• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve?

    2021-10-28 07:15:40XianJinQi祁先進(jìn)NiNaYang楊妮娜XiaoXuDuan段孝旭andXueZhuLi李雪竹
    Chinese Physics B 2021年10期
    關(guān)鍵詞:妮娜

    Xian-Jin Qi(祁先進(jìn)) Ni-Na Yang(楊妮娜) Xiao-Xu Duan(段孝旭) and Xue-Zhu Li(李雪竹)

    1Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction,Ministry of Education,Kunming University of Science and Technology,Kunming 650093,China

    2State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology,Kunming 650093,China

    Keywords: exchange bias field,spin valves,temperature,thermal relaxation

    1. Introduction

    In 1986, Grunberget al.[1]found that in the Fe/Cr/Fe sandwiched structure, exchange coupling between Fe layers occurs through the Cr layer, and when the Cr layer thickness is appropriate value,antiferromagnetic coupling is present between the two Fe layers. In 1988, Baibichet al.[2]reported that at a low temperature (4.2 K) with an outfield of 20 kOe(1 Oe=79.5775 A·m?1), the resistance of Fe (3.0 nm)/Cr(0.9 nm) multilayered film prepared by molecular beam epitaxy is increased by 50%, far exceeding the anisotropic magnetoresistance(about 0.2%)of the pure Fe layer.This is called the giant magnetoresistance(GMR)effect,which has attracted attention because of its wide application prospects in highdensity readout heads and magnetic storage devices (such as hard disks).[3–6]Therefore,the recording density of computer hard disks and the data reading speed of magnetic heads are greatly increased, which allows the hard disk capacity to be increased while their sizes are reduced. Because the exchange bias principle in ferromagnetic/antiferromagnetic systems has important applications in GMR heads, non-volatile memory,and magnetic transducers for high-density magnetic recording,materials with exchange coupling effects,such as spin valves and tunnel junctions,have been extensively investigated.[7–11]

    The magnetic electronic devices,when being used, must be able to withstand high temperatures or magnetic fields,which reduces the size of the exchange bias field of the devices and also restricts their performances. The thermal stability of an exchange bias greatly influences the reliability of magnetic electronic device. For example, after being treated at 250°C,the FeMn nailing spin valve multilayered film loses the nailing effect of its antiferromagnetic layer,and the GMR may even disappear.[12]In the IrMn nailing spin valve multilayered film,after about 100-°C temperature treatment,it was found that the nailing effect of IrMn antiferromagnetic layer is weakened, and exchange bias field is reduced.[13]Therefore,a study of the thermal–magnetic stability of the exchange bias will help design and use magnetic electronic devices. In addition,the study of thermal relaxation of an exchange bias field will reveal the nature of the exchange bias.

    This paper focuses mainly on the influence of temperature on the structure and magnetic properties of spin valve.The relationship between temperature and exchange bias field is analyzed through modeling.At the same time,the characteristics of thermal relaxation of spin valve multilayered film are studied,and the thermal relaxation phenomenon is reasonably analyzed.

    2. Experimental process

    CoFe/Cu/CoFe/IrMn spin valve was prepared on a silicon substrate by high-vacuum magnetron sputtering (Japan vacuum MPS-4000-HC2). The structure and thickness of the spin valve was Ta(5 nm)/Co75Fe25(5 nm)/Ir20Mn80(12 nm)/Ta(8 nm). To prevent the sample from being oxidized in the air,an 8-nm-thick Ta layer was deposited on the IrMn layer as a protective layer. During sputtering,the background vacuum degree was higher than 5×10?7Pa.High-purity argon gas was used for sputtering,the air pressure was 7×10?2Pa,the sputtering power was 120 W, and the growth rate was controlled at 0.03 nm/s–0.12 nm/s. During deposition,an external magnetic field of 100 Oe was applied parallel to the film surface to induce an easy magnetization direction.

    An HH10 VSM was used to measure hysteresis loops at room temperature. The magnetic field was applied parallel to the film surface,and the positive field direction was parallel to the external field direction added during deposition. The magnetic field scanning range was from?800 Oe to 800 Oe,and the scanning speed was 3 Oe/s. The texture of the film was studied with a D8-Advance XRD,and the interface roughness was studied by AFM.

