡| 一边摸一边做爽爽视频免费| 搡老岳熟女国产| 黄色视频,在线免费观看| 男人操女人黄网站| 法律面前人人平等表现在哪些方面 | av福利片在线| 人人澡人人妻人| 亚洲精品成人av观看孕妇| 日韩欧美一区二区三区在线观看 | 国产精品免费视频内射| 国产亚洲精品第一综合不卡| 国产成+人综合+亚洲专区| 丰满饥渴人妻一区二区三| 纯流量卡能插随身wifi吗| 精品亚洲成a人片在线观看| 欧美老熟妇乱子伦牲交| 亚洲欧美一区二区三区黑人| 性少妇av在线| 99久久99久久久精品蜜桃| 国产一级毛片在线| 99精品欧美一区二区三区四区| 日韩大码丰满熟妇| 亚洲精品国产色婷婷电影| 久久久久国产精品人妻一区二区| 久久狼人影院| 欧美精品人与动牲交sv欧美| 自拍欧美九色日韩亚洲蝌蚪91| 我要看黄色一级片免费的| 国产精品久久久av美女十八| 欧美精品人与动牲交sv欧美| 国产精品一区二区在线不卡| 国产成人欧美| 91精品三级在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久大尺度免费视频| 亚洲一码二码三码区别大吗| 大片免费播放器 马上看| 国产91精品成人一区二区三区 | 成人18禁高潮啪啪吃奶动态图| 精品亚洲成a人片在线观看| 久久性视频一级片| 在线 av 中文字幕| 免费观看人在逋| 精品少妇久久久久久888优播| 啦啦啦免费观看视频1| 免费观看a级毛片全部| 老熟妇乱子伦视频在线观看 | 高潮久久久久久久久久久不卡| 少妇精品久久久久久久| 国产精品秋霞免费鲁丝片| 一边摸一边做爽爽视频免费| 久久久久久久久久久久大奶| 又黄又粗又硬又大视频| 人人妻人人澡人人爽人人夜夜| 欧美少妇被猛烈插入视频| 人人妻,人人澡人人爽秒播| 久久精品亚洲av国产电影网| 亚洲五月色婷婷综合| 免费女性裸体啪啪无遮挡网站| 亚洲欧美日韩高清在线视频 | 国产黄色免费在线视频| 岛国在线观看网站| 香蕉丝袜av| 精品少妇久久久久久888优播| 久热这里只有精品99| 日本一区二区免费在线视频| 久热爱精品视频在线9| 狠狠婷婷综合久久久久久88av| 精品国内亚洲2022精品成人 | 一边摸一边做爽爽视频免费| 一级片免费观看大全| 欧美日韩国产mv在线观看视频| 免费在线观看完整版高清| 久久久国产一区二区| 每晚都被弄得嗷嗷叫到高潮| 日韩大码丰满熟妇| 男人爽女人下面视频在线观看| 国产男女超爽视频在线观看| 热re99久久国产66热| 国产精品二区激情视频| 欧美另类亚洲清纯唯美| 美女午夜性视频免费| 三级毛片av免费| 999久久久精品免费观看国产| 国产福利在线免费观看视频| 国产免费视频播放在线视频| 国产av一区二区精品久久| 爱豆传媒免费全集在线观看| 乱人伦中国视频| 国产一区二区三区av在线| 一二三四在线观看免费中文在| 欧美xxⅹ黑人| 不卡av一区二区三区| 免费高清在线观看日韩| 久久 成人 亚洲| 男女床上黄色一级片免费看| 国产高清videossex| 亚洲国产看品久久| 大码成人一级视频| 极品少妇高潮喷水抽搐| 99香蕉大伊视频| 激情视频va一区二区三区| a级毛片在线看网站| 夜夜骑夜夜射夜夜干| 久久精品人人爽人人爽视色| 国产免费视频播放在线视频| 性高湖久久久久久久久免费观看| av在线播放精品| 91麻豆精品激情在线观看国产 | 久久久国产欧美日韩av| 日韩电影二区| 大香蕉久久成人网| 久久国产亚洲av麻豆专区| 国产日韩欧美在线精品| 欧美精品一区二区免费开放| 亚洲欧美清纯卡通| 亚洲av美国av| 国产成人一区二区三区免费视频网站| 国产精品久久久久久精品电影小说| 天天添夜夜摸| 99久久综合免费| 久久久久精品人妻al黑| 亚洲色图综合在线观看| 国产三级黄色录像| 精品国内亚洲2022精品成人 | 亚洲精品在线美女| 大香蕉久久成人网| 妹子高潮喷水视频| 91国产中文字幕| 亚洲欧美精品综合一区二区三区| 国产精品久久久久久人妻精品电影 | 日韩免费高清中文字幕av| 