• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    COMPLETE MOMENT CONVERGENCE OF WEIGHTED SUMS FOR ARRAYS OF DEPENDENT RANDOM VARIABLES

    2016-12-07 08:58:49GUOMingleDAIYuZHANGLijun
    數(shù)學(xué)雜志 2016年6期
    關(guān)鍵詞:安徽師范大學(xué)相依收斂性

    GUO Ming-le,DAI Yu,ZHANG Li-jun

    (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

    COMPLETE MOMENT CONVERGENCE OF WEIGHTED SUMS FOR ARRAYS OF DEPENDENT RANDOM VARIABLES

    GUO Ming-le,DAI Yu,ZHANG Li-jun

    (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

    In this paper,the complete moment convergence of weighted sums for sequences of dependent random variables is investigated.By applying moment inequality and truncation methods,some sufficient conditions of complete moment convergence of weighted sums for sequences of dependent random variables are established.We extend the results of Volodin et al.(2004) and Chen et al.(2006)for independent random variables to negatively associated and negatively dependent random variables,which improve and generalize the results of Sung(2011),Wu(2012) and Guo and Zhu(2012).

    negatively associated;negatively dependent;ρ?-mixing;complete moment convergence;complete convergence

    2010 MR Subject Classification:60F15

    Document code:AArticle ID:0255-7797(2016)06-1120-13

    1 Introduction

    Hsu and Robbins[1]introduced the concept of complete convergence of{Xn}.A sequence{Xn,n=1,2,···}is said to converge completely to a constant C if

    Moreover,they proved that the sequence of arithmetic means of independent identically distributed(i.i.d.)random variables converge completely to the expected value if the variance of the summands is finite.The converse theorem was proved by Erds[2].In view of the Borel-Cantelli lemma,the complete convergence implies that almost sure convergence. Therefore the complete convergence is very important tool in establishing almost sure convergence.The result of Hsu-Robbins-Erds is a fundamental theorem in probability theory and was generalized and extended in several directions by many authors.

    We recall that the array{Xni,i≥1,n≥1}of random variables is said to be stochastically dominated by a random variable X if there exists a positive constant C,such that P{|Xni|>x}≤CP{|X|>x}for all x≥0,i≥1 and n≥1.

    Volodin et al.[3]and Chen et al.[4](β>-1 and β=-1,respectively)obtained complete convergence for weighted sums of arrays of rowwise independent Banach-spacevalued random elements.

    Theorem 1.1[3,4]Suppose that β≥-1.Let{Xni,i≥1,n≥1}be an array of rowwise independent random elements in a real separable Banach space which are stochastically dominated by a random variable X.Let{ani,i≥1,n≥1}be an array of constants satisfying

    and

    for some 0<θ≤2 andμsuch that θ+μ/r<2 and 1+μ+β>0.If E|X|θ+(1+μ+β)/r<∞Xni→0 in probability,then

    If β<-1,then(1.3)is immediate.Hence Theorem 1.1 is of interest only for β≥-1.

    Recently,Sung[5]extended Theorem 1.1 to negatively associated and negatively dependent random variables when θ=1.Moreover,similar results for sequences of φ-mixing and ρ?-mixing random variables are also established.

    Theorem 1.2[5]Suppose that β≥-1.Let{Xni,i≥1,n≥1}be an array of rowwise negatively associated random variables which are stochastically dominated by a random variable X.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and

    If EXni=0 for all i≥1,n≥1 and

    then

    Guo and Zhu[6]extended Theorem 1.2 to complete moment convergence of the supremum of partial sums for arrays of negatively associated random variables when β>-1. However,the proof of Guo and Zhu[6]does not work for the case of β=-1.

    Theorem 1.3[6]Under the conditions of Theorem 1.2.If β>-1,then

    Wu[7]extended Theorem 1.1 to negatively dependent random variables when β>-1. Wu[7]also considered the case of 1+μ+β=0(β>-1).However,the proof of Wu[7]does not work for the case of β=-1.

    Theorem 1.4[7]Suppose that β>-1.Let{Xni,i≥1,n≥1}be an array of rowwise negatively dependent random variables which are stochastically dominated by a random variable X.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and(1.2)for some θ andμsuch thatμ<2r and 0<θ<min{2,2-μ/r}.Furthermore,assume that EXni=0 for all i≥1 and n≥1 if θ+(1+μ+β)/r≥1.If

    then

    In this paper,We deal with more general weights and establish some weaker sufficient conditions for complete moment convergence of weighted sums for arrays of negatively associated and negatively dependent random variables.Similar results for sequences of ρ?-mixing random variables are also obtained.The results of Volodin et al.[3],Chen et al.[4],Sung [5],Wu[7]and Guo and Zhu[6]are improved and generalized.

    For the proofs of the main results,we need to restate a few lemmas for easy reference. Throughout this paper,the symbol C denotes a positive constant which is not necessarily the same one in each appearance,I(A)denotes the indicator function of A.For a finite set B,the symbol#B denotes the number of elements in the set B.Let an?bndenote that there exists a constant C>0 such that an≤Cbnfor sufficiently large n.Also,let logx denote lnmax(e,x).