    During the thermal relaxation of spin valve,the magnetic field was swept from the forward saturation field to the reverse saturation field,and then remained under the reverse magnetic field with an absolute value greater than 200 Oe–300 Oe.After holding for a certain time,the magnetic field was swept from the reverse saturation field to the forward saturation field.During magnetic field conversion, the back branch curve of the hysteresis loop can be measured. When there is no hold time in the forward saturation field, the front hysteresis loop can be measured by sweeping directly from the forward field to the reverse field. A second residence was then performed at a magnetic field in a range of 200 Oe–300 Oe in the reverse saturation field. The effect of temperature on the thermomagnetic properties of the exchange bias field of the spin valves was studied by the time accumulation method.

    3. Results and discussion

    3.1. Effect of temperature on structure of spin valves

    Figure 1 shows the x-ray diffraction (XRD) pattern of the CoFe/Cu/CoFe/IrMn spin valve film at room temperature,150°C,and 275°C and IrMn has a good(111)direction texture. When the temperature increases to 150°C,the peak intensity of IrMn(111)decreases(curveband curvecin Fig.1).When the temperature reaches 275°C, the diffraction peak shifts towards a higher 2θvalue, possibly because of chemical diffusion and strain-relief.[14,15]

    Fig.1. XRD patterns of spin valves at room temperature(curve a),150 °C(curve b),and 275 °C(curve c).

    To further investigate the effect of temperature on the structure of the spin valve multilayered film, the surface/interface morphologies are studied by using AFM. It is generally believed that multilayered film deposited by magnetron sputtering is continuous and coherent at a certain thickness when it is deposited continuously at the same pressure.In this way,when the interface is not far away from the surface,the surface morphology is approximately the same as the interface morphology.[16]The ferromagnetic/antiferromagnetic interface in the bilayer film studied in this paper is 20 nm away from the surface. Thus, it is likely that the surface roughness of the sample can indirectly reflect the interfacial roughness between IrMn and CoFe layers.

    The AFM images are shown in Fig.2,where figures 2(a),2(b), and 2(c) show the three-dimensional topograph of the sample at room temperature, 150°C, and 275°C, respectively. The correspondingRrmsroughness of the sample is 0.542 nm, 0.791 nm, and 1.078 nm, respectively. The surface/interfaceRrmsincreases with the temperature rising after the spin valve has been heated.This is consistent with the conclusion obtained by Chenet al.,[17]in which the roughness of NiFe/FeMn bilayer increases with the temperature rising.

    Fig.2. AFM images of spin valve at(a)room temperature,(b)150 °C,and(c)275 °C.

    3.2. Effect of temperature on magnetic properties of multilayer spin valve film

    Figure 3 shows that the shape of the hysteresis loop of the CoFe/Cu/CoFe/IrMn spin valve changes greatly with the increase of temperature.Hex=(Hc1+Hc2)/2(Hc1is the value of the forward branch of the hysteresis loop deviating from the zero field,andHc2is the value of the backward branch of the hysteresis loop deviating from the zero field.) shows that the exchange bias field decreases as the temperature increases(specific data are given in Table 1). The coercive force of the pinned layer and the free layer can be obtained from the formula,Hc=(Hc1?Hc2)/2. The coercivity of the nailed layer decreases at higher temperatures, while the coercivity of the free layer increases as the temperature increases(specific data are listed in Table 1).

    Fig.3. Hysteresis loops of samples at Tm =room temperature(RT),150 °C,and 275 °C.

    Table 1. Values of spin valve exchange bias field, pinning layer, and free layer coercivity at three different temperatures.

    According to the XRD pattern(Fig.1), IrMn has a good(111) directional texture after it has been heated at different temperatures,showing that the multilayered spin valve experiences exchange bias after having been heated. However,upon increasing the heating temperature,the IrMn(111)directional texture is weakened,which reduces the pinning effect of IrMn and the spin valve exchange bias field as well.

