• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      東南亞蘭科植物的物種多樣性、生活習(xí)性及其傳粉系統(tǒng)

      2021-01-12 01:00:44張哲任明迅向文倩宋希強(qiáng)
      廣西植物 2021年10期
      關(guān)鍵詞:物種多樣性東南亞

      張哲 任明迅 向文倩 宋希強(qiáng)

      摘 要:蘭科(Orchidaceae)植物廣布于除兩極和極端沙漠地區(qū)外的各種陸地生態(tài)系統(tǒng),包括5個(gè)亞科800多屬28 000多種。東南亞地區(qū)蘭科植物種數(shù)約占世界的1/3,是蘭科植物生物多樣性熱點(diǎn)區(qū)域之一。通過查閱文獻(xiàn)及書籍等資料,該文系統(tǒng)整理了東南亞蘭科植物物種種類及其擴(kuò)散演化歷史,并對(duì)其生活習(xí)性和傳粉系統(tǒng)進(jìn)行了歸類。結(jié)果表明:(1)東南亞蘭科植物8 855種,分屬5亞科17族26亞族240屬;(2)主要生活型為附生的有127屬6 000種以上,地生97屬2 000種以上,腐生13屬約100種,藤本4屬40余種;(3)根據(jù)整理出的東南亞79個(gè)屬的蘭科植物傳粉系統(tǒng)發(fā)現(xiàn),有44個(gè)屬含有自動(dòng)自交的物種,具報(bào)酬物的傳粉系統(tǒng)有花粉(僅見于擬蘭亞科)、芳香類物質(zhì)(僅見于香莢蘭亞科)和花蜜(5個(gè)亞科均有)等報(bào)酬物類型。欺騙性傳粉系統(tǒng)廣泛存在于各個(gè)亞科,包括食源性欺騙、性擬態(tài)、繁殖地?cái)M態(tài)和信息素?cái)M態(tài)等類型。東南亞蘭科植物在物種、生活習(xí)性及傳粉系統(tǒng)都展現(xiàn)出極高的多樣性,對(duì)這些生物學(xué)特點(diǎn)的總結(jié)將為蘭科植物的保育提供一定的理論基礎(chǔ)和本底資料。

      關(guān)鍵詞:東南亞,蘭科植物,物種多樣性,傳粉生物學(xué),保育

      中圖分類號(hào):Q949.71

      文獻(xiàn)標(biāo)識(shí)碼:A

      文章編號(hào):1000-3142(2021)10-1683-16

      Abstract:Orchidaceae,widely distributed in various terrestrial ecosystems except for Antarctica,Arctic and extreme desert areas,comprises more than 28 000 species in more than 800 genera of 5 subfamilies. As one of the hotspots of orchid biodiversity in the world,Southeast Asia accounted for about 1/3 of all orchid species. In this paper,we reviewed the species diversity,evolution and dispersal history,as well as classified the habits and pollination systems of orchid species in Southeast Asia. The results are as follows:(1) A total of 8 855 orchid species,which belongs to 5 subfamilies,17 tribes,26 subtribes and 240 genera in Southeast Asia,were enumerated and evaluated. (2) The main habits of orchids in Southeast Asia include more than 6 000 epiphytic species of 127 genera,more than 2 000 terrestrial species of 97 genera,about 100 saprophytic species of 13 genera and more than 40 vine species of 4 genera. (3) According to the pollination system of 79 genera of Orchidaceae in Southeast Asia,44 genera contained automatic self-pollination species. Rewarding pollination systems involve the forms of pollen (only found in subfamily Apostasioideae),fragrance oils (only found in subfamily Vanilloideae) and nectar (found in all five subfamilies) as rewards. Additionally,deceptive pollination systems exist widely in all five subfamilies,including food-deceptive system,sexual mimicry,shelter mimicry,oviposition-site mimicry and pheromone mimicry. Orchidaceae in Southeast Asia show a high diversity of species,habits and pollination systems. The summary of orchid biological characteristics provides some theoretical foundations and context information for the conservation.

      Key words:Southeast Asia,Orchidaceae,species diversity,pollination biology,conservation

      蘭科(Orchidaceae)植物廣布于除兩極和極端沙漠地區(qū)外的各種陸地生態(tài)系統(tǒng),是被子植物中與菊科并列的最大科,有800多屬28 000多種,約占世界維管束植物總數(shù)的10%(Joppa et al.,2011)。目前的研究顯示,蘭科植物可能起源于早白堊紀(jì)的澳大利亞地區(qū),此時(shí)非洲、印度和馬達(dá)加斯加已與南極洲和澳大利亞分離,而澳大利亞和南美洲通過南極洲相連(Givnish et al.,2015,2016)。約90 Mya (million years ago)時(shí),蘭科植物從澳大利亞地區(qū)穿越南極洲向新熱帶區(qū)擴(kuò)散,逐漸分化出五個(gè)亞科,包括擬蘭亞科(Apostasioideae)、香莢蘭亞科(Vanilloideae)、杓蘭亞科(Cypripedioideae)、蘭亞科(Orchidoideae )和樹蘭亞科(Epidendroideae) (Givnish et al.,2015,2016)。

      東南亞地區(qū)是世界三大熱帶雨林分布區(qū)之一和生物多樣性最高的區(qū)域之一,以約占全球陸地5%的面積分布著全球20%~25%的高等植物(Brooks et al.,2006; Buerki et al.,2014)。東南亞地區(qū)蘭科植物預(yù)計(jì)超過10 000種,約占世界蘭科植物的1/3,是世界上蘭科植物最為豐富的區(qū)域之一。現(xiàn)有研究顯示,歷史上蘭科植物的長距離擴(kuò)散速率相對(duì)其他植物類群較低,從而限制了物種在跨洋大洲間的基因交流,加劇了物種在獨(dú)立大陸板塊內(nèi)的分化(Givnish et al.,2016)。東南亞復(fù)雜的地質(zhì)歷史,如大陸板塊碰撞和連接、陸地隆起形成高山、火山噴發(fā)、海平面的反復(fù)波動(dòng)等條件下,加劇了這一區(qū)域物種分化和多樣性的提高(Thomas et al.,2012; Guo et al.,2012,2015 )。此外,蘭科植物多樣的花部特征和傳粉系統(tǒng)(Cozzolino,2005; Schiestl,2009; Ramírez et al.,2011)、附生習(xí)性及與之相關(guān)的景天酸代謝途徑(CAM,crassulacean acid metabolism pathway)(Gravendeel et al.,2004; Silvera et al.,2009)等,都被認(rèn)為驅(qū)動(dòng)了蘭科植物的物種形成和分化。因此,對(duì)東南亞地區(qū)蘭科植物的物種多樣性、生活習(xí)性及其傳粉系統(tǒng)方面的總結(jié)有助于了解這一地區(qū)蘭科植物的特點(diǎn),對(duì)于蘭科植物的保育具有重要的理論和實(shí)踐意義。

      根據(jù)地塊歷史及植物區(qū)系屬性,東南亞地區(qū)包括以下4大區(qū)域(譚珂等,2020)。(1)印度-緬甸區(qū):主要包括中南半島、海南島、云南南部、廣西西南部及廣東南部沿海;(2)巽他區(qū):主要包括馬來半島、婆羅洲、蘇門答臘島等;(3)華萊士區(qū):主要由蘇拉威西島、爪哇島、小巽他群島、馬魯古群島等組成;(4)菲律賓群島:包括呂宋島、米沙鄢和棉蘭島等7 000多個(gè)大小島嶼。該文根據(jù)Kew Garden的世界植物名錄(World Checklist of Selected Plant Families) (http://wcsp.science.kew.org/)公布的蘭科植物物種數(shù)及分布信息,以及GBIF (Global Biodiversity Information Facility,http://www.gbif.org/)收集蘭科植物的分布地點(diǎn)信息,并查閱書籍或文獻(xiàn)(Pridgeon et al.,1997,1999,2001,2003,2005,2009,2014; Chen et al.,2009; Chase et al.,2015; Givnish et al.,2015,2016; Angiosperm Phylogeny Group et al.,2016)獲取蘭科的分類系統(tǒng)、物種多樣性和物種系統(tǒng)發(fā)育位置,對(duì)東南亞區(qū)域內(nèi)的蘭科植物名錄進(jìn)行整理和分析,并對(duì)其生活習(xí)性和傳粉生物學(xué)進(jìn)行概述。蘭科植物的起源由于缺乏化石證據(jù),不同作者基于不同的證據(jù),在起源時(shí)間和地點(diǎn)等方面都有不同觀點(diǎn),為保證統(tǒng)一性,本文采用Givnish et al.(2015,2016)的研究成果作為科屬之間的起源斷代參考。

      1 東南亞蘭科植物起源及其多樣性

      本文共整理出東南亞蘭科植物8 855種,分屬5亞科17族26亞族240屬。東南亞地區(qū)的蘭科植物表現(xiàn)出極強(qiáng)的地域特有性,有118個(gè)屬下所有種在東南亞地區(qū)均有分布,有197屬的種類占全球分布種數(shù)在50%以上(表1)。

      1.1 擬蘭亞科(Apostasioideae)

      擬蘭亞科是蘭科的基部類群,90 Mya時(shí)最早于澳大利亞地區(qū)從蘭科祖先類群中分化出來。在25 Mya時(shí),由澳大利亞通過新幾內(nèi)亞并穿過華萊士線到達(dá)東南亞地區(qū)(Givnish et al.,2015,2016)。東南亞是世界擬蘭亞科的分布多樣性中心,有2屬14種,主要分布于婆羅洲中部和北部、中南半島西部、馬來半島南部和蘇門答臘島。

      該亞科全球分布有2屬17種,主要分布于東南亞、日本和澳大利亞北部的濕潤地區(qū)。其中擬蘭屬(Apostasia)世界分布有8種,除深圳擬蘭(A. shenzhenica)和A. fogangica外,其余6種在東南亞地區(qū)均有分布;三蕊蘭屬(Neuwiedia)世界分布9種,除麻栗坡三蕊蘭(N. malipoensis)外,其余8種在東南亞均有分布(表1)。

      1.2 香莢蘭亞科(Vanilloideae)

      香莢蘭亞科起源于84 Mya時(shí)的新熱帶區(qū),其下的朱蘭族(Pogonieae)于44 Mya從新熱帶區(qū)向北美洲擴(kuò)散,分化出Cleistesiopsis、Isotria和朱蘭屬(Pogonia),隨后這些類群于11 Mya向歐亞大陸擴(kuò)散;本亞科香莢蘭族(Vanilleae)自新熱帶區(qū)起源后,于64~59 Mya通過長距離擴(kuò)散穿越太平洋到達(dá)新喀里多尼亞,分化出Clematepistephium和Eriaxis; 而Pseudovanilla和肉果蘭屬(Cyrtosia)于61 Mya從新熱帶區(qū)長距離擴(kuò)散至澳大利亞和東南亞地區(qū);隨后,肉果蘭屬進(jìn)一步擴(kuò)散到東亞地區(qū),Pseudovanilla又于31~6 Mya擴(kuò)散至波納佩和斐濟(jì)(Givnish et al.,2016)。香莢蘭屬(Vanilla)于61 Mya自新熱帶區(qū)分化形成,于26~18 Mya擴(kuò)散至非洲,于13 Mya自非洲擴(kuò)散至印度洋區(qū)域又于12~4 Mya自新熱帶區(qū)擴(kuò)散至加勒比海區(qū)域(Givnish et al.,2016)。