    Lemma 1.1[5]Let the sequence{Xn,n≥1}of random variables be stochastically dominated by a random variable X.Then for any p>0,x>0,

    The following lemma is well known,and its proof is standard.

    Lemma 1.2 Let X be a random variable.For any α>0,r>0,the following statements hold:

    One of the most interesting inequalities to probability theory is the Rosenthal-type inequality.The Rosenthal-type inequality plays an important role in establishing complete convergence.The Rosenthal-type inequalities for sequences of dependent random variables were established by many authors.

    The concept of negatively associated random variables was introduced by Alam and Saxena[8]and was carefully studied by Joag-Dev and Proschan[9].A finite family of random variables{Xi,1≤i≤n}is said to be negatively associated,if for every pair disjoint subset A and B of{1,2,···,n}and any real nondecreasing coordinate-wise functions f1on RAand f2on RB,

    whenever the covariance exists.An infinite family of random variables{Xi,-∞<i<∞} is negatively associated if every finite subfamily is negatively associated.

    The following lemma is a Rosenthal-type inequality for negatively associated random variables.

    Lemma 1.3[10]Let{Xn,n≥1}be a sequence of negatively associated random variables with EXn=0 and E|Xn|p<∞for any n≥1,p≥1.Then there exist constants Cp>0 and Dp>0 depending only on p such that,

    and

    The concept of negatively dependent random variables was given by Lehmann[11].A finite family of random variables{Xi,1≤i≤n}is said to be negatively dependent(or negatively orthant dependent)if for all real numbers x1,x2,···,xn,

    An infinite family of random variables is negatively dependent if every finite subfamily is negatively dependent.

    Obviously,negatively associated implies negatively dependent from the definition of negatively associated and negatively dependent.But negatively dependent does not imply negatively associated,so negatively dependent is much weaker than negatively associated.The following lemma is a Rosenthal-type inequality for negatively dependent random variables.

    Lemma 1.4[12]Let{Xn,n≥1}be a sequence of negatively dependent random variables with EXn=0 and E|Xn|p<∞for any n≥1,p≥1.Then there exist constants Cp>0 and Dp>0 depending only on p such that,

    and

    Let{Xn,n≥1}be a sequence of random variables defined on probability space (Ω,F,P).For any S?N,letFS=σ(Xk,k∈S).Define the ρ?-mixing coefficients by

    where S,T are the finite subsets of positive integers such that dist(S,T)≥k.We call {Xn,n≥1}a ρ?-mixing sequence if there exists k≥1 such that ρ?(k)<1.

    Note that if{Xn,n≥1}is a sequence of independent random variables,then ρ?(n)=0 for all n≥1.

    The following lemma is a Rosenthal-type inequality for ρ?-mixing random variables.

    Lemma 1.5[13,14]Let{Xn,n≥1}be a sequence of ρ?-mixing random variables, Yn∈σ(Xn),EYn=0,E|Yn|p<∞,n≥1,p≥1.Then there exist constants Cp>0 and Dp>0 depending only on p,k and ρ?(k)where ρ?(k)<1 such that,

    and

    2 Main Results

    Theorem 2.1 Suppose that β≥-1.Let{Xni,i≥1,n≥1}be an array of rowwise negatively associated random variables which are stochastically dominated by a random variable X satisfying E|X|p<∞for some p>1.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and

    Furthermore,assume that

    if p≥2.Let EXni=0 for all i≥1 and n≥1.Then

    Proof Without loss of generality,we can assume that ani>0,1≤i≤n,n≥1 (otherwise,we useandinstead of ani,resp.,and note that ani=(1.1)and(2.1),without loss of generality,we can assume that

    For any i≥1,n≥1,let

    Noting that EXni=0,>1)for any i≥1,n≥1,we have

    Therefore

    Hence,in order to prove(2.3),it suffices to prove that I1<∞and I2<∞.Take δ>0 suchthat p-δ>max(1,q).By Lemma 1.1,Lemma 1.2 and(2.4),we get that

    Next,we will prove I1<∞.Noting that p>1,for any M≥p,we obtain by Markov's inequality that

    Case 1(1<p<2).Taking δ>0 such that p+δ<2,we get by Lemma 1.1,Lemma 1.3,Crinequality,(2.5)and(2.6)that

    Set Inj={i,(n(j+1))-r<ani≤(nj)-r},j=1,2,···.Then∪j≥1Inj={1,2,···,}.Note also that for all k≥1,n≥1,M≥q,

    Hence we have

    Note that for any p>1,δ>0,

    By Lemma 1.2 and(2.8),we obtain that

    By(2.8),

    By(2.9),(2.10)and(2.11),for any p>1,δ>0,we have

    Combining with(2.7),we get that I1<∞.

    Case 2(p≥2).Taking sufficient large δ>0 such that β-α(p+δ)/2<-1,we get by Lemma 1.3,(2.6)and Crinequality that

    From the proof of(2.7)and(2.12),we see that I11<∞.Since E|X|p<∞,p≥2 implies EX2<∞,by(2.2),we obtain that

    Thus I1<∞.