    Roughness is also an important factor that affects exchange bias.[17–19]Generally, the exchange bias field decreases upon increasing the roughness;[20,21]therefore,the increased surface/interface roughness after heating at 150°C and 275°C is another major reason for the reduction in the multilayer exchange bias field of the spin valves.

    The relationship between the temperatureTmand exchange bias fieldHexfor the spin valve is shown in Fig. 4,whereHexis normalized.Hexdecreases monotonically with temperature increasing, which has already been found in many thin films of exchange coupled systems, such as CoFe/IrMn exchange-coupled bilayer[22]and(CoFe, Co, and NiFe)/Cu/CoFe/IrMn spin valves.[23]The cutoff temperature of thin film can be determined by the linear extrapolation of the exchange bias and temperature plot,and this method shows that the cutoff temperature of the CoFe/Cu/CoFe/IrMn spin valve is about 340°C.

    Fig.4. Measured and calculated variation of exchange bias field(Hex)with temperature of pinning layer in a spin valve.

    In general, when the temperature is room temperature(Tm),the relation of the exchange bias field with the exchange coupling constant and the saturated magnetic moment can be written as[24]

    whereHex(Tm) is the exchange bias field atTm,J(Tm) is the interface exchange coupling constant atTm,Msp(Tm)is the saturation magnetic moment of the pinned ferromagnetic layer atTm, andtFis the thickness of the pinned ferromagnetic layer of the spin valve.

    The relationship betweenJandTmcan be written as[25,26]

    whereJ(0) is the exchange bias constant between ferromagnetism and antiferromagnetism at 0 K,andTNis the Nell temperature.

    According to Eqs. (1) and (2), the equation representing the effect of the size ofHexbecomes

    According to formula(3),the relation betweenHexandTmis fitted as shown by the dotted line in Fig. 4, which indicates that there is a slight deviation between the fitted data and the experimental data. This is mainly because changes in the microstructure,such as grain size and texture,are not considered in the fitting formula. However, in the actual processes, increasing the temperature will affect the microstructure(Fig.1).

    Figure 5 shows the coercivity of the free layerHcfversustemperature and the saturation magnetic momentMspversustemperature of the spin valve multilayered film. The change in the coercivity withTmof the free layer in spin valve is nonmonotonic, and the maximum value appears atTm=225°C.This phenomenon has also been observed in exchange-coupled NiFe[27]and CoFe films.[28,29]

    Fig. 5. Coercivity of the free layer (Hcf) and saturation magnetic moment(Ms)versus temperature of the spin valve multilayered film.

    When the temperature is lower than 225°C,bothTmandHcfincrease, mainly because of the phase transition of the CoFe free layer. In general,when CoFe is deposited on the Cu layer,an fcc structure forms easily.[30]In this study,the CoFe free layer deposited on the Ta seed layer may form a partial bcc structure. As the temperature increases, some CoFe with a bcc structure changes into an fcc structure, which increases the fcc phase in the CoFe free layer. Because fcc phase is harder than bcc phase,Hcfincreases withTmincreasing when the temperature is lower than 225°C.

    When the temperature is higher than 225°C,Tmincreases andHcfdecreases. This is mainly due to the decline in the texture direction of CoFe(111) in the free layer at elevatedTm(Fig. 1), resulting in a less-anisotropic material.[31]In addition, the transition from a bcc structure to an fcc structure of the CoFe free layer may terminate at about 225°C. For these two reasons,Hcfdecreases asTmincrease at temperatures greater than 225°C.

    Fig.6. Normalized coercivity Hcp varying with temperature in nailed layer.

    Figure 6 shows the variation in the coercivity of the nailing layerHcpwith temperatureTm. The normalized coercivityHcpof the nailed layer decreases monotonically with the temperature increasing,which is consistent with the Lam Yet al.’s result,[32]who studied the influence of temperature on the coercivity of NiMn/CoFe/NiMn film.