      東南亞是世界香莢蘭亞科分布中心之一,共有2族7屬59種(表1),主要分布在馬來半島、婆羅洲北部和菲律賓中部。

      1.3 杓蘭亞科(Cypripedioideae)

      杓蘭亞科包括5屬,包括杓蘭屬(Cypripedium)、兜蘭屬(Paphiopedilum)、Mexipedium、Phragmipedium和Selenipedium。該亞科物種廣泛分布于歐亞大陸的溫帶至熱帶地區(qū)及南北美洲地區(qū),其中杓蘭屬主要分布于北半球的溫帶和亞熱帶地區(qū),有些種類延伸到北美熱帶地區(qū);Mexipedium、Phragmipedium和Selenipedium則主要集中在新熱帶區(qū);兜蘭屬主要集中在舊熱帶區(qū)。

      目前的研究表明,大陸分裂及隨后的冰期氣候變冷導(dǎo)致了該亞科物種的不連續(xù)分布,杓蘭屬是該亞科的基部類群,于76 Mya左右在新熱帶區(qū)分化形成并長距離擴(kuò)散至歐亞大陸,少量到達(dá)東南亞,隨后又?jǐn)U散返回北美洲數(shù)次。Selenipedium、Phragmipedium和Mexipedium、分別于約31、28、21 Mya分化形成。兜蘭屬于46 Mya經(jīng)歷了長距離擴(kuò)散,可能的擴(kuò)散路線為新熱帶區(qū)—穿越白令陸橋—東亞—東南亞,并在東南亞地區(qū)分化出眾多種類(Givnish et al.,2016)。

      東南亞杓蘭亞科有2屬,包括兜蘭屬和杓蘭屬。兜蘭屬世界分布有130多種,東南亞是兜蘭屬的世界多樣性中心,有116種,主要分布于中國西南部至越南中部、婆羅洲中部和菲律賓中部。杓蘭屬全球分布有51種,主要分布于北半球溫帶和亞高山帶至美洲中部,東南亞分布僅4種(表1)。

      1.4 蘭亞科(Orchidoideae)

      蘭亞科是蘭科中物種數(shù)量僅次于樹蘭亞科的類群,于64 Mya在新熱帶區(qū)與樹蘭亞科分化開來,包括銀鐘蘭族(Codonorchideae)、盔唇蘭族(Cranichideae)、雙尾蘭族(Diurideae)和紅門蘭族(Orchideae)。該亞科中的蘭族沿新熱帶區(qū)—非洲—?dú)W亞大陸的路線擴(kuò)散,最后到達(dá)日本和北美洲;銀鐘蘭族僅在南美洲分布;雙尾蘭族沿新熱帶區(qū)—澳大利亞—東南亞、新西蘭和新喀里多尼亞的路線擴(kuò)散;盔唇蘭族的物種主要在新熱帶區(qū)分化形成,一部分?jǐn)U散至北美地區(qū),如盔唇蘭屬(Cranichis)和綬草屬(Spiranthes),另一部分向澳大利亞和太平洋區(qū)域擴(kuò)散,如Pachyplectron、翅柱蘭屬(Pterostylis)及它們的近緣類群(Givnish et al.,2016)。

      東南亞分布有蘭亞科共3族12亞族53屬824種(表1)。

      1.4.1 盔唇蘭族(Cranichideae) 含3個(gè)亞族,28屬395種。①斑葉蘭亞族(Goodyerinae),25屬381種,包括斑葉蘭屬(Goodyera)、線柱蘭屬(Zeuxine)、齒唇蘭屬(Odontochilus)、二尾蘭屬(Vrydagzynea)、金線蘭屬(Anoectochilus)、叉柱蘭屬(Cheirostylis)、菱蘭屬(Rhomboda)、鉗唇蘭屬(Erythrodes)、鰾唇蘭屬(Cystorchis)、翻唇蘭屬(Hetaeria)等。②翅柱蘭亞族(Pterostylidinae),僅含翅柱蘭屬(Pterostylis)8種。③綬草亞族(Spiranthinae),僅含綬草屬(Spiranthes)和肥根蘭屬(Pelexia)2屬6種。

      1.4.2 雙尾蘭族(Diurideae) 含7個(gè)亞族,9屬138種。①針花蘭亞族(Acianthinae),2屬105種。②裂緣蘭亞族(Caladeniinae),僅含裂緣蘭屬(Caladenia)2種。③隱柱蘭亞族(Cryptostylidinae),僅含隱柱蘭屬(Cryptostylis)19種。④雙尾蘭亞族(Diuridinae),僅含雙尾蘭屬(Diuris)1種。⑤槌唇蘭亞族(Drakaeinae),僅含Arthrochilus 3種。⑥蔥葉蘭亞族(Prasophyllinae),僅含蔥葉蘭屬(Microtis)2種。⑦太陽蘭亞族(Thelymitrinae),僅Thelymitra和胡須蘭屬(Calochilus)共4種。

      1.4.3 紅門蘭族(Orchideae) 含2個(gè)亞族,16屬306種。①鳳仙蘭亞族(Brownleeinae),僅含雙袋蘭屬(Disperis)1種。②紅門蘭亞族(Orchidinae),15屬305種,包括玉鳳花屬(Habenaria)、闊蕊蘭屬(Peristylus)、舌唇蘭屬(Platanthera)、苞葉蘭屬(Brachycorythis)、角盤蘭屬(Herminium)等。

      1.5 樹蘭亞科(Epidendroideae)

      樹蘭亞科是蘭科中的最大亞科,與蘭亞科于64 Mya時(shí)分化形成?;款惾壶B巢蘭族(Neottieae)最先從新熱帶區(qū)擴(kuò)散至歐亞大陸、東南亞和北美洲,目前主要分布于北半球的溫帶和亞熱帶地區(qū),個(gè)別種類擴(kuò)散到熱帶高山地區(qū)(Pridgeon et al.,2005; Chen et al.,2009; Zhou & Jin,2018)。箬葉蘭族(Sobralieae)、垂帽蘭族(Triphoreae)、竹莖蘭族(Tropideae)、芋蘭族(Nervileae)也由祖先類群從新熱帶區(qū)長距離擴(kuò)散至東南亞地區(qū)分化形成?,F(xiàn)存的樹蘭族(Epidendreae)的大部分類群均為祖先類群于30 Mya從東南亞回遷至新熱帶區(qū)后逐漸分化形成,包括布袋蘭亞族(Calypsinae)的Coelia、禾葉蘭亞

      族(Agrostophyllinae)、擬白及亞族(Bletiinae)、蕾麗蘭亞族(Laeliinae)、腋花蘭亞族(Pleurothallidinae)、藺葉蘭亞族(Ponerinae)及不包括蘭亞族(Cymbidinae)外的蘭族(Cymbideae)類群;而蘭亞族一枝于17 Mya時(shí)從東南亞開始擴(kuò)散,分別到達(dá)澳大利亞、太平洋海域和歐亞大陸地區(qū);禾葉蘭亞族(Agrostophyllinae)中的Earina于30 Mya從東南亞擴(kuò)散至太平洋區(qū)域;布袋蘭亞族中的大部分類群于32 Mya擴(kuò)散至北美洲地區(qū),隨后從北美洲擴(kuò)散回歐亞大陸和東南亞地區(qū)(Givnish et al.,2016)。龍嘴蘭族(Arethuseae)于15 Mya從東南亞長距離擴(kuò)散至北美洲,隨后又?jǐn)U散回東南亞地區(qū)。萬代蘭族(Vandeae)中的彗星蘭亞族(Angraecinae)是由祖先類群于21 Mya從東南亞長距離擴(kuò)散類群至非洲分化而形成(Givnish et al.,2016)。吻蘭族(Collabieae)、柄唇蘭族(Podochileae)、沼蘭族(Malaxideae)中的石斛亞族(Dendrobiinae)也發(fā)生過多次較長距離的擴(kuò)散,從東南亞擴(kuò)散至澳大利亞和太平洋海域(Givnish et al.,2016)。

      東南亞樹蘭亞科共12族14亞族176屬7 838種(表1)。

      1.5.1 鳥巢蘭族(Neottieae) 含無葉蘭屬(Aphyllorchis)、鳥巢蘭屬(Neottia)、頭蕊蘭屬(Cephalanthera)和火燒蘭屬(Epipactis)共4屬32種。

      1.5.2 竹莖蘭族(Tropidieae) 含竹莖蘭屬(Tropidia)、管花蘭屬(Corymborkis)和甜薯蘭屬(Kalimantanorchis)共3屬24種。

      1.5.3 天麻族(Gastrodieae) 含天麻屬(Gastrodia)、雙唇蘭屬(Didymoplexis)、錨柱蘭屬(Didymoplexiella)和擬錨柱蘭屬(Didymoplexiopsis)共4屬54種。

      1.5.4 芋蘭族(Nervilieae) 含2個(gè)亞族,3屬38種。包括①芋蘭亞族(Nerviliinae):僅含芋蘭屬(Nervilia)35種。②虎舌蘭亞族(Epipogiinae):虎舌蘭屬(Epipogium)和肉藥蘭屬(Stereosandra)共2屬3種。

      1.5.5 泰蘭族(Thaieae) 僅含單種屬泰蘭屬(Thaia)1種。

      1.5.6 龍嘴蘭族(Arethuseae) 含①龍嘴蘭亞族(Arethusinae):包括筒瓣蘭屬(Anthogonium)和竹葉蘭屬(Arundina)共2屬2種。②貝母蘭亞族(Coelogyninae):包括足柱蘭屬(Dendrochilum)、貝母蘭屬(Coelogyne)種、球序蘭屬(Glomera)、石仙桃屬(Pholidota)、Chelonistele等共22屬764種。

      1.5.7 沼蘭族(Malaxideae) 含2個(gè)亞族,10屬3 691種。①石斛亞族(Dendrobiinae):包括蘭科中最大的兩個(gè)屬,石豆蘭屬(Bulbophyllum)和石斛屬(Dendrobium)共2屬3 042種。②沼蘭亞族(Malaxidinae):包括沼蘭屬(Crepidium)、鳶尾蘭屬(Oberonia)、羊耳蒜屬(Liparis)、覆苞蘭屬(Stichorkis)、原沼蘭屬(Malaxis)等共8屬785種。

      1.5.8蘭族(Cymbidieae) 含2個(gè)亞族,10屬153種。①蘭亞族(Cymbidiinae):包括蘭屬(Cymbidium)、合萼蘭屬(Acriopsis)、斑被蘭屬(Grammatophyllum)、盒足蘭屬(Thecopus)、紫舌蘭屬(Porphyroglottis)和盒柱蘭屬(Thecostele)共6屬88種。②美冠蘭亞族(Eulophiinae):包括Claderia、雙足蘭屬(Dipodium)、美冠蘭屬(Eulophia)和地寶蘭屬(Geodorum)共4屬74種。

      1.5.9樹蘭族(Epidendreae) 含3個(gè)亞族,6屬138種。①腋花蘭亞族(Pleurothallidinae):包括Brachionidium僅1種。②布袋蘭亞族(Calypsinae):包括杜鵑蘭屬(Cremastra)、山蘭屬(Oreorchis)、筒距蘭屬(Tipularia)和寬距蘭屬(Yoania)共4屬8種。③禾葉蘭亞族(Agrostophyllinae):僅含禾葉蘭屬(Agrostophyllum)129種。