    Remark 2.1 As in Remark 2.3 of Guo and Zhu[6],(2.3)implies(1.7).Hence,when θ+(1+μ+β)/r>1,Theorem 1.1 follows from Theorem 2.1 by taking p=θ+(1+μ+β)/r,q= θ,since

    Hence conditions(1.1)and(2.1)are weaker than conditions(1.1)and(1.2).Theorem 2.1 not only extends the result of Volodin et al.[3]and Chen et al.[4]for independent random variables to negatively associated case,but also obtains the weaker sufficient condition of complete moment convergence of the supremum of partial sums for arrays of negatively associated random variables.

    Remark 2.2 If 1+μ+β>0,Theorem 1.2,Theorem 1.3 follow from Theorem 2.1 by taking p=1+(1+μ+β)/r,q=1.Theorem 2.1 extends the result of Sung[5]and Guo and Zhu[6].Moreover,the method used for proving our main results is different from that of Sung[5].Our method can be used efficiently to the field of the complete moment convergence for sequences of dependent random variables.

    Note that conditions(1.1)and(2.1)together imply

    The following theorem shows that if the moment condition of Theorem 2.1 is replaced by a stronger condition E|X|plog|X|<∞,then condition(2.1)can be replaced by the weaker condition(2.13).

    Theorem 2.2 Suppose that β≥-1.Let{Xni,i≥1,n≥1}be an array of rowwise negatively associated random variables which are stochastically dominated by a random variable X satisfying E|X|plog|X|<∞for some p≥1.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and(2.13).Furthermore,assume that(2.2)holds for some α>0 if p≥2.Let EXni=0 for all i≥1 and n≥1.Then(2.3)holds.

    Proof Applying the same notation and method of Theorem 2.1,we need only to give the different parts.Noting that?logk and p≥1,we have

    Set Inj={i,(n(j+1))-r<ani≤(nj)-r},j=1,2,···.Note that for all k≥1,n≥1,M≥p,

    The rest of the proof is the same as that of Theorem 2.1 and is omitted.

    Corollary 2.1 Suppose that β≥-1.Let{Xni,i≥1,n≥1}be an array of rowwise negatively associated random variables which are stochastically dominated by a random variable X.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and(1.2)for some θ andμsuch thatμ<2r and 1≤θ<min{2,2-μ/r}.Furthermore,assume that EXni=0 for all i≥1 and n≥1.If

    then(2.3)holds.

    Proof If 1+μ+β=0,we take p=θ in Theorem 2.2.If 1+μ+β>0,we take p=θ+(1+μ+β)/r,q=θ in Theorem 2.1.Hence(2.3)holds by Theorem 2.1 and Theorem 2.2.

    Remark 2.3 Corollary 2.1 extends the result of Sung[5]and Guo and Zhu[6]for θ=1 to 1≤θ<2.

    The following theorems extend Theorem 1.1 to negatively dependent random variables. The proof is the same as that of Theorem 2.1 and Theorem 2.2 except that we use Lemma 1.4 instead of Lemma 1.3.

    Theorem 2.3 Suppose that β≥-1.Let{Xni,i≥1,n≥1}be an array of rowwise negatively dependent random variables which are stochastically dominated by a random variable X satisfying E|X|p<∞for some p>1.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and(2.1).Furthermore,assume that(2.2)holds for some α>0 if p≥2.Let EXni=0 for all i≥1 and n≥1.Then

    Theorem 2.4 Suppose that β≥-1.Let{Xni,i≥1,n≥1}be an array of rowwise negatively dependent random variables which are stochastically dominated by a random variable X satisfying E|X|plog|X|<∞for some p≥1.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and(2.13).Furthermore,assume that(2.2)holds for some α>0 if p≥2.Let EXni=0 for all i≥1 and n≥1.Then(2.16)holds.

    Remark 2.4 If 1+μ+β=0,we take p=θ in Theorem 2.4.If 1+μ+β>0,we take p=θ+(1+μ+β)/r,q=θ in Theorem 2.3.Therefore Theorem 1.4 follows from Theorem 2.3 and Theorem 2.4.However,Theorem 1.4 does not deal with the case of β=-1.Our result covers the case of β=-1.

    If the array{Xni,i≥1,n≥1}in Theorem 2.1 and Theorem 2.2 is replaced by the sequence{Xn,n≥1}then we can extend Theorem 1.1 to ρ?-mixing random variables.

    Theorem 2.5 Suppose that β≥-1.Let{Xi,i≥1}be a sequence of rowwise ρ?-mixing random variables which are stochastically dominated by a random variable Xsatisfying E|X|p<∞for some p>1.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and(2.1).Furthermore,assume that(2.2)holds for some α>0 if p≥2. Let EXi=0 for all i≥1.Then

    Proof For any i≥1,n≥1,let Xni=XiI(|aniXi|≤1).Note that

    The rest of the proof is the same as that of Theorem 2.1 except that we use Lemma 1.5 instead of Lemma 1.3 and it is omitted.

    Theorem 2.6 Suppose that β≥-1.Let{Xi,i≥1}be a sequence of rowwise ρ?-mixing random variables which are stochastically dominated by a random variable X satisfying E|X|plog|X|<∞for some p≥1.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and(2.13).Furthermore,assume that(2.2)holds for some α>0 if p≥2.Let EXi=0 for all i≥1.Then(2.17)holds.