国产成人精品在线电影| 午夜91福利影院| 午夜福利免费观看在线| 中文字幕高清在线视频| 国产一区二区三区在线臀色熟女 | 高清黄色对白视频在线免费看| 亚洲欧美清纯卡通| 精品免费久久久久久久清纯 | 在线观看免费高清a一片| 亚洲精品美女久久av网站| 久久热在线av| 精品人妻熟女毛片av久久网站| 青青草视频在线视频观看| 91麻豆精品激情在线观看国产 | 日韩视频一区二区在线观看| 亚洲国产欧美网| 大香蕉久久网| 国精品久久久久久国模美| 捣出白浆h1v1| 国产av国产精品国产| 日本精品一区二区三区蜜桃| av国产精品久久久久影院| 十八禁网站免费在线| 久久影院123| 80岁老熟妇乱子伦牲交| av天堂久久9| 1024香蕉在线观看| 成人18禁高潮啪啪吃奶动态图| 蜜桃在线观看..| 欧美另类一区| 蜜桃在线观看..| 久久午夜综合久久蜜桃| 99国产精品免费福利视频| 我的亚洲天堂| 捣出白浆h1v1| 中文字幕高清在线视频| 丝袜美腿诱惑在线| 免费日韩欧美在线观看| 亚洲黑人精品在线| 麻豆乱淫一区二区| 日本av免费视频播放| 韩国高清视频一区二区三区| 久久香蕉激情| 自线自在国产av| 精品久久久久久电影网| 男女午夜视频在线观看| 中文精品一卡2卡3卡4更新| 无遮挡黄片免费观看| 一本—道久久a久久精品蜜桃钙片| 十八禁高潮呻吟视频| 亚洲av国产av综合av卡| 伦理电影免费视频| 两人在一起打扑克的视频| 丰满少妇做爰视频| 高清视频免费观看一区二区| 久久这里只有精品19| 又紧又爽又黄一区二区| videosex国产| 免费av中文字幕在线| 不卡一级毛片| 日韩欧美免费精品| 人妻久久中文字幕网| 亚洲欧美激情在线| 国产精品.久久久| 国产精品免费大片| 成人国产一区最新在线观看| 这个男人来自地球电影免费观看| 亚洲欧美一区二区三区久久| 男女床上黄色一级片免费看| 高清av免费在线| 亚洲精品一区蜜桃| 成人手机av| www日本在线高清视频| 亚洲五月婷婷丁香| 欧美精品啪啪一区二区三区 | 电影成人av| av电影中文网址| av有码第一页| 久久热在线av| 欧美老熟妇乱子伦牲交| 久久久精品94久久精品| 91成人精品电影| 午夜精品久久久久久毛片777| 啦啦啦啦在线视频资源| av福利片在线| 国产亚洲av片在线观看秒播厂| 大码成人一级视频| 久久天堂一区二区三区四区| 日日夜夜操网爽| 老司机影院毛片| 高清欧美精品videossex| 天天操日日干夜夜撸| 一本大道久久a久久精品| 69av精品久久久久久 | 久久av网站| 一级毛片女人18水好多| 亚洲性夜色夜夜综合| 国产成+人综合+亚洲专区| 69av精品久久久久久 | 国产精品二区激情视频| 精品高清国产在线一区| 久久精品国产亚洲av高清一级| 日韩 亚洲 欧美在线| 国产黄频视频在线观看| 老熟女久久久| 亚洲精品国产一区二区精华液| kizo精华| 男男h啪啪无遮挡| 免费观看av网站的网址| 国产精品一区二区精品视频观看| 在线观看免费日韩欧美大片| 丝瓜视频免费看黄片| 在线av久久热| 久久精品国产亚洲av香蕉五月 | 久久久精品94久久精品| 捣出白浆h1v1| 又黄又粗又硬又大视频| 久久久久国内视频| 好男人电影高清在线观看| 国产成人免费观看mmmm| 国产免费av片在线观看野外av| 午夜免费鲁丝| 国产精品自产拍在线观看55亚洲 | 自拍欧美九色日韩亚洲蝌蚪91| 日韩中文字幕视频在线看片| 国产高清视频在线播放一区 | 午夜91福利影院| 国产在线免费精品| 午夜免费鲁丝| 午夜福利,免费看| 国产亚洲午夜精品一区二区久久| 波多野结衣av一区二区av| 久久这里只有精品19| 狠狠精品人妻久久久久久综合| 中文欧美无线码| 久久人人爽人人片av| 性色av乱码一区二区三区2| 精品久久久精品久久久| 亚洲av电影在线进入| 中文字幕高清在线视频| 国产精品自产拍在线观看55亚洲 | 免费看十八禁软件| 成人av一区二区三区在线看 | 