      1.5.10吻蘭族(Collabieae ) 包括蝦脊蘭屬(Calanthe)、鶴頂蘭屬(Phaius)、苞舌蘭屬(Spathoglottis)、卷舌蘭屬(Plocoglottis)、帶唇蘭屬(Tainia)等共19屬366種。

      1.5.11 柄唇蘭族(Podochileae) 包括馥蘭屬(Phreatia)、牛齒蘭屬(Appendicula)、牛角蘭屬(Ceratostylis)、毛蘭屬(Eria)、蘋蘭屬(Pinalia)、毛鞘蘭屬(Trichotosia)、柄唇蘭屬(Podochilus)、八雄蘭屬 (Octarrhena)、擬毛蘭屬(Mycaranthes)、擬石斛屬(Oxystophyllum)等共26屬1 277種。

      1.5.12 萬代蘭族(Vandeae)

      含3個(gè)亞族,69屬1 348種。①仙梨蘭亞族(Adrorhizinae):僅含白葦蘭屬(Bromheadia)28種。②多穗蘭亞族(Polystachyinae):僅含多穗蘭屬(Polystachya)1種。③指甲蘭亞族(Aeridinae):包括帶葉蘭屬(Taeniophyllum)、白點(diǎn)蘭屬(Thrixspermum)、隔距蘭屬(Cleisostoma)、蝴蝶蘭屬(Phalaenopsis)、毛舌蘭屬(Trichoglottis)、寄樹蘭屬(Robiquetia)、萬代蘭屬(Vanda)、釵子股屬(Luisia)等共67屬1 319種。

      2 東南亞蘭科植物的生活習(xí)性

      在陸地生態(tài)系統(tǒng)中,被子植物生活習(xí)性的多樣性決定著植物類群的物種多樣性、種群擴(kuò)張程度及其在種群中的優(yōu)勢(shì)度(Ricklefs & Renner,1994; Tiffney & Mazer,1995)。蘭科植物的生活習(xí)性多樣,大約2/3的蘭科植物都屬于附生類,其次是地生類,少數(shù)屬于腐生類,極少數(shù)種類具有攀援藤本的習(xí)性(Sosa et al.,2016)。大部分分布于溫帶的蘭科植物都是地生習(xí)性,而熱帶地區(qū)具有最高的物種多樣性,而且80%以上的種類都是附生習(xí)性(Sosa et al.,2016)。

      附生習(xí)性蘭科植物在屬水平上的平均物種數(shù)要多于陸生習(xí)性的蘭科植物(Gravendeel et al.,2004),并且相對(duì)陸生蘭科植物的物種形成和分化速率也更高(Givnish et al.,2016)。附生習(xí)性是蘭科植物極為重要的進(jìn)化特征,影響著蘭科植物物種的生存、形成、擴(kuò)散和分化。主要體現(xiàn)在幾大方面:①附生習(xí)性促進(jìn)了蘭科植物的“開疆拓土”和物種的保持。因?yàn)樵跇涓珊蜆渲ι虾苌儆芯S管束植物定植,附生蘭科植物具有極小的競(jìng)爭(zhēng)壓力,保證了自己的生態(tài)位。②附生習(xí)性能夠保持物種較高的遺傳多樣性。一是因?yàn)樵谏謨?nèi)部樹木表面積要遠(yuǎn)遠(yuǎn)大于地表,附生植物相對(duì)陸生植物具有更大的生長和擴(kuò)散空間;二是不同樹冠內(nèi)部溫濕度均不相同,能夠促使物種在小尺度上出現(xiàn)不同的變異和分化。③附生習(xí)性往往與降雨和濕度有關(guān),森林中霧氣的沉積和蒸發(fā)率隨海拔梯度的上升和地形變化創(chuàng)造出不同的生境條件,從而在更大尺度上導(dǎo)致隔離并加速物種的分化。④蘭科植物種子可以擴(kuò)散非常長的距離,但能夠定植下來的卻很少,促進(jìn)了物種在不同生境中的分化(Givnish et al.,2015)。附生習(xí)性在樹蘭亞科新近類群(如樹蘭族、蘭族、龍嘴蘭族等)中至少進(jìn)化過一次,發(fā)生時(shí)間不晚于35 Mya,而這一習(xí)性隨后在部分類群中出現(xiàn)過至少三次的返祖事件,包括擬白芨亞族、布袋蘭亞族和龍嘴蘭亞族;其他亞科的部分類群,如杓蘭亞科兜蘭屬和Phragmipedium,以及蘭亞科雙袋蘭屬和Eurystyles的一些物種也進(jìn)化出了附生習(xí)性(Givnish et al.,2016)。

      景天酸代謝途徑(CAM,Crassulacean Acid Metabolism Pathway)與附生習(xí)性密切相關(guān)。附生蘭科植物中一半以上的物種是景天酸代謝途徑(Lüttge,2004; Gravendeel et al.,2004)。C3光合代謝途徑(C3 Photosynthetic Pathway)是蘭科的祖先特質(zhì),伴隨著幾個(gè)亞科的平行進(jìn)化,CAM光合代謝途徑在蘭科植物中至少獨(dú)立進(jìn)化過10 次,并發(fā)生過幾次返祖事件(Silvera et al.,2009)。現(xiàn)有研究表明,C3光合代謝途徑包含幾乎所有參與CAM光合代謝途徑的基因,后者很可能是由前者經(jīng)過調(diào)控和表達(dá)重組進(jìn)化而來(Westeberhard et al.,2011)。現(xiàn)有證據(jù)表明,樹蘭亞科發(fā)生了大量CAM光合代謝途徑的輻射分化事件,可能與65 Mya時(shí)的第三紀(jì)物種分化有關(guān)(Silvera et al.,2009)。而樹蘭亞科與蘭亞科在距今64 Mya的古新世早期分化(Givnish et al.,2016),這一時(shí)期土壤干旱、二氧化碳濃度下降等劇烈氣候變化頻繁發(fā)生,這些因素也促進(jìn)了具有CAM光合代謝途徑的附生植物的生存和進(jìn)化(Silvera et al.,2009)。

      東南亞地區(qū)的蘭科植物包含了附生、地生、腐生和藤本四種生活習(xí)性(表2)。

      2.1 附生為主的種類

      主要生活型為附生的種類有6 000種以上,約占東南亞蘭科植物總數(shù)的2/3。它們分屬于127屬,占總屬數(shù)的52.92%。附生習(xí)性為主的屬主要集中在樹蘭亞科,種類最為豐富的類群為龍嘴蘭族、柄唇蘭族和萬代蘭族的大部分屬;蘭亞科僅有斑葉蘭亞族Kipandiorchis 2種為附生;杓蘭亞科兜蘭屬的部分種類具有附生習(xí)性;擬蘭亞科和香莢蘭亞科沒有附生習(xí)性為主的屬(表2)。

      2.2 地生為主的種類

      主要生活型為地生的種類有2 000種以上,約占東南亞蘭科植物總數(shù)的1/4。它們分屬于97屬,占東南亞蘭科植物總屬數(shù)的40.42%。擬蘭亞科植物均為地生;香莢蘭亞科僅有朱蘭族朱蘭屬(Pogonia)和香莢蘭族芋蘭屬(Nervilia)為地生;蘭亞科是地生習(xí)性最為主要的類群,大部分屬的主要生活習(xí)性均為地生;樹蘭亞科在除天麻族和萬代蘭族的族中均具有地生為主的屬,其中最為豐富的類群是吻蘭族,有17個(gè)屬的主要生活習(xí)性為地生(表2)。

      2.3 腐生為主的種類

      主要生活型為腐生的種類約有不足100種。它們分屬于13屬,占總屬數(shù)的5.42%。主要集中在樹蘭亞科基部類群,如天麻族和芋蘭族的虎舌蘭亞族;蘭亞科僅有林蔭蘭屬(Silvorchis)、鰾唇蘭屬(Cystorchis)部分種類、齒唇蘭屬(Odontochilus)極少數(shù)種類為腐生;其余3個(gè)亞科沒有腐生習(xí)性為主的屬(表2)。

      2.4 藤本為主的種類

      主要生活型為藤本的種類有40多種,僅見于香莢蘭亞科香莢蘭族的倒吊蘭屬(Erythrorchis)、山珊瑚屬(Galeola)、Pseudovanilla和香莢蘭屬(Vanilla)共4個(gè)屬(表1),占東南亞蘭科植物總屬數(shù)的1.66%(表2)。

      3 東南亞蘭科植物的傳粉系統(tǒng)

      傳粉者對(duì)蘭科植物的多樣性形成和分化起著重要作用(Inda et al.,2012),所以,大部分蘭科植物保護(hù)中必須首要關(guān)注傳粉系統(tǒng)及傳粉者,特別是對(duì)于專一化較強(qiáng)的類群,如欺騙性傳粉、長舌花蜂作為主要傳粉者的類群(Mant et al.,2002; Swarts & Dixon,2009)。除無融合生殖,如南方玉鳳花(Habenaria malintana)(Zhang & Gao,2018),自動(dòng)自花授粉,如大根槽舌蘭(Holcoglossum amesianum)(Liu et al.,2006)和非生物媒介輔助的自動(dòng)自花授粉,如多花脆蘭(Acampe rigida)(Fan et al.,2012)外,幾乎所有蘭科植物都是生物媒介傳粉。除部分鳥類傳粉類群外(Micheneau et al.,2006; Van der Niet et al.,2015),蘭科植物大部分都是以昆蟲作為傳粉者,其中,以膜翅目(Hymenoptera)蜂類和雙翅目(Diptera)蠅類傳粉最為常見,占整個(gè)蘭科的60%左右(Dressler,1993)。蘭科植物傳粉系統(tǒng)的特化在種間存在著極大的變異,大約60%的蘭科植物擁有唯一特定的傳粉者,形成了一一對(duì)應(yīng)的特化傳粉關(guān)系(Tremblay,1992)。

      植物與傳粉者間存在互惠互利的關(guān)系,傳粉者為植物提供傳粉服務(wù),而植物以各種各樣的報(bào)酬物回饋給傳粉者,如食物、筑巢材料,甚至是提供庇護(hù)所或產(chǎn)卵地。在蘭科植物中,報(bào)酬物大多是花蜜、花粉或脂類等食源性物質(zhì),也有樹蠟、樹脂類(昆蟲筑巢之用)(Tremblay et al.,2005)以及芳香類物質(zhì)(長舌花蜂所特有,用于交配吸引異性)(Eltz et al.,1999)。但一些植物卻進(jìn)化出了不為傳粉者提供報(bào)酬的特質(zhì),已發(fā)現(xiàn)有8 000~10 000種被子植物的傳粉方式是欺騙性傳粉系統(tǒng)(Schiestl,2005; Jersáková et al.,2009),其中,蘭科植物是數(shù)量最多(6 000~8 000種,占到蘭科植物總數(shù)的三分之一)、欺騙形式最為多樣和欺騙方式最為特別的一個(gè)類群(Jersáková et al.,2006,2009)。絕大多數(shù)的欺騙性蘭科植物是通過泛化食源性欺騙(generalized food deception)方式來達(dá)到傳粉的目的,而另一些則通過貝氏花擬態(tài)(batesian floral mimicry)系統(tǒng),根據(jù)擬態(tài)對(duì)象的不同可分為食源性擬態(tài)(food-source mimicry)、性擬態(tài)(sexual mimicry)、棲息地?cái)M態(tài)(shelter mimicry)、繁殖地?cái)M態(tài)(oviposition-site mimicry)、信息素?cái)M態(tài)(pheromone mimicry)(Jersáková et al.,2009)。