    Proof For any i≥1,n≥1,let Xni=XiI(|aniXi|≤1).Note that

    The rest of the proof is the same as that of Theorem 2.2 except that we use Lemma 1.5 instead of Lemma 1.3 and it is omitted.

    Remark 2.5 As in Remark 3.7 of Sung[5],Theorem 2.5 and Theorem 2.6 can not be extended to the array{Xni,i≥1,n≥1}of rowwise ρ?-mixing random variables by using the method of the proof of Theorem 2.1 and Theorem 2.2.

    References

    [1]Hsu P L,Robbins H.Complete convergence and the law of large numbers[J].Proc.Nat.Acad.Sci. USA,1947,33:25-31.

    [3]Volodin A,Giuliano Antonini R,Hu T C.A note on the rate of complete convergence for weighted sums of arrays of Banach space valued random elements[J].Lobachevskii J.Math.,2004,15:21-33.

    [4]Chen P,Sung S H,Volodin A I.Rate of complete convergence for arrays of Banach space valued random elements[J].Sib.Adv.Math.,2006,16:1-14.

    [5]Sung S H.On complete convergence for weighted sums of arrays of dependent random variables[J]. Abstr.Appl.Anal.,2011,2011:11.

    [6]Guo Mingle,Zhu Dongjin.On complete moment convergence of weighted sums for arrays of rowwise negatively associated random variables[J].J.Prob.Stat.,2012,2012:12.

    [7]Wu,Qunying.A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables[J].J.Inequ.Appl.,2012,2012:50.

    [8]Alam K.,Saxena K M L.Positive dependence in multivariate distributions[J].Comm.Stat.The. Meth.A,1981,10:1183-1196.

    [9]Joag-Dev K,Proschan F.Negative association of random variables with applications[J].Ann.Stat., 1983,11:286-295.

    [10]Shao Qiman.A comparison theorem on moment inequalities between negatively associated and independent random variables[J].J.Theoret.Prob.,2000,13:343-356.

    [11]Lehmann E L.Some concepts of dependence[J].Ann.Math.Stat.,1966,37:1137-1153.

    [12]Asadian Fakoor N V,Bozorgnia A.Rosenthal’s type inequalities for negatively orthant dependent random variables[J].J.Iranian Stat.Soc.,2006,5:66-75.

    [13]Yang Sanchao.Some moment inequalities for partial sums of random variables and their applications[J].Chinese Sci.Bull.,1998,43:1823-1827.

    [14]Utev S,Peligrad M.Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J].J.Theoret.Prob.,2003,16:101-115.

    相依隨機變量陣列加權(quán)和的矩完全收斂性

    郭明樂,戴鈺,張立君

    (安徽師范大學(xué)數(shù)學(xué)計算機科學(xué)學(xué)院,安徽蕪湖241003)

    本文研究了相依隨機變量陣列加權(quán)和的矩完全收斂性.利用矩不等式和截尾法,建立了相依隨機變量陣列加權(quán)和的矩完全收斂性的充分條件.將Volodin等(2004)及陳平炎等(2006)的關(guān)于獨立隨機變量陣列的結(jié)果推廣到了負(fù)相協(xié)和負(fù)相依隨機變量陣列的情形,推廣并完善了Sung(2011),吳群英(2012)及郭明樂和祝東進(jìn)(2012)的結(jié)果.

    負(fù)相協(xié);負(fù)相依;ρ?混合;矩完全收斂性;完全收斂性

    MR(2010)主題分類號:60F15O211.4

    ?date:2013-12-16Accepted date:2014-09-10

    Supported by the National Natural Science Foundation of China(11271020; 11201004);the Key Project of Chinese Ministry of Education(211077);the Natural Science Foundation for Colleges and Universities in Anhui Province(KJ2014A083);the Anhui Provincial Natural Science Foundation(1508085MA11).

    Biography:Guo Mingle(1978-),male,born at Fengyang,Anhui,associated professor,major in probability limit theory.