在线永久观看黄色视频| 一级毛片精品| 狠狠婷婷综合久久久久久88av| 一级a爱视频在线免费观看| 国产欧美日韩一区二区精品| tube8黄色片| av一本久久久久| 国产在线免费精品| 男人爽女人下面视频在线观看| 久久九九热精品免费| 亚洲精品一区蜜桃| 一级毛片电影观看| 欧美激情极品国产一区二区三区| av不卡在线播放| 免费人妻精品一区二区三区视频| 亚洲精品国产区一区二| 一本色道久久久久久精品综合| 80岁老熟妇乱子伦牲交| 一级毛片精品| 精品福利永久在线观看| 中文字幕制服av| 首页视频小说图片口味搜索| 亚洲国产精品999| 咕卡用的链子| 亚洲人成电影观看| 韩国精品一区二区三区| 美女扒开内裤让男人捅视频| 19禁男女啪啪无遮挡网站| 久久精品亚洲熟妇少妇任你| 青草久久国产| 精品人妻一区二区三区麻豆| av天堂久久9| 国产男女超爽视频在线观看| 少妇 在线观看| 热99re8久久精品国产| h视频一区二区三区| 亚洲色图综合在线观看| 天天操日日干夜夜撸| 国产高清视频在线播放一区 | 91精品三级在线观看| 无限看片的www在线观看| 桃红色精品国产亚洲av| 在线观看人妻少妇| 久久国产精品人妻蜜桃| 欧美激情高清一区二区三区| 亚洲三区欧美一区| 最新在线观看一区二区三区| 亚洲视频免费观看视频| 91九色精品人成在线观看| 亚洲激情五月婷婷啪啪| 国产在线一区二区三区精| www.精华液| 女性生殖器流出的白浆| 亚洲精品一卡2卡三卡4卡5卡 | 婷婷色av中文字幕| 亚洲国产欧美在线一区| 久久久水蜜桃国产精品网| 国产老妇伦熟女老妇高清| 久久香蕉激情| h视频一区二区三区| 国产免费视频播放在线视频| 色精品久久人妻99蜜桃| 精品人妻1区二区| 青春草亚洲视频在线观看| 久久中文字幕一级| 999久久久精品免费观看国产| 狂野欧美激情性xxxx| 99国产精品免费福利视频| 欧美精品啪啪一区二区三区 | 亚洲成人免费电影在线观看| 欧美黄色淫秽网站| 在线精品无人区一区二区三| 岛国在线观看网站| 日本一区二区免费在线视频| 另类亚洲欧美激情| 一区二区三区乱码不卡18| 久久精品亚洲av国产电影网| 国产日韩欧美在线精品| 窝窝影院91人妻| av超薄肉色丝袜交足视频| 久久精品国产a三级三级三级| 国产高清国产精品国产三级| 欧美激情高清一区二区三区| 999精品在线视频| 2018国产大陆天天弄谢| 性高湖久久久久久久久免费观看| 亚洲欧美日韩另类电影网站| 亚洲免费av在线视频| 欧美黑人欧美精品刺激| 欧美激情久久久久久爽电影 | 午夜福利影视在线免费观看| 黄片大片在线免费观看| 免费少妇av软件| 啦啦啦视频在线资源免费观看| 男女边摸边吃奶| videos熟女内射| 我的亚洲天堂| 亚洲黑人精品在线| av天堂在线播放| 黄片播放在线免费| 久久精品国产亚洲av高清一级| 亚洲精品国产av蜜桃| 亚洲精品国产色婷婷电影| 91av网站免费观看| 老熟妇仑乱视频hdxx| 日本猛色少妇xxxxx猛交久久| 亚洲av电影在线进入| 动漫黄色视频在线观看| 欧美另类亚洲清纯唯美| 日韩视频一区二区在线观看| 国产无遮挡羞羞视频在线观看| av又黄又爽大尺度在线免费看| 岛国毛片在线播放| 日韩 亚洲 欧美在线| 国产区一区二久久| 捣出白浆h1v1| 又紧又爽又黄一区二区| 精品久久蜜臀av无| 久久久国产精品麻豆| 国产亚洲一区二区精品| 欧美一级毛片孕妇| 美女高潮到喷水免费观看| 少妇 在线观看| 老司机午夜福利在线观看视频 | 美女大奶头黄色视频| 国产深夜福利视频在线观看| 黄片播放在线免费| 极品少妇高潮喷水抽搐| 看免费av毛片| 亚洲精华国产精华精| videos熟女内射| 窝窝影院91人妻| 汤姆久久久久久久影院中文字幕| 国产一区有黄有色的免费视频| 国产成人免费无遮挡视频| 大香蕉久久成人网| h视频一区二区三区| 亚洲精品国产av成人精品| 在线观看免费午夜福利视频| 亚洲成人国产一区在线观看| 色老头精品视频在线观看|