      目前對(duì)東南亞蘭科植物傳粉生物學(xué)方面的研究還相對(duì)不足,本文僅從屬水平或由其他地區(qū)報(bào)道的近緣種或近緣屬來探索不同類群蘭科植物的主要傳粉者及其傳粉系統(tǒng),共整理了分布于東南亞的79個(gè)屬的蘭科植物傳粉系統(tǒng)(附表1)。

      3.1 自花授粉及無融合生殖系統(tǒng)

      蘭科植物的雌雄蕊集中于合蕊柱上,雌雄蕊間的隔離往往通過蕊喙來保證,進(jìn)而防止自交的發(fā)生(Kurzweil et al.,2005; Efimov,2011)。一般而言,蕊喙后方凹陷形成藥窩,前方形成“著粉盤”或其包囊;花粉粘合成團(tuán)塊,與蕊喙相連接。但在大部分自動(dòng)自交的類群中,常有蕊喙退化、發(fā)育不完全或裂解的現(xiàn)象,進(jìn)而使花粉團(tuán)和柱頭能夠突破隔離,促使自交授粉的發(fā)生(Catling,1990)。另外,還有一些較為特別的類群,其柱頭可通過分泌大量的水分促使對(duì)花粉團(tuán)的包合,如Cyrtopodium polyphyllum (Catling,1990; Pansarin et al.,2008);花萼、雄蕊或花粉團(tuán)的運(yùn)動(dòng)促使自交(Catling,1990; Liu et al.,2006);花粉團(tuán)易碎或液化導(dǎo)致沉降于柱頭表面(Hagerup,1952)等。自動(dòng)自花授粉機(jī)制由祖先類群(異花授粉類群)在多種因素的影響下獨(dú)立進(jìn)化而來(Hapeman & Inoue,1997),現(xiàn)廣泛出現(xiàn)于蘭科植物多個(gè)類群中(Gamisch et al.,2014)。甚至在同屬、同種內(nèi),也會(huì)出現(xiàn)兼性的傳粉方式(既有自動(dòng)自花授粉機(jī)制,又依賴傳粉者)。

      東南亞地區(qū)分布類群有44個(gè)屬都出現(xiàn)了可自動(dòng)自交的物種,如Thelymitra、石豆蘭屬(Bulbophyllum)、綬草屬(Spiranthes)、頭蕊蘭屬(Cephalanthera)、火燒蘭屬(Epipactis)、風(fēng)蘭屬(Angraecum)和美冠蘭屬(Eulophia)(Gamisch et al.,2014)。有些物種還出現(xiàn)了閉花受精這種完全的自花授粉機(jī)制,如香莢蘭屬Vanilla bicolor(Van der Dam et al.,2010),天麻屬Gastrodia flexistyloide(Suetsugu,2014)。部分自交類群還依賴非生物媒介協(xié)助,如脆蘭屬多花脆蘭(Acampe rigida)授粉完全依賴雨水(Fan et al.,2012),通過雨滴墜落擊打花藥,進(jìn)而反彈進(jìn)入柱頭完成授粉。羊耳蒜屬Liparis loeselii、L. kumokiri和Oeceoclades maculata借助雨滴驅(qū)動(dòng)授粉(González-Díaz & Ackerman,1988);帶葉蘭屬Taeniophyllum hasseltii,隔距蘭屬Cleisostoma parishii 和鳳蝶蘭屬Papilionanthe uniflora借助風(fēng)力驅(qū)動(dòng)授粉(Van der Cingel,2001)。

      無融合生殖類群出現(xiàn)于少數(shù)物種中,如玉鳳花屬南方玉鳳花(Habenaria malintana)(Zhang & Gao,2018),翻唇蘭屬白肋翻唇蘭(Hetaeria cristata)(丁浩,2016)和線柱蘭屬線柱蘭(Zeuxine strateumatica)(Sun,1997)。

      3.2 具報(bào)酬物的傳粉系統(tǒng)

      盡管蘭科植物以欺騙性傳粉類群而聞名,但絕大多數(shù)的蘭科植物還是具有報(bào)酬物。在蘭科植物中,報(bào)酬物大多是花蜜、花粉或脂類等食物,也有樹蠟或樹脂類(昆蟲筑巢之用)(Tremblay et al.,2005)以及芳香類物質(zhì)(長舌花蜂所特有,用于交配吸引異性)(Eltz et al.,1999)。

      由于蘭科植物的花粉往往集合形成花粉團(tuán),因此,以花粉為報(bào)酬物的類群在蘭科植物中并不多見,僅見于基部類群擬蘭亞科,包括三蕊蘭屬(Neuwiedia)和擬蘭屬(Apostasia),其唇瓣特征進(jìn)化并不明顯(Kocyan & Endress,2001),花朵均沒有花蜜,但以花粉作為傳粉者報(bào)酬。三蕊蘭屬的主要傳粉者為無刺蜂(Trigona bees),傳粉者通過高頻率的翅膀震動(dòng)使花粉釋放出來(Jersáková et al.,2006)以取得報(bào)酬。擬蘭亞科代表著蘭科植物以花粉作為報(bào)酬物的這一祖先特質(zhì)(Bateman et al.,2003)。

      以花蜜為報(bào)酬物的類群可能最早分化形成于香莢蘭亞科,這一類群具有無蜜和花蜜兩個(gè)類群,有蜜類群進(jìn)一步分化形成了杓蘭亞科、蘭亞科及樹蘭亞科類群(Rudall & Bateman,2002; Kocyan et al.,2004)。以花蜜為報(bào)酬物是蘭科植物中的主要報(bào)酬類型,廣泛分布于蘭亞科和樹蘭亞科,但這一特征在不同類群中出現(xiàn)了不斷丟失或返祖事件(Cozzolino et al.,2001; Bateman et al.,2003),如Disa和Anacamptis(Johnson et al.,1998; Cozzolino et al.,2001)。以樹蠟或樹脂類為報(bào)酬的類群常見于Maxillaria及其近緣類群,也見于Rhetinantha notylioglossa和Heterotaxis brasiliensis等個(gè)別物種 (Whitten et al.,2007; Davies & Stpiczynska,2012),采集此種報(bào)酬的昆蟲主要為蜂類,用于筑巢之用,包括胡蜂、長舌花蜂、無刺蜂和切葉蜂(Armbruster,2012,2017)。芳香類報(bào)酬僅見于長舌花蜂為傳粉者的類群中,約有600種,主要分布于新熱帶區(qū),包括Gongora、Notylia、Catasetum及香莢蘭屬等(Pansarin & Pansarin,2014; Hetheringtonrauth & Ramírez,2016)。

      東南亞地區(qū)分布的蘭科植物具報(bào)酬物的傳粉系統(tǒng)類群有以下特點(diǎn):擬蘭亞科類群主要以花粉作為報(bào)酬物,傳粉者為蜂類,如三蕊蘭屬Neuwiedia veratrifolia、N. zollingeri var. javanica(Kocyan & Endress,2001)。花蜜作為報(bào)酬物的類群涉及廣泛,如血葉蘭屬(Ludisia)、綬草屬(Spiranthes)、蔥葉蘭屬(Microtis)、舌唇蘭屬(Platanthera)、鳥巢蘭屬(Neottia)等,傳粉者類群也比較多樣,包括蜂類、蝶類、蛾類及鳥類等(附表1)。油脂作為報(bào)酬物的類群如雙袋蘭屬Disperis capensis,傳粉者為蜂類(Steiner,1989; Johnson,1994);石豆蘭屬Bulbophyllum macranthum,傳粉者為蠅類(Van der Cingel,2001)。以芳香類物質(zhì)作為報(bào)酬物的見于香莢蘭科的個(gè)別物種,傳粉者類群是蜜蜂總科長舌花蜂科(Apidae:Euglossini)昆蟲(Lubinsky et al.,2006; Pansarin & Pansarin,2014)。

      3.3 欺騙性傳粉系統(tǒng)

      3.3.1食源性欺騙 食源性欺騙傳粉系統(tǒng)包括泛化的食源性欺騙和食源性擬態(tài)兩種。泛化食源性欺騙傳粉系統(tǒng)廣泛存在于蘭科植物中,約占欺騙性蘭科植物的2/3。在此系統(tǒng)中,植物沒有特定地模擬報(bào)酬植物,而是本身具有食源植物的花信號(hào),以此使傳粉者將其與傳粉者報(bào)酬聯(lián)系起來,其傳粉成功依賴于傳粉者較差的學(xué)習(xí)和區(qū)分能力。傳粉成功且不僅取決于蘭科植物自身花信號(hào)的質(zhì)量,其分布區(qū)域內(nèi)的其他報(bào)酬植物的豐度也對(duì)傳粉成功有所影響(Chittka & Raine,2006)。食源性擬態(tài)傳粉系統(tǒng)是指蘭科植物通過模擬模型植物的花色和花型來達(dá)到欺騙的目的。蜂類的行為學(xué)實(shí)驗(yàn)研究發(fā)現(xiàn),當(dāng)蜂類獲得報(bào)酬后,更傾向于訪問花色和花型相似的其他個(gè)體,這就使得擬態(tài)的蘭花獲得更多的訪問(Johnson et al.,2003)。

      東南亞分布的蘭科植物具有食源性欺騙傳粉系統(tǒng)的種類有:香莢蘭亞科朱蘭屬(Pogonia)和香莢蘭屬(Vanilla)的部分種類,杓蘭亞科杓蘭屬(Cypripedium)和兜蘭屬(Paphiopedilum)的部分種類,蘭亞科斑葉蘭屬(Goodyera)、雙尾蘭屬(Diuris)、盔花蘭屬(Galearis)、玉鳳花屬(Habenaria)、舌喙蘭屬(Hemipilia)等的部分種類,樹蘭亞科頭蕊蘭屬(Cephalanthera)、天麻屬(Gastrodia)、芋蘭屬(Nervilia)、竹葉蘭屬(Arundina)、石豆蘭屬(Bulbophyllum)、石斛屬(Dendrobium)、蘭屬(Cymbidium)、蝦脊蘭屬(Calanthe)、鶴頂蘭屬(Phaius)及萬代蘭屬(Vanda)等的部分種類(附表1)。

      3.3.2 性擬態(tài) 性擬態(tài)是目前研究發(fā)現(xiàn)的最不可思議的傳粉機(jī)制(Spaethe et al.,2010),它是指植物通過模擬傳粉者的雌性個(gè)體來吸引雄性,雄性傳粉者與花進(jìn)行擬交配(Pseudocopulation)的過程中完成傳粉(Schiestl,2005)。因此,性欺騙的傳粉者經(jīng)常是特有的,并且蘭科植物模擬雌性昆蟲性信息的氣味只對(duì)特定的雄性傳粉者具有吸引作用(Schiestl,2005)。