    猜你喜歡
    安徽師范大學(xué)相依收斂性
    Lp-混合陣列的Lr收斂性
    家國兩相依
    相守相依
    《安徽師范大學(xué)學(xué)報》(人文社會科學(xué)版)第47卷總目次
    END隨機變量序列Sung型加權(quán)和的矩完全收斂性
    Hemingway’s Marriage in Cat in the Rain
    相依相隨
    特別文摘(2016年18期)2016-09-26 16:43:49
    相依相伴
    特別文摘(2016年15期)2016-08-15 22:11:53
    《安徽師范大學(xué)學(xué)報( 自然科學(xué)版) 》2016 年總目次
    行為ND隨機變量陣列加權(quán)和的完全收斂性
    中文字幕最新亚洲高清| 欧美乱妇无乱码| 久久婷婷人人爽人人干人人爱| 久久99热这里只有精品18| 国产精品久久久久久精品电影 | 非洲黑人性xxxx精品又粗又长| 在线av久久热| 久久久久久久久中文| 黄网站色视频无遮挡免费观看| 亚洲精品在线观看二区| 亚洲国产欧洲综合997久久, | 精品一区二区三区视频在线观看免费| 久久婷婷人人爽人人干人人爱| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费午夜福利视频| √禁漫天堂资源中文www| 成人免费观看视频高清| 一本久久中文字幕| 校园春色视频在线观看| 亚洲午夜精品一区,二区,三区| 亚洲精品一区av在线观看| 他把我摸到了高潮在线观看| 在线观看午夜福利视频| bbb黄色大片| 天堂影院成人在线观看| 麻豆成人av在线观看| 亚洲欧美日韩无卡精品| 一夜夜www| 国产精品美女特级片免费视频播放器 | 国产乱人伦免费视频| 神马国产精品三级电影在线观看 | 一区二区三区精品91| 亚洲欧美精品综合久久99| 国产激情偷乱视频一区二区| 亚洲 国产 在线| 日韩欧美三级三区| 俺也久久电影网| 一卡2卡三卡四卡精品乱码亚洲| 热re99久久国产66热| 日韩中文字幕欧美一区二区| 国产成年人精品一区二区| 久久久久久久精品吃奶| 人妻久久中文字幕网| 色播在线永久视频| av天堂在线播放| 哪里可以看免费的av片| 免费在线观看黄色视频的| 久久午夜综合久久蜜桃| 亚洲人成网站在线播放欧美日韩| 亚洲成人国产一区在线观看| 18禁裸乳无遮挡免费网站照片 | 婷婷精品国产亚洲av在线| 亚洲久久久国产精品| 色播亚洲综合网| 久久精品国产99精品国产亚洲性色| 窝窝影院91人妻| 在线观看www视频免费| 在线永久观看黄色视频| 一个人观看的视频www高清免费观看 | 久久婷婷人人爽人人干人人爱| 亚洲av第一区精品v没综合| 日韩一卡2卡3卡4卡2021年| 欧美最黄视频在线播放免费| 国产爱豆传媒在线观看 | 国产色视频综合| 亚洲第一电影网av| av免费在线观看网站| 美女午夜性视频免费| 亚洲性夜色夜夜综合| 99精品久久久久人妻精品| 我的亚洲天堂| 亚洲国产欧美日韩在线播放| 国产午夜精品久久久久久| 香蕉国产在线看| 在线播放国产精品三级| 久久精品91蜜桃| 国产精品免费一区二区三区在线| 国产色视频综合| 国产在线精品亚洲第一网站| 国产爱豆传媒在线观看 | 亚洲人成电影免费在线| 99国产精品99久久久久| 亚洲av成人不卡在线观看播放网| 亚洲人成77777在线视频| 人人妻人人澡人人看| 精品国产乱子伦一区二区三区| 中文亚洲av片在线观看爽| 亚洲激情在线av| 欧美成人性av电影在线观看| 国产v大片淫在线免费观看| 搞女人的毛片| 久热这里只有精品99| 中国美女看黄片| 九色国产91popny在线| 久久精品91蜜桃| 亚洲精品美女久久久久99蜜臀| 欧美色视频一区免费| 免费在线观看日本一区| 国产精品久久久久久亚洲av鲁大| 两个人视频免费观看高清| 国产v大片淫在线免费观看| 亚洲国产精品合色在线| 岛国视频午夜一区免费看| 在线观看免费日韩欧美大片| 丁香六月欧美| 国产在线观看jvid| 免费看美女性在线毛片视频| 性欧美人与动物交配| 757午夜福利合集在线观看| 久久狼人影院| 高清毛片免费观看视频网站| 成人欧美大片| 97人妻精品一区二区三区麻豆 | 免费在线观看亚洲国产| 国产成人啪精品午夜网站| 亚洲人成77777在线视频| 久久国产乱子伦精品免费另类| 久久国产亚洲av麻豆专区| 亚洲欧洲精品一区二区精品久久久| 正在播放国产对白刺激| 国产免费男女视频| 久久久久国产精品人妻aⅴ院| 淫秽高清视频在线观看| 亚洲av电影在线进入| 一本一本综合久久| 在线播放国产精品三级| 中文字幕久久专区| 一二三四在线观看免费中文在| 国产成人欧美| 