      東南亞分布的蘭科植物性擬態(tài)欺騙類群僅見于蘭亞科翅柱蘭屬(Pterostylis)、裂緣蘭屬(Caladenia)、隱柱蘭屬(Cryptostylis)、Arthrochilus和胡須蘭屬(Calochilus)的部分種類,傳粉者類群涉及膜翅目土蜂總科(Scolioidea)、胡蜂總科(Vespoidea)、姬蜂總科(Ichneumonoidea)和雙翅目蕈蚊科(Mycetophilidae)、蚊科(Culicidae)的昆蟲(附表1)。

      3.3.3 繁殖地?cái)M態(tài) 繁殖地?cái)M態(tài)是指蘭科植物利用某些昆蟲的產(chǎn)卵行為,擬態(tài)昆蟲的繁殖地信息,吸引昆蟲前來產(chǎn)卵進(jìn)而實(shí)現(xiàn)傳粉的目的。產(chǎn)卵地?cái)M態(tài)欺騙方式較為復(fù)雜,通常擬態(tài)腐敗的氣味或者真菌的子實(shí)體(Urru et al.,2011)。

      東南亞分布的蘭科植物繁殖地?cái)M態(tài)類群見于杓蘭亞科兜蘭屬(Paphiopedilum),蘭亞科鎧蘭屬(Corybas)和鳥足蘭屬(Satyrium),樹蘭亞科火燒蘭屬(Epipactis)、天麻屬(Gastrodia)、石豆蘭屬(Bulbophyllum)、山蘭屬(Oreorchis)、釵子股屬(Luisia)的部分種類,傳粉者類群主要是雙翅目蕈蚊科(Mycetophilidae)、食蚜蠅科(Syrphidae)及喜腐蠅類(附表1)。

      3.3.4 信息素?cái)M態(tài) 信息素?cái)M態(tài)是指植物通過擬態(tài)一些與化學(xué)信號(hào)有關(guān)的信息素吸引傳粉者傳粉(Brodmann et al.,2009)。

      東南亞分布的蘭科植物已報(bào)道的信息素?cái)M態(tài)的種類較少,如杓蘭屬Cypripedium fargesii,傳粉者為扁足蠅科(Platypezidae)昆蟲;石斛屬華石斛(Dendrobium sinense)通過模擬蜜蜂報(bào)警信息素欺騙黑盾胡蜂(Vespa bicolor)傳粉(附表1)。

      4 結(jié)語

      盡管東南亞地區(qū)蘭科植還保留著極高的物種多樣性,并且不斷有新物種被發(fā)現(xiàn),但在歷史上也經(jīng)歷了一段人為采集和破壞的高峰。從18世紀(jì)中期到第一次世界大戰(zhàn)前,在緬甸、婆羅洲和新幾內(nèi)亞等熱帶雨林地區(qū),以兜蘭屬(Paphiopedilum)、蝴蝶蘭屬(Phalaenopsis)、石斛屬(Dendrobium)等為代表的觀賞價(jià)值極高的蘭科植物遭受到毀滅性的采集和破壞(Koopowitz et al.,2003)。這些因素造成很多野生蘭科植物種群逐漸退化或消失,目前全球有超過一半(約56.5%),含易危(vulnerable)、瀕危(endangered)或極危(critically endangered)三類的蘭科植物正面臨著滅絕的危險(xiǎn)(Gale et al.,2018)。蘭科植物的生態(tài)學(xué)特化(ecological specialization)導(dǎo)致其生存受到一系列生物與非生物因素的影響,在生活史的各個(gè)階段受到不同因素的制約(Cribb et al.,2003; Swarts & Dixon,2009)。蘭科植物多為珍稀瀕危植物,盡管所有的蘭科植物都被列入了《瀕危野生動(dòng)植物國際貿(mào)易公約》(CITES),占該公約應(yīng)保護(hù)植物在90%以上,并得到世界各國的支持和立法(Lavarack & Dixon,2003),但這也僅僅停留在科的水平上,目前沒有一種蘭科植物被列為IUCN保育計(jì)劃的特別物種(IUCN Conservation Planning Specialist Group)(Gale et al.,2018)。東南亞地區(qū)蘭科植物預(yù)計(jì)超過10 000種,約占世界蘭科植物的1/3,是蘭科植物最為豐富的區(qū)域之一,也是值得關(guān)注和研究的生物多樣性熱點(diǎn)區(qū)域。本文系統(tǒng)概述了東南亞地區(qū)蘭科植物的物種多樣性、生活習(xí)性及其傳粉系統(tǒng),盡管在諸多方面不斷有新物種被發(fā)現(xiàn),本文不能更加細(xì)致地進(jìn)行總結(jié)概述,但對(duì)于東南亞這一蘭科植物熱點(diǎn)區(qū)域的關(guān)注以及對(duì)于蘭科植物保育具有一定的理論和實(shí)踐意義。

      參考文獻(xiàn):

      ANGIOSPERM PHYLOGENY GROUP,CHASE MW,CHRISTENHUSZ MJM,et al.,2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG IV [J]. Bot J Linn Soc,181(1):1-20.

      ARAKAKI N,YASUDA K,KANAYAMA S,et al.,2016. Attraction of males of the cupreous polished chafer Protaetia pryeri pryeri (Coleoptera:Scarabaeidae) for pollination by an epiphytic orchid Luisia teres (Asparagales:Orchidaceae) [J]. Appl Entomol Zool,51:241-246.

      ARMBRUSTER WS,2012. Evolution and ecological implications of “specialized” pollinator rewards[M]// PATINY S. Evolution of plant-pollinator relationships. Cambridge,UK:Cambridge University Press:44-67.

      ARMBRUSTER WS,2017. The specialization continuum in pollination systems:diversity of concepts and implications for ecology,evolution and conservation [J]. Funct Ecol,31(1):88-100.

      BNZIGER H,1994. Studies on the natural pollination of three species of wild lady-slipper orchids (Paphiopedilum) in Southeast Asia [M]// PRIDGEON A. Proceedings of the 14th World Orchid Conference. Edinburgh:HMSO:201-202.

      BNZIGER H,1996. The mesmerizing wart:the pollination strategy of epiphytic lady slipper orchid Paphiopedilum villosum (Lindl.) Stein (Orchidaceae) [J]. Bot J Linn Soc,121(1):59-90.

      BNZIGER H,2002. Smart alecks and dumb flies:natural pollination of some wild lady slipper orchids (Paphiopedilum spp.,Orchidaceae) [M]// CLARK J,ELLIOTT WM,TINGLEY G,et al. Proceedings of the 16th World Orchid Conference. Vancouver:Vancouver Orchid Society:165-169,plates 45-57.

      BNZIGER H,SUN HQ,LUO YB,2005. The pollination of a slippery lady slipper orchid in SW China:Cypripedium guttatum Swarzt (Orchidaceae) [J]. Bot J Linn Soc,148(3):251-264.

      BNZIGER H,SUN HQ,LUO YB,2008. Pollination of wild lady slipper orchids Cypripedium yunnanense and C. flavum (Orchidaceae) in southwest China:why are there no hybrids? [J]. Bot J Linn Soc,156(1):51-64.

      BATEMAN RM,HOLLINGSWORTH PM,PRESTON J,et al.,2003. Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae) [J]. Bot J Linn Soc,142(1):1-40.

      BERNHARDT P,BURNS-BALOGH P,1986. Floral mimesis in Thelymitra nuda (Orchidaceae) [J].Plant Syst Evol,151(3):187-202.

      BRODMANN J,TWELE R,F(xiàn)RANCKE W,et al.,2009. Orchid mimics honey bee alarm pheromone in order to attract hornets for pollination [J]. Curr Biol,19(16):1368-1372.

      BROOKS TM,MITTERMEIER RA,DA FONSECA GAB,et al.,2006. Global biodiversity conservation priorities [J]. Science,313(5783):58-61.

      BUERKI S,F(xiàn)OREST F,ALVAREZ N,2014. Proto-South-East Asia as a trigger of early angiosperm diversification [J]. Bot J Linn Soc,174(3):326-333.

      CATLING PM,1990. Auto-pollination in the Orchidaceae [M]// ARDITTI J. Orchid biology,reviews and perspectives,Vol. V. Portland,OR:Timber Press:121-158.

      CHASE MW,CAMERON KM,F(xiàn)REUDENSTEIN JV,et al.,2015. An updated classification of Orchidaceae [J]. Bot J Linn Soc,177(2):151-174.

      CHEN JL,ZHOU YZ,WU SS,et al.,2019 Pollination mechanism and breeding system of Pleione formosana [J]. J For Envrion,39(5):460-466. [陳進(jìn)燎,周育真,吳沙沙,等,2019. 臺(tái)灣獨(dú)蒜蘭傳粉機(jī)制和繁育系統(tǒng)研究 [J]. 森林與環(huán)境學(xué)報(bào),39(5):460-466. ]

      CHEN XQ,LIU ZJ,ZHU GH,et al.,2009. Orchidaceae [M] WU ZY,RAVEN PH,HONG DY. Flora of China. Vol. 25 [M]. Beijing:Science Press & St. Louis:Missori Botanical Gorder Press.

      CHENG J,SHI J,SHANGGUAN FZ,et al.,2009. The pollination of a self-incompatible,food-mimic orchid,Coelogyne fimbriata (Orchidaceae),by female Vespula wasps [J]. Ann Bot,104(3):565-571.

      CHITTKA L,RAINE NE,2006. Recognition of flowers by pollinators [J]. Curr Opin Plant Biol,9(4):428-435.

      CHRISTENSEN DE,1994. Fly pollination in the Orchidaceae [M]// ARDITTI J. Orchid biology:review and perspectives. VI. John Wiley and Sons Ltd:413-454.

      CLEMENTS M,MACKENZIE A,COPSON G,et al.,2007. Biology and molecular phylogenetics of Nematoceras sulcatum,a second endemic orchid species from subantarctic Macquarie Island [J]. Polar Biol,30(7):859-869.

      COZZOLINO S,ACETO S,CAPUTO P,et al.,2001. Speciation processes in Eastern Mediterranean Orchis s.l. species:molecular evidence and the role of pollination biology [J]. Isr J Plant Sci,49(2):91-103.

      COZZOLINO S,WIDMER A,2005. Orchid diversity:an evolutionary consequence of deception? [J]. Trends in Ecol Evol,20(9):487-494.

      CRIBB PJ,KELL SP,DIXON KW,et al. 2003. Orchid conservation:a global perspective [M]// DIXON KW,KELL SP,BARRETT RL,et al. Orchid conservation. Kota Kinabalu,Sabah:Natural History Publications:1-24.

      CUN ZY,2005. A study on the reproductive ecology of Satyrium ciliatum Ldl. Orchidaceae) [D]. Beijing:University of Chinese Academy of Sciences. [寸智宇,2005. 緣毛鳥足蘭的生殖生態(tài)學(xué)研究 [D]. 北京:中國科學(xué)院大學(xué).]

      DAFNI A,CALDER DM,1987. Pollination by deceit and floral mimesis in Thelymitra antennifera (Orchidaceae) [J]. Plant Syst Evol,158(1):11-22.

      DAVIES KL,STPICZYNSKA M,2012. Comparative labellar anatomy of resin-secreting and putative resin-mimic species of Maxillaria s.l. (Orchidaceae:Maxillariinae) [J]. Bot J Linn Soc,170(3):405-435.

      DING H,2016.Reproductive biology of Hetaeria cristata (Orchidaceae) [D]. Nanchang:Nanchang University. [丁浩,2016. 白肋翻唇蘭生殖生物學(xué)研究 [D]. 南昌:南昌大學(xué).]

      DRESSLER RL,1981. The orchids—natural history and classification [M]. Cambridge,MA:Harvard University Press.

      DRESSLER RL,1993. Phylogeny and classification of the orchid family [M]. Portland:Timber Press.

      EFIMOV PG,2011. An intriguing morphological variability of Platanthera s.l. [J]. Eur J Environ Sci,1(2):125-136.

      ELTZ T,WHITTEN WM,ROUBIK DW,et al.,1999. Fragrance collection,storage,and accumulation by individual male orchid bees [J]. J Chem Ecol,25(1):157-176.

      FAN XL,BARRETT SCH,LIN H,et al.,2012. Rain pollination provides reproductive assurance in a deceptive orchid [J]. Ann Bot,110(5):953-958.

      GALE S,2007. Autogamous seed set in a critically endangered orchid in Japan:pollination studies for the conservation of Nervilia nipponica [J]. Plant Syst Evol,268(1/4):59-73.

      GALE SW,F(xiàn)ISCHER GA,CRIBB PJ,et al.,2018. Orchid conservation:Bridging the gap between science and practice[J]. Bot J Linn Soc,186(4):425-434.

      GAMISCH A,F(xiàn)ISCHER GA,COMES HP,2014. Recurrent polymorphic mating type variation in Madagascan Bulbophyllum species (Orchidaceae) exemplifies a high incidence of auto-pollination in tropical orchids [J]. Bot J Linn Soc,175(2):242-258.

      GASKETT AG,2011. Orchid pollination by sexual deception:pollinator perspectives [J]. Biol Rev,86(1):33-75.

      GIVNISH TJ,SPALINK D,AMES M,et al.,2015. Orchid phylogenomics and multiple drivers of their extraordinary diversification [J]. Proc R Soc B,282(1814):171-180.

      GIVNISH TJ,SPALINK D,AMES M,et al.,2016. Orchid historical biogeography,diversification,Antarctica and the paradox of orchid dispersal [J]. J Biogeogr,43(10):1905-1916.

      GONZLEZ-DAZ N,ACKERMAN JD,1988. Pollination,fruit set,and seed production in the orchid,Oeceoclades maculata [J]. Lindleyana,3(3):150-155.

      GRANTHAM MA,F(xiàn)ORD BA,WORLEY AC,2019. Pollination and fruit set in two rewardless slipper orchids and their hybrids (Cypripedium,Orchidaceae):large yellow flowers outperform small white flowers in the northern tall grass prairie [J]. Plant biol,21(6):997-1007.

      GRAVENDEEL B,SMITHSON A,SLIK FJW,et al.,2004. Epiphytism and pollinator specialization:drivers for orchid diversity [J]. Philos Trans R Soc B,359(1450):1523-1535.

      GUO YY,LUO YB,LIU ZJ,et al.,2012. Evolution and biogeography of the slipper orchids:Eocene vicariance of the conduplicate genera in the Old and New World Tropics [J]. PLoS ONE,7(6):e38788.

      GUO YY,LUO YB,LIU ZJ,et al.,2015. Reticulate evolution and sea-level fluctuations together drove species diversification of slipper orchids (Paphiopedilum) in South-East Asia [J]. Mol Ecol,24(11):2838-2855.

      HAGERUP O,1952. The morphology and biology of some primitive orchid flowers [J]. Phytomorphology 2:134-138.

      HAPEMAN JR,INOUE K,1997. Plant-pollinator interaction and floral radiation in Platanthera (Orchidaceae) [M]// GIVNISH TJ,SYTSMA KJ. Molecular evolution and adaptive radiation. Cambridge,UK:Cambridge University Press:433-454.

      HETHERINGTON-RAUTH MC,RAMREZ SR,2016. Evolution and diversity of floral scent chemistry in the euglossine bee-pollinated orchid genus Gongora [J]. Ann Bot,118(1):135-148.

      HSU TC,CHUNG SW,KUO CM,2012. Supplements to the orchid flora of Taiwan (VI) [J]. Taiwania,57(3):271-277.

      HSU TC,KUO CM,2010. Supplements to the orchid flora of Taiwan (IV):four additions to the genus Gastrodia [J]. Taiwania,55(3):243-248.

      HSU TC,KUO CM,2011. Gastrodia albida (Orchidaceae),a new species from Taiwan [J]. Ann Bot Fenn,48(3):272-275.

      HU AQ,HSU TC,LIU Y,2014. Gastrodia damingshanensis (Orchidaceae:Epidendroideae):a new myco-heterotrophic orchid from China [J]. Phytotaxa,175(5):256-262.

      IKEUCHI Y,SUETSUGU K,SUMIKAWA H,2015. Diurnal skipper Pelopidas mathias (Lepidoptera:Hesperiidae) pollinates Habenaria radiata (Orchidaceae) [J]. Entomol News,125(1):7-11.

      INDA LA,PIMENTEL M ,CHASE MW,2012. Phylogenetics of tribe Orchideae (Orchidaceae:Orchidoideae) based on combined DNA matrices:inferences regarding timing of diversification and evolution of pollination syndromes [J]. Ann Bot,110(1):71-90.

      INOUE K,KATO M,INOUE T,1995. Pollination ecology of Dendrobium setifolium,Neuwiedia borneensis,and Lecanorchis multiflora (Orchidaceae) in Sarawak [J]. Tropics,5(1/2):95-100.

      JAKUBSKA-BUSSE A,JASICKA-MISIAK I,POLIWODA A,et al.,2014. The chemical composition of the floral extract of Epipogium aphyllum Sw. (Orchidaceae):a clue for their pollination biology [J]. Arch Biol Sci,66(3):989-998.

      JERSKOV J,JOHNSON SD,JRGENS A,2009. Deceptive behaviour in pants. Ⅱ. Food deception by plants:from generalized systems to specialized floral mimicry [M]// BALUKA F. Plant-environment interactions,signaling and communication in plants,from sensory plant biology to active plant behavior. Berlin Heidelberg:Springer-Verlag:223-246.

      JERSKOV J,JOHNSON SD,KINDLMANN P,2006. Mechanisms and evolution of deceptive pollination in orchids [J]. Biol Rev Camb Philos Soc,81(2):219-235.

      JIN XH,CHEN SC,QIN HN,2005. Pollination system of Holcoglossum rupestre (Orchidaceae):A special and unstable system [J]. Plant Syst Evol,254(1/2):31-38.

      JIN XH,LI DZ,REN ZX,et al.,2012. A generalized deceptive pollination system of Doritis pulcherrima (Aeridinae:Orchidaceae) with non-reconfigured pollinaria [J]. BMC Plant Biol,12(1):67.

      JIN XH,REN ZX,XU SZ,et al.,2014. The evolution of floral deception in Epipactis veratrifolia (Orchidaceae):from indirect defense to pollination [J]. BMC Plant Biol,14(1):63.

      JOHNSON SD,1994. Preliminary observations on the pollination of Disperis capensis (Orchidaceae) [J]. S Afr Orchid J,25:22-23.

      JOHNSON SD,1996. Bird pollination in South African species of Satyrium (Orchidaceae) [J]. Plant Syst Evol,203(1):91-98.

      JOHNSON SD,ALEXANDERSSON R,LINDER HP,2003. Experimental and phylogenetic evidence for floral mimicry in a guild of fly-pollinated plants [J]. Bot J Linn Soc,80(2):289-304.

      JOHNSON SD,LINDER HP,STEINER KE,1998. Phylogeny and radiation of pollination systems in Disa (Orchidaceae) [J]. Am J Bot,85(3):402-411.

      JOHNSON SD,PETER CI,NILSSON LA,et al.,2003. Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants[J]. Ecology,84(11):2919-2927.

      JOPPA LN,ROBERTS DL,PIMM SL,2011. How many species of flowering plants are there? [J]. Proc R Soc London Ser B,278(1705):554-559.

      KATO M,TSUJI K,KAWAKITA A,2006. Pollinator and stem- and corm-boring insects associated with mycoheterotrophic orchid Gastrodia elata [J]. Ann Entomol Soc Am,99(5):851-858.

      KELLY MM,TOFT RJ,GASKETT AC,2013. Pollination and insect visitors to the putatively brood-site deceptive endemic spurred helmet orchid,Corybas cheesemanii [J]. New Zealand J Bot,51(3):155-167.

      KOCYAN A,ENDRESS PK,2001. Floral structure and development of Apostasia and Neuwiedia (Apostastioideae) and their relationships with other Orchidaceae [J]. Int J Plant Sci,162(4):847-867.

      KOCYAN A,QIU YL,ENDRESS PK,et al.,2004. A phylogenetic analysis of Apostasioideae (Orchidaceae) based on ITS,trnL-F and matK sequences [J]. Plant Syst Evol,247(3/4):203-213.

      KOCYAN A,VOGEL EF,CONTI E,et al.,2008. Molecular phylogeny of Aerides (Orchidaceae) based on one nuclear and two plastid markers:a step forward in understanding the evolution of the Aeridinae [J]. Mol Phylogenet Evol,48(2):422-443.

      KOOPOWITZ H,LAVARACK PS,DIXON KW,2003. The nature of threats to orchid conservation [M]// DIXON KW,KELL SP,BARRETT RL,et al. Orchid conservation. Kota Kinabalu,Sabah:Natural History Publications:25-42.

      KURZWEIL H,WESTON PH,PERKINS AJ,2005. Morphological and ontogenetic studies on the gynostemium of some Australian members of Diurideae and Cranichideae (Orchidaceae) [J]. Telopea,11(1):11-33.

      LI P,HUANG BQ,PEMBERTON RW,et al.,2011. Floral display influences male and female reproductive success of the deceptive orchid Phaius delavayi [J].Plant Syst Evol,296(1-2):21-27.

      LI P,LUO YB,BERNHARDT P,et al.,2008a. Pollination of Cypripedium plectrochilum (Orchidaceae) by Lasioglossum spp. (Halictidae):the roles of generalist attractants versus restrictive floral architecture [J]. Plant Biol,10(2):220-230.

      LI P,LUO YB,2009. Reproductive biology of an endemic orchid Cypripedium smithii in China and reproductive isolation between C. smithii and C. tibeticum [J]. Biodivers Sci,17(4):406-413. [李鵬,羅毅波,2009. 中國特有蘭科植物褐花杓蘭的繁殖生物學(xué)特征及其與西藏杓蘭的生殖隔離研究 [J]. 生物多樣性,17(4):406-413.]

      LI P,LUO YB,BERNHARDT P,et al.,2006. Deceptive pollination of the Lady’s Slipper Cypripedium tibeticum (Orchidaceae) [J]. Plant Syst Evol,262(1-2):53-63.

      LI P,LUO YB,DENG YX,KOU Y,2008b. Pollination of the lady’s slipper Cypripedium henryi Rolfe (Orchidaceae) [J]. Bot J Linn Soc,156(4):491-499.

      LIU KW,LIU ZJ,HUANG L,et al.,2006. Pollination:self-fertilization strategy in an orchid [J]. Nature,441(7096):945-946.