欧美午夜高清在线| 女性生殖器流出的白浆| 亚洲成av人片免费观看| 日韩有码中文字幕| 精品欧美国产一区二区三| 一级a爱片免费观看的视频| 黄片小视频在线播放| 精品国产乱码久久久久久男人| 人成视频在线观看免费观看| 亚洲五月婷婷丁香| tocl精华| 国产成人啪精品午夜网站| 成人精品一区二区免费| 免费一级毛片在线播放高清视频| 欧美乱码精品一区二区三区| 亚洲精品国产区一区二| 在线观看一区二区三区| 国产黄a三级三级三级人| 欧美黑人欧美精品刺激| 国产精品精品国产色婷婷| 麻豆av在线久日| 日韩 欧美 亚洲 中文字幕| 亚洲精品国产精品久久久不卡| 最近最新免费中文字幕在线| 男人的好看免费观看在线视频 | 精品久久蜜臀av无| 欧美激情久久久久久爽电影| 91字幕亚洲| 国产一区二区在线av高清观看| 无人区码免费观看不卡| 色综合婷婷激情| 日韩欧美国产一区二区入口| 嫩草影院精品99| 日本一区二区免费在线视频| 国产精品野战在线观看| 身体一侧抽搐| 久久精品aⅴ一区二区三区四区| 国产精品,欧美在线| 亚洲aⅴ乱码一区二区在线播放 | 最近最新免费中文字幕在线| 青草久久国产| 久久性视频一级片| 久久这里只有精品19| 成人18禁高潮啪啪吃奶动态图| 中文字幕高清在线视频| 日本熟妇午夜| 动漫黄色视频在线观看| 亚洲精品国产区一区二| 精品久久久久久,| 亚洲 欧美一区二区三区| 亚洲av五月六月丁香网| 精品一区二区三区视频在线观看免费| 精品一区二区三区视频在线观看免费| 精品国产一区二区三区四区第35| 免费观看人在逋| 久久久久国内视频| 成人18禁在线播放| 757午夜福利合集在线观看| 亚洲欧美精品综合一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 久久久国产精品麻豆| 啪啪无遮挡十八禁网站| 三级毛片av免费| 精品国内亚洲2022精品成人| 成人特级黄色片久久久久久久| 亚洲久久久国产精品| 免费在线观看黄色视频的| 男女那种视频在线观看| 色婷婷久久久亚洲欧美| 国产精品久久久av美女十八| 亚洲欧美一区二区三区黑人| 国产亚洲欧美精品永久| 两个人看的免费小视频| 免费人成视频x8x8入口观看| 久久中文看片网| 婷婷精品国产亚洲av在线| 国产亚洲精品久久久久5区| 少妇的丰满在线观看| 在线播放国产精品三级| 夜夜看夜夜爽夜夜摸| 亚洲激情在线av| 1024手机看黄色片| 夜夜躁狠狠躁天天躁| 中文亚洲av片在线观看爽| 天天躁夜夜躁狠狠躁躁| 精品国产乱码久久久久久男人| 午夜福利成人在线免费观看| 麻豆成人av在线观看| 在线永久观看黄色视频| 亚洲成av人片免费观看| 99精品在免费线老司机午夜| 免费在线观看视频国产中文字幕亚洲| 在线观看www视频免费| 中文字幕人妻丝袜一区二区| 欧美午夜高清在线| 国产激情偷乱视频一区二区| 午夜视频精品福利| 免费高清在线观看日韩| 亚洲人成电影免费在线| 黄色毛片三级朝国网站| 国产亚洲av高清不卡| 男女床上黄色一级片免费看| 嫁个100分男人电影在线观看| 最新美女视频免费是黄的| 男人舔女人的私密视频| 久久中文字幕一级| 国产高清有码在线观看视频 | 在线天堂中文资源库| 久久九九热精品免费| 欧美激情久久久久久爽电影| 免费在线观看黄色视频的| 欧美国产日韩亚洲一区| 久久精品亚洲精品国产色婷小说| 老熟妇仑乱视频hdxx| 视频区欧美日本亚洲| 久久久精品国产亚洲av高清涩受| 50天的宝宝边吃奶边哭怎么回事| 久久久久久人人人人人| 久久久久久国产a免费观看| 三级毛片av免费| 亚洲午夜精品一区,二区,三区| 欧美亚洲日本最大视频资源| 免费高清视频大片| 黄色视频,在线免费观看| 亚洲欧美精品综合久久99| 婷婷精品国产亚洲av| 亚洲久久久国产精品| 热99re8久久精品国产| 免费在线观看视频国产中文字幕亚洲| 亚洲精品一区av在线观看| 午夜福利18| 亚洲五月天丁香| 国产成人av激情在线播放| 亚洲专区中文字幕在线| 国产精品爽爽va在线观看网站 | 91av网站免费观看| 亚洲一区高清亚洲精品| 搞女人的毛片| 一a级毛片在线观看| 亚洲av熟女| 亚洲一区高清亚洲精品| 妹子高潮喷水视频| 国内毛片毛片毛片毛片毛片| 99精品久久久久人妻精品| 一本大道久久a久久精品| 亚洲激情在线av| 国产国语露脸激情在线看| 91九色精品人成在线观看| 欧美在线黄色| 亚洲,欧美精品.| 亚洲成国产人片在线观看| 日韩有码中文字幕| 亚洲欧美激情综合另类| 国产精品99久久99久久久不卡| 国产私拍福利视频在线观看| 男女视频在线观看网站免费 | 性欧美人与动物交配| 岛国在线观看网站| 亚洲第一青青草原| 国产极品粉嫩免费观看在线| 老司机深夜福利视频在线观看| 免费在线观看完整版高清| 欧美人与性动交α欧美精品济南到| www.