      LIU ZJ,LIU KW,CHEN LJ,et al.,2006. Conservation ecology of endangered species Paphiopedilum armeniacum (Orchidaceae) [J]. Acta Ecol Sin,26(9):2791-2800. [劉仲健,劉可為,陳利君,等,2006. 瀕危物種杏黃兜蘭的保育生態(tài)學(xué) [J]. 生態(tài)學(xué)報(bào),26(9):2791-2800.]

      LUBINSKY P,VAN DER DAM M,VAN DER DAM A,2006. Pollination of Vanilla and evolution in Orchidaceae [J]. Lindleyana,75 (12):926-929.

      LUO YB,CHEN SC,2010. Observations of putative pollinators of Hemipilia flabellata Bur. et Franch. (Orchidaceae) in north-west Yunnan Province,China [J]. Bot J Linn Soc,131(1):45-64.

      LTTGE U,2004. Ecophysiology of crassulacean acid metabolism (CAM) [J]. Ann Bot,93(6):629-652

      MA XK,SHI J,BNZIGER H,et al.,2016. The functional significance of complex floral colour pattern in a food-deceptive orchid [J]. Funct Ecol,30(5):721-732.

      MANT JG,SCHIESTL FP,PEAKALL R,et al.,2002. A phylogenetic study of pollinator conservatism among sexually deceptive orchids [J]. Evolution,56(5):888-898

      MARTOS F,CARIOU ML,PAILLER T,et al.,2015. Chemical and morphological filters in a specialized floral mimicry system [J]. New Phytol,207(1):225-234.

      MATSUI K,USHIMARU T,F(xiàn)UJITA N,2001. Pollinator limitation in a deceptive orchid,Pogonia japonica,on a floating peat mat [J]. Plant Species Biol,16(3):231-235.

      MICHENEAU C,F(xiàn)OURNEL J,PAILLER T,2006. Bird pollination in an angraecoid orchid on Reunion Island (Mascarene Archipelago,Indian Ocean) [J]. Ann Bot,97(6):965-974.

      OKADA H,KUBO S,MORI Y,1996. Pollination system of Neuwiedia veratrifolia Blume (Orchidaceae,Apostasioideae) in the Malesian wet tropics [J]. APG,47(2):173- 181.

      PANSARIN ER,AGUIAR JMRVB,PANSARIN LM,2014. Floral biology and histochemical analysis of Vanilla edwallii Hoehne (Orchidaceae:Vanilloideae):an orchid pollinated by Epicharis (Apidae:Centridini) [J]. Plant Species Biol,29(3):242-252.

      PANSARIN ER,PANSARIN LM,2014. Floral biology of two Vanilloideae (Orchidaceae) primarily adapted to pollination by euglossine bees [J]. Plant Biol,16(6):1104-1113.

      PANSARIN LM,PANSARIN ER,SAZIMA M,2008. Reproductive biology of Cyrtopodium polyphyllum (Orchidaceae):a Cyrtopodiinae pollinated by deceit [J]. Plant Biol,10(5):650-659.

      PATT JM,MERCHANT MW,WILLIAMS DRE,1989. Pollination biology of Platanthera stricta (Orchidaceae) in Olympic National Park,Washington [J]. Am J Bot,76:1097-1106.

      PEAKALL R,BEATTIE AJ,1989. Pollination of the orchid Microtis parviflora R. Br. by flightless worker Ants [J]. Funct Ecol,3(5):515-522.

      PEDERSEN H,WATTHANA S,SRIMUANG K,2013. Orchids in the torrent:on the circumscription,conservation and rheophytic habit of Epipactis flava [J]. Bot J Linn Soc,172(3):358-370.

      PEDRON M,BUZATTO CR,SINGER RB,et al.,2012. Pollination biology of four sympatric species of Habenaria (Orchidaceae:Orchidinae) from southern Brazil [J]. Bot J Linn Soc,170(2):141-156.

      PETER CI,JOHNSON SD,2009. Autonomous self-pollination and pseudo-fruit set in South African species of Eulophia (Orchidaceae)[J]. S Afr J Bot,75(4):791-797.

      PETTERSSON B,1989. Pollination in the African species of Nervilia (Orchidaceae) [J]. Lindleyana,4:33-41.

      PRADHAN GM,1983. Vanda cristata[J]. America Orchid Soc Bull,52(5):464-468

      PRIDGEON AM,BATEMAN RM,COX AV,et al.,1997. Phylogenetics of subtribe Orchidinae (Orchidoideae,Orchidaceae) based on nuclear ITS sequenes,1. intergeneric relationships and polyphyly of Orchis sensu lato [J]. Lindleyana,12(2):89-109.

      PRIDGEON AM,CRIBB PJ,CHASE MW,et al.,1999. Genera Orchidacearum Vol. 1,General Introduction,Apostasioideae & Cypripedioideae [M]. Oxford:Oxford University Press.

      PRIDGEON AM,CRIBB P J,CHASE MW,et al.,2001. Genera Orchidacearum Vol. 2,Orchidoideae,Part 1 [M]. Oxford:Oxford University Press.

      PRIDGEON AM,CRIBB P J,CHASE MW,et al.,2003. Genera Orchidacearum Vol. 3,Orchidoideae,Part 2 [M]. Oxford:Oxford University Press.

      PRIDGEON AM,CRIBB PJ,CHASE MW,et al.,2005. Genera Orchidacearum Vol. 4,Epidendroideae (Part 1) [M]. Oxford:Oxford University Press.

      PRIDGEON AM,CRIBB PJ,CHASE MW,et al.,2009. Genera Orchidacearum Vol. 5,Epidendroideae (Part 2) [M]. Oxford:Oxford University Press.

      PRIDGEON AM,CRIBB PJ,CHASE MW,et al.,2014. Genera Orchidacearum. Vol. 6,Epidendroideae (Part 3) [M]. Oxford:Oxford University Press.

      RAMREZ SR,ELTZ T,F(xiàn)UJIWARA MK,et al.,2011. Asynchronous diversification in a specialized plant-pollinator mutualism [J]. Science,333(6050):1742-1746.

      REN ZX ,LI DZ ,BERNHARDT P,et al.,2011. Flowers of Cypripedium fargesii (Orchidaceae) fool flat-footed flies (Platypezidae) by faking fungus-infected foliage [J]. Proc Natl Acad Sci USA,108(18):7478-7480.

      REN ZX,WANG H,BERNHARDT P,et al.,2014. Which food-mimic floral traits and environmental factors influence fecundity in a rare orchid,Calanthe yaoshanensis? [J]. Bot J Linn Soc,176(3):421-433.

      RICKLEFS RE,RENNER SS,1994. Species richness within families of flowering plants [J]. Evolution,48(5):1619-1636.

      RUDALL PJ,BATEMAN RM,2002. Roles of synorganisation,zygomorphy and heterotopy in floral evolution:the gynostemium and labellum of orchids and other lilioid monocots [J]. Biol Rev Camb Philos Soc,77(3):403-441.

      SCHIESTL FP,2005. On the success of a swindle:pollination by deception in orchids [J]. Naturwissenschaften,92(6):255-264.

      SCHIESTL FP,COZZOLINO S,2008. Evolution of sexual mimicry in the orchid subtribe orchidinae:the role of preadaptations in the attraction of male bees as pollinators [J]. BMC Evol Biol,8(1):27

      SCHIESTL FP,SCHLTER PM,2009. Floral isolation,specialized pollination,and pollinator behavior in orchids [J]. Ann Rev Entomol,54(1):425-446.

      SHI J,LUO YB,BERNHARDT P,et al.,2009. Pollination by deceit in Paphiopedilum barbigerum (Orchidaceae):a staminode exploits the innate colour preferences of hoverflies (Syrphidae) [J]. Plant Biol,11(1):17-28.

      SILVERA K,SANTIAGO LS,CUSHMAN JC,et al.,2009. Crassulacean acid metabolism and epiphytism linked to adaptive radiations in Orchidaceae [J]. Plant Physiol,149(4):1838-1847.

      SINGER RB,SAZIMA M,1999. The pollination mechanism in the ‘Pelexia alliance’ (Orchidaceae:Spiranthinae) [J]. Bot J Linn Soc,1999,131(3):249-262.

      SOSA V,CAMERON KM,ANGULO DF,et al.,2016. Life form evolution in epidendroid orchids:Ecological consequences of the shift from epiphytism to terrestrial habit in Hexalectris [J]. Taxon,65(2):235-248.

      SPAETHE J,STREINZER M,PAULUS HF,2010. Why sexually deceptive orchids have colored flowers [J]. Commun Integr Biol,3(2):139-141.

      SRIMUANG K,WATTHANA S,PEDERSEN H,et al.,2010. Aspects of biosubsistence in Sirindhornia (Orchidaceae):Are the narrow endemics more reproductively restricted than their widespread relative? [J]. Ann Bot Fenn,47(6):449-459.

      ST GEORGE I,2007. The pollination of Nematoceras iridescens [J]. J N Z Nat Orchid Gro,102:10.

      STEINER KE,1989. The pollination of Disperis (Orchidaceae) by oil-collecting bees in southern Africa [J]. Lindleyana,4:164-183.

      SUETSUGU K,2013. Autogamous fruit set in a mycoheterotrophic orchid Cyrtosia septentrionalis [J]. Plant Syst Evol,299:481-486.

      SUETSUGU K,2014. Gastrodia flexistyloides (Orchidaceae),a new mycoheterotrophic plant with complete cleistogamy from Japan [J]. Phytotaxa,175(5):270-274.

      SUETSUGU K,2015. Autonomous self-pollination and insect visitors in partially and fully mycoheterotrophic species of Cymbidium (Orchidaceae) [J]. J Plant Res,128(1):115-125.

      SUETSUGU K,F(xiàn)UKUSHIMA S,2014a. Pollination biology of the endangered orchid Cypripedium japonicum in a fragmented forest of Japan [J]. Plant Species Biol,29(3):294-299.

      SUETSUGU K,F(xiàn)UKUSHIMA S,2014b. Bee pollination of the endangered orchid Calanthe discolor through a generalized food-deceptive system [J]. Plant Syst Evol,300(3):453-459.

      SUETSUGU K,NAITO R,F(xiàn)UKUSHIMA S,2015. Pollination system and the effect of inflorescence size on fruit set in the deceptive orchid Cephalanthera falcata [J]. J Plant Res,128(4):585-594.

      SUETSUGU K,TANAKA K,2014. Consumption of Habenaria sagittifera pollinia by juveniles of the katydid Ducetia japonica[J]. Entomol Sci,17(1):122-124.

      SUGIURA N,1995. The pollination ecology of Bletilla striata (Orchidaceae) [J]. Ecol Res,10(2):171-177.

      SUGIURA N,2013. Specialized pollination by carpenter bees in Calanthe striata (Orchidaceae),with a review of carpenter bee pollination in orchids [J]. Bot J Linn Soc,171(4):730-743.

      SUGIURA N,2016. Mate-seeking and oviposition behavior of Chyliza vittata (Diptera:Psilidae) infesting the leafless orchid Gastrodia elata [J]. Entomol Sci,19(2):129-132.

      SUGIURA N,F(xiàn)UJIE T,INOUE K,et al.,2001. Flowering phenology,pollination,and fruit set of Cypripedium macranthos var. rebunense,a threatened lady’s slipper (Orchidaceae) [J]. J Plant Res,114(2):171-178.

      SUGIURA N,GOUBARA M,KITAMURA K,et al.,2002. Bumblebee pollination of Cypripedium macranthos var. rebunense (Orchidaceae):a possible case of floral mimicry of Pedicularis schistostegia (Orobanchiaceae) [J]. Plant Syst Evol,235(1-4):189-195.

      SUGIURA N,OKAJIMA Y,MAETA Y,1997. A note on the pollination of Oreorchis patens (Orchidaceae) [J]. Ann Tsukuba Bot Gard,16:69-74.

      SUN HQ,HUANG BQ,YU XH,et al.,2011. Reproductive isolation and pollination success of rewarding Galearis diantha and non-rewarding Ponerorchis chusua (Orchidaceae) [J]. Ann Bot,107(1):39-47.

      SUN M,1997. Genetic Diversity in three colonizing orchids with contrasting mating systems[J]. Am J Bot,84(2):224-232.

      SWARTS ND,BATTY A,HOPPER S,et al. 2007. Does integrated conservation of terrestrial orchids work? [J]. Lankesteriana,7(1-2):219-222.

      SWARTS ND,DIXON KW,2009. Terrestrial orchid conservation in the age of extinction [J]. Ann Bot,104(3):543-556.

      S'WICZKOWSKA E,KOWALKOWSKA AK,2015. Floral nectary anatomy and ultrastructure in mycoheterotrophic plant,Epipogium aphyllum Sw. (Orchidaceae) [J]. Sci World J,2015:1-11.

      TAAAJ I,OSTROWIECKA B,WOSTOWSKA E,et al.,2017. The ability of spontaneous autogamy in four orchid species:Cephalanthera rubra,Neottia ovata,Gymnadenia conopsea,and Platanthera bifolia [J]. Acta Biol Crac Ser Bot,59(2):51-61.

      TAN K,MALABRIGO PL,REN MX,2020. Origin and evolution of biodiversity hotspots in Southeast Asia [J]. Acta Ecol Sin,2020,40(11):3866-3877. [譚珂,Malabrigo PL,任明迅,2019. 東南亞生物多樣性熱點(diǎn)地區(qū)的形成與演化 [J]. 生態(tài)學(xué)報(bào),40(11):3866-3877.]

      THOMAS DC,HUGHES M,PHUTTHAI T,et al.,2012. West to east dispersal and subsequent rapid diversification of the mega-diverse Begonia (Begoniaceae) in the Malesian archipelago [J]. J Biogeogr,39(1):98-113.

      TIFFNEY BH,MAZE SJ,1995. Angiosperm growth habit,dispersal and diversification reconsidered [J]. Ecol Evol,9(1):93-117.

      TREMBLAY RL,1992. Trends in the pollination ecology of the Orchidaceae:evolution and systematics [J]. Can J Bot,70(3):642-650.

      TREMBLAY RL,ACKERMAN JD,ZIMMERMAN JK,et al.,2005. Variation in sexual reproduction in orchids and its evolutionary consequences:a spasmodic journey to diversification [J]. Bot J Linn Soc,84(1):1-54.

      URRU I,STENSMYR MC,HANSSON BS,2011. Pollination by brood-site deception[J]. Phytochemistry,72(13):1655-1666.

      VAN DER CINGEL NA,2001. An atlas of orchid pollination:America,Africa,Asia and Australia [M]. Rotterdam:Balkema.

      VAN DER DAM AR,HOUSEHOLDER JE,LUBINSKY P,2010. Vanilla bicolor Lindl. (Orchidaceae) from the Peruvian Amazon:auto-fertilization in Vanilla and notes on floral phenology [J]. Genet Resour Crop Evol,57(4):473-480.

      VAN DER NIET T,COZIEN RJ,JOHNSON SD,2015. Experimental evidence for specialized bird pollination in the endangered South African orchid Satyrium rhodanthum and analysis of associated floral traits [J]. Bot J Linn Soc,177(1):141-150.

      VAN DER NIET T,HANSEN DM,JOHNSON SD,2011. Carrion mimicry in a South African orchid:flowers attract a narrow subset of the fly assemblage on animal carcasses [J]. Ann Bot,107(6):981-992.

      VAN DER PIJL,DODSON CH,1966. Orchid flowers:their pollination and evolution [M]. Coral Gables,USA:University of Miami Press.

      WALLACE LE,2006. Spatial genetic structure and frequency of interspecific hybridization in Platanthera aquilonis and P. dilatata (Orchidaceae) occurring in sympatry [J]. Am J Bot,93(7):1001-1009.

      WANG CQ,LUO YB,TAI YD,et al.,2008. Ants pollinate Neottia listeroides (Orchidaceae) in Sichuan,China [J]. J Syst Evol,46(6):836-846. [王淳秋,羅毅波,臺(tái)永東,等,2008. 螞蟻在高山鳥巢蘭中的傳粉作用 [J]. 植物分類學(xué)報(bào),46(6):836-846.]

      WANG W,2013. Pollination biology of Calanthe alismaefolia [D]. Nanchang:Nanchang University. [王武,2013. 澤瀉蝦脊蘭的傳粉生物學(xué)研究 [D]. 南昌:南昌大學(xué).]

      WESTEBERHARD K,NEUBIG KM,WHITTEN WM,et al.,2010. Evolution along the crassulacean acid metabolism continuum [J]. Funct Plant Biol,37(11):995-1010.

      WESTEBERHARD MJ,SMITH JAC,WINTER K,2011. Photosynthesis,reorganized [J]. Science,332(6027):311-312.

      WHITTEN WM,WILLIAMS NH,BLANCO MA,et al.,2007. Molecular phylogenetics of Maxillaria and related genera (Orchidaceae:Cymbidieae) based upon combined molecular data sets [J]. Am J Bot,94(11):1860-1889.

      WILLEMS JH,LAHTINEN ML,1997. Impact of pollination and resource limitation on seed production in a border population of Spiranthes spiralis (Orchidaceae) [J]. Plant Biol,46(4):365-375.

      XIONG YZ,LIU CQ,HUANG SQ,2015. Mast fruiting in a hawkmoth-pollinated orchid Habenaria glaucifolia:an 8-year survey [J]. J Plant Ecol,8(2):136-141.

      YANG XQ,2007. Pollination biology of Ponerorchis chusua and two Galearis species[D]. Beijing:University of Chinese Academy of Sciences. [楊小琴,2007. 廣布小蝶蘭及兩種根莖蘭屬植物的傳粉生物學(xué)研究 [D]. 北京:中國科學(xué)院大學(xué).]

      ZHA ZB,TANG J,LIANG YL,et al.,2016. Breeding system and pollination biology of Goodyera foliosa (Orchidaceae) [J]. J Trop Subtrop Bot,24(3):333-341. [查兆兵,唐靜,梁躍龍,等,2016. 多葉斑葉蘭繁育系統(tǒng)與傳粉生物學(xué)研究[J]. 熱帶亞熱帶植物學(xué)報(bào),24(3):333-341.]

      ZHANG HF,LI LQ,LIU ZJ,et al.,2010. The butterfly Pieris rapae resulting in the reproductive success of two transplanted orchids in a botanical garden [J]. Biodivers Sci,18(1):11-18.[張洪芳,李利強(qiáng),劉仲健,等,2010. 菜粉蝶對(duì)兩種遷地保護(hù)的蘭科植物傳粉和繁殖成功的作用 [J]. 生物多樣性,18(1):11-18.]

      ZHANG LY,2015. Pollination biology and germination characteristics of Cleisostoma paniculatum [D]. Fuzhou:Fujian Agriculture and Forestry University. [張林瀛,2015. 大序隔距蘭(Cleisostoma paniculatum)傳粉生物學(xué)及種子萌發(fā)特性研究 [D]. 福州:福建農(nóng)林大學(xué).]

      ZHANG WL,GAO JY,2018. High fruit sets in a rewardless orchid:a case study of obligate agamospermy in Habenaria [J]. Aust J Bot,66(2):144-151.

      ZHANG Z,2013. Reproductive ecology of Phalaenopsis pulcherrima(Orchidaceae),a species endemic to East Asia [D]. Haikou:Hainan University [張哲,2013. 東亞特有種五唇蘭繁殖生態(tài)學(xué)研究 [D]. 海口:海南大學(xué).]

      ZHANG Z,2019.Conservation biology of three Phalaenopsis species in Hainan Island [D]. Haikou:Hainan University. [張哲,2019. 海南三種蝴蝶蘭屬植物的保育生物學(xué)研究 [D]. 海口:海南大學(xué).]

      ZHANG ZB,CHENG J,YANG M,et al.,2015. Food-deceptive pollination of Vanda concolor (Orchidaceae) [J]. J Beijing For Univ,37(6):100-106. [張自斌,程瑾,楊媚,等,2015. 琴唇萬代蘭食源性欺騙傳粉研究 [J]. 北京林業(yè)大學(xué)學(xué)報(bào),37(6):100-106.]

      ZHOU T,JIN XH,2018. Molecular systematics and the evolution of mycoheterotrophy of tribe Neottieae (Orchidaceae,Epidendroideae) [J]. Phytokeys,94(94):39-49.

      ZHOU X,LIN H,F(xiàn)AN XL,et al.,2012. Autonomous self-pollination and insect visitation in a saprophytic orchid,Epipogium roseum (D. Don) Lindl [J]. Aus J Bot,60(2):154.

      ZHOU XX,2017.Taxonomy and phylogeography study of Sect. Goodyera (Orchidaceae) [D]. Shanghai:East China Normal University. [周曉旭,2017. 斑葉蘭組Sect. Goodyera(蘭科)分類學(xué)與譜系地理學(xué)研究 [D]. 上海:華東師范大學(xué).]

      (責(zé)任編輯 李 莉)

      猜你喜歡
      物種多樣性東南亞
      東南亞瑤族研究回顧
      閩菜“太平肉燕”飄香東南亞
      海峽姐妹(2017年10期)2017-12-19 12:26:28
      HARD CELL
      HARD CELL
      漢語世界(2017年3期)2017-06-05 15:01:42
      江西大崗山木荷天然林群落物種多樣性分析
      綠色科技(2016年21期)2016-12-27 10:53:26
      納板河保護(hù)區(qū)不同林分群落喬木物種多樣性研究
      用固定樣地法監(jiān)測(cè)銀瓶山闊葉林物種多樣性
      奇幻迷香 尋味東南亞
      美食(2016年8期)2016-08-21 13:57:50
      輝騰錫勒風(fēng)電場(chǎng)區(qū)域內(nèi)物種多樣性研究
      美俄聚焦東南亞
      本溪市| 鄂伦春自治旗| 乡宁县| 雷波县| 堆龙德庆县| 城固县| 兴和县| 珠海市| 宁都县| 雷州市| 定州市| 来凤县| 甘泉县| 江陵县| 安图县| 铜鼓县| 潍坊市| 怀宁县| 济阳县| 安远县| 文昌市| 横峰县| 临海市| 无为县| 定远县| 九台市| 方山县| 习水县| 绩溪县| 福安市| 西吉县| 泾川县| 剑阁县| 瑞金市| 永善县| 灵丘县| 十堰市| 江西省| 临洮县| 固安县| 神木县|