精华液| 曰老女人黄片| 色在线成人网| 最近最新免费中文字幕在线| 国产又黄又爽又无遮挡在线| av电影中文网址| 午夜久久久久精精品| 香蕉国产在线看| 国产在线精品亚洲第一网站| 一区二区三区激情视频| 男男h啪啪无遮挡| 欧美成人性av电影在线观看| 国内久久婷婷六月综合欲色啪| 亚洲精品中文字幕在线视频| 久久中文字幕一级| 两个人看的免费小视频| 亚洲美女黄片视频| 亚洲狠狠婷婷综合久久图片| 老司机福利观看| 国产精品98久久久久久宅男小说| 99在线人妻在线中文字幕| 国产精品美女特级片免费视频播放器 | 欧美最黄视频在线播放免费| 国产男靠女视频免费网站| 两性夫妻黄色片| 超碰成人久久| 波多野结衣高清作品| 可以免费在线观看a视频的电影网站| 亚洲人成网站在线播放欧美日韩| 免费av毛片视频| 国产麻豆成人av免费视频| 白带黄色成豆腐渣| 国产午夜精品久久久久久| 老司机午夜十八禁免费视频| 国产黄片美女视频| 国产一区二区激情短视频| 熟女少妇亚洲综合色aaa.| 午夜福利高清视频| 色播亚洲综合网| 国产激情欧美一区二区| 人人澡人人妻人| 一本精品99久久精品77| 欧美国产精品va在线观看不卡| 此物有八面人人有两片| 天天躁夜夜躁狠狠躁躁| 视频在线观看一区二区三区| 国产单亲对白刺激| 国语自产精品视频在线第100页| 国产一区二区激情短视频| 老司机午夜十八禁免费视频| 亚洲一区中文字幕在线| 亚洲中文av在线| 欧美日韩亚洲国产一区二区在线观看| 女人爽到高潮嗷嗷叫在线视频| 精品日产1卡2卡| 国产亚洲精品av在线| 亚洲va日本ⅴa欧美va伊人久久| 老司机靠b影院| 高潮久久久久久久久久久不卡| 999久久久精品免费观看国产| 淫秽高清视频在线观看| 一本精品99久久精品77| 韩国精品一区二区三区| 亚洲国产精品成人综合色| 啦啦啦观看免费观看视频高清| 国产男靠女视频免费网站| 一夜夜www| 欧美国产日韩亚洲一区| 国产99白浆流出| 国产亚洲欧美精品永久| 欧美日韩黄片免| 满18在线观看网站| 国产精品一区二区免费欧美| 神马国产精品三级电影在线观看 | 欧美色视频一区免费| 777久久人妻少妇嫩草av网站| 久久久国产精品麻豆| 国产精品永久免费网站| 日本五十路高清| 在线观看免费日韩欧美大片| 国产免费男女视频| 国产午夜精品久久久久久| 色尼玛亚洲综合影院| 此物有八面人人有两片| 久久天躁狠狠躁夜夜2o2o| 国产aⅴ精品一区二区三区波| 动漫黄色视频在线观看| 免费女性裸体啪啪无遮挡网站| 午夜久久久久精精品| 成人国产综合亚洲| 国产av一区二区精品久久| 亚洲成人精品中文字幕电影| 色综合站精品国产| 精品欧美国产一区二区三| 人人澡人人妻人| 搞女人的毛片| 村上凉子中文字幕在线| 国产麻豆成人av免费视频| 中文资源天堂在线| 亚洲激情在线av| 精品一区二区三区四区五区乱码| aaaaa片日本免费| 欧美日韩亚洲综合一区二区三区_| 精品久久久久久成人av| 国产精品影院久久| 高清毛片免费观看视频网站| 午夜老司机福利片| 在线观看66精品国产| 少妇裸体淫交视频免费看高清 | 两性夫妻黄色片| 日韩国内少妇激情av| 国产又色又爽无遮挡免费看| 久久久精品国产亚洲av高清涩受| 黄色成人免费大全| 黄频高清免费视频| 国内精品久久久久精免费| av天堂在线播放| 亚洲色图 男人天堂 中文字幕| 亚洲最大成人中文| or卡值多少钱| 男女那种视频在线观看| 国产亚洲精品久久久久久毛片| 老熟妇仑乱视频hdxx| 一级毛片高清免费大全| 宅男免费午夜| 国内久久婷婷六月综合欲色啪| 午夜福利欧美成人| 一夜夜www| 成人一区二区视频在线观看| 久久久久久九九精品二区国产 | 999久久久国产精品视频| 给我免费播放毛片高清在线观看| 亚洲熟女毛片儿| 日本 欧美在线| 免费在线观看视频国产中文字幕亚洲| 美女免费视频网站| 一边摸一边抽搐一进一小说| 无限看片的www在线观看| 亚洲精品美女久久久久99蜜臀| 成熟少妇高潮喷水视频| 日韩欧美 国产精品| tocl精华| 精品一区二区三区视频在线观看免费| 老鸭窝网址在线观看| 国产欧美日韩一区二区三| 我的亚洲天堂| 国产精品久久久av美女十八| 国产精品美女特级片免费视频播放器 | 精品人妻1区二区| 18禁黄网站禁片午夜丰满| 一区二区三区激情视频| 国产精品av久久久久免费| 精品国产乱子伦一区二区三区| 宅男免费午夜| 欧美久久黑人一区二区| 国产一卡二卡三卡精品| 99热这里只有精品一区 | 校园春色视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 免费在线观看成人毛片| 一区二区三区高清视频在线| 十八禁人妻一区二区| 亚洲专区字幕在线| 国产精品免费一区二区三区在线| 欧美丝袜亚洲另类 | 日本精品一区二区三区蜜桃| 激情在线观看视频在线高清| 国产精品日韩av在线免费观看| 日韩大尺度精品在线看网址| 日本精品一区二区三区蜜桃| 最近最新中文字幕大全电影3 | 欧美人与性动交α欧美精品济南到| 国产精品99久久99久久久不卡| 丝袜美腿诱惑在线| 啦啦啦观看免费观看视频高清| 草草在线视频免费看| xxxwww97欧美| 成人永久免费在线观看视频| 国产精品久久久久久精品电影 | 国内揄拍国产精品人妻在线 | 婷婷精品国产亚洲av| 中文字幕另类日韩欧美亚洲嫩草| 色播在线永久视频| 国产一区二区三区在线臀色熟女| 啦啦啦韩国在线观看视频| 久久中文看片网| 色av中文字幕| 午夜福利高清视频| 精品久久久久久久末码| 黄色毛片三级朝国网站| 亚洲免费av在线视频| 精品福利观看| 91av网站免费观看| 国内精品久久久久精免费| 国产私拍福利视频在线观看| 老司机福利观看| 成人国产一区最新在线观看| 叶爱在线成人免费视频播放| 看免费av毛片| 久久精品aⅴ一区二区三区四区| 国产国语露脸激情在线看| 又紧又爽又黄一区二区| 国产成人精品无人区| 国产精品亚洲美女久久久| 欧美性猛交黑人性爽| 黄片播放在线免费| 日本 av在线| 亚洲免费av在线视频| av天堂在线播放| 99久久国产精品久久久| 悠悠久久av| 满18在线观看网站| 一本大道久久a久久精品| 午夜福利免费观看在线| 免费在线观看日本一区| 欧美黑人欧美精品刺激| 日韩欧美国产在线观看| 男女做爰动态图高潮gif福利片| √禁漫天堂资源中文www| 午夜a级毛片| 熟女少妇亚洲综合色aaa.| 国产在线观看jvid| 欧美丝袜亚洲另类 | 无限看片的www在线观看| 国产成人欧美| 久久人人精品亚洲av| 最近在线观看免费完整版| 亚洲五月色婷婷综合| www.www免费av| 日本黄色视频三级网站网址| 91av网站免费观看| 亚洲自偷自拍图片 自拍| 欧美激情高清一区二区三区| 不卡av一区二区三区| 免费看美女性在线毛片视频| 欧美精品啪啪一区二区三区| 亚洲五月天丁香| 亚洲精品在线美女| 免费看十八禁软件| 777久久人妻少妇嫩草av网站| 国产色视频综合| 成人国产一区最新在线观看| 两人在一起打扑克的视频| 久久久国产欧美日韩av| 人妻久久中文字幕网| 91麻豆精品激情在线观看国产| 成人18禁高潮啪啪吃奶动态图| 久久婷婷人人爽人人干人人爱| 国产人伦9x9x在线观看| 亚洲av美国av| 日韩欧美在线二视频| 午夜福利一区二区在线看| 特大巨黑吊av在线直播 | 国产熟女午夜一区二区三区| 精品电影一区二区在线| 两人在一起打扑克的视频| 日韩成人在线观看一区二区三区| 日韩一卡2卡3卡4卡2021年| 大型黄色视频在线免费观看| 国产视频内射| 国产成人系列免费观看| 国产成人啪精品午夜网站| 国产精品二区激情视频| 免费一级毛片在线播放高清视频| 亚洲精品国产精品久久久不卡| 亚洲 欧美一区二区三区| 亚洲精品美女久久久久99蜜臀| 高潮久久久久久久久久久不卡| 啦啦啦 在线观看视频| 人人妻人人看人人澡| 亚洲性夜色夜夜综合| 美国免费a级毛片| 51午夜福利影视在线观看| 欧美性长视频在线观看| 国产高清有码在线观看视频 | 老司机深夜福利视频在线观看| 欧美激情极品国产一区二区三区| 欧美日韩福利视频一区二区| 欧美+亚洲+日韩+国产| 在线观看免费午夜福利视频| 18禁观看日本| 国产成人欧美在线观看| 久久国产乱子伦精品免费另类| 色综合欧美亚洲国产小说| 国产精品久久久久久精品电影 | 国产av一区二区精品久久| 亚洲人成网站高清观看| 国产精品,欧美在线| 国产色视频综合| 伦理电影免费视频| 午夜免费观看网址| 欧美久久黑人一区二区| 亚洲精品国产精品久久久不卡| 真人做人爱边吃奶动态| 欧美性猛交╳xxx乱大交人| 色婷婷久久久亚洲欧美| 国产成人影院久久av| 老熟妇仑乱视频hdxx| 精品日产1卡2卡| 波多野结衣高清作品| 亚洲专区字幕在线| 18美女黄网站色大片免费观看| 悠悠久久av| 99久久精品国产亚洲精品| 草草在线视频免费看| 成人欧美大片| 51午夜福利影视在线观看| 亚洲人成网站在线播放欧美日韩| 一级作爱视频免费观看| 无遮挡黄片免费观看| www.精华液| 18禁国产床啪视频网站| 可以在线观看毛片的网站| 天天添夜夜摸| 日韩精品中文字幕看吧| 国产成人精品无人区| 亚洲一区二区三区色噜噜| 国产亚洲欧美98| 欧美黑人精品巨大| 久久国产精品人妻蜜桃| 国产亚洲欧美在线一区二区| 欧洲精品卡2卡3卡4卡5卡区| 国产av不卡久久|