    3.3. Effect of temperature on thermal relaxation of multilayer spin valve film

    The effect of temperature on the thermal relaxation of the spin valve is studied by placing the samples in a reverse saturated field for different times. Figure 7 shows the variations of multilayered film exchange bias field with residence time in the reverse saturation field of the spin valves at different temperatures. As can be seen from Fig.7, when the temperature is lower than 200°C the exchange bias field decreases as the residence time increases At the beginning of the negative saturation field,the exchange bias field decreases first faster,and then slowly gradually. When the temperature is higher than 200°C,the exchange bias field remains unchanged as the residence time increases.

    Fig. 7. Curves of spin valve multilayered film exchange bias field (Hex)versus residence time in reverse saturation field(tsat)at(curve a)room temperature, (curve b) 50 °C, (curve c) 100 °C, (curve d) 150 °C, (curve e)200 °C,(curve f)250 °C,(curve g)275 °C,and(curve g)300 °C.

    When the temperature is lower than 200°C,the exchange bias field of the spin valves decreases with the residence time increasing because the magnetic moments in some regions of the antiferromagnetic layer are reversed due to the thermal activation across the energy barrier.[33–35]When the applied magnetic field is scanned from the forward saturation to the reverse saturation,the magnetic moment direction of the ferromagnetic layer is parallel to the direction of the external magnetic field, for the Zeeman energy produced by the external magnetic field is greater than the exchange coupling energy between ferromagnetism and antiferromagnetism. However,the anisotropy of the antiferromagnetic layer is greater than that of the Zeeman energy generated by the external magnetic field. Therefore, the magnetic moment of the antiferromagnetic layer does not change with the direction of the external magnetic field but remains in its original direction.At this time, the system is in a metastable state. When the CoFe/Cu/CoFe/IrMn spin valve multilayered film is still in the reverse saturation field,the magnetic moment of antiferromagnetism begins to reverse due to exchange coupling between strong ferromagnetism and strong antiferromagnetism. The anisotropy energy of the antiferromagnetic layer decreases with the reversal of the magnetic moment,which weakens the pinning effect of the antiferromagnetic layer.With the increase of the residence time of CoFe/Cu/CoFe/IrMn in the reverse saturation field,more magnetic moments in the antiferromagnetic layer are reversed by thermal activation across the energy barrier distribution. Finally,the multilayer film exchange bias field of the spin valve decreases with the increase of the residence time in the reverse saturation field.

    At each temperature below 200°C, at the beginning of the negative saturation field,Hexdecreases first faster and then slowly gradually because the smaller antiferromagnetic (AF)domain barrier is lower. The smaller AF domains are reversed more easily than the larger ones.[36]The number of small domains with low energy barriers in the antiferromagnetic layer decreases with residence time increasing at each temperature.In addition, magnetic domain nucleation and domain growth occur during inversion. Under a negative saturation field, vacancies and crystal defects are generated in the thin film,and the magnetic domain nucleation process is more likely to occur near crystal defects.[37]With the film’s residence time in the negative saturation field increasing, the number of defects available for nucleation gradually decreases in comparison with the number of initial nucleation defects. Thus, at the beginning of the residence in a negative saturation field,at each temperature,Hexbegan to decrease first faster and then slowly gradually.

    When the temperature is higher than 200°C, the exchange bias field does not change with the residence time increasing, which is mainly because the high temperature increases the energy barrier of magnetic moment inversion in some regions of the antiferromagnetic layer and narrows the overall energy barrier distribution. During residence in a reverse saturation field, the exchange coupling energy between the ferromagnetic layer and the antiferromagnetic layer cannot overcome the energy barrier of the antiferromagnetic moment reversal, because the energy barrier of the moment reversal of each part of the antiferromagnetic layer is relatively large. That is to say, the magnetic moment of the antiferromagnetic layer does not flip when the residence time in the reverse saturation field increases. Therefore, when the temperature is greater than 200°C,the exchange bias field of the spin valve does not change at a longer residence time.

    It can be seen from Fig.7 that temperature speeds up the thermal relaxation ofHexin the exchange bias field, that is,the increase of temperature quickens the decrease ofHex. The distribution of the energy barrier determines AF domain inversion, and the mechanism of AF domain inversion is different at different temperatures.[38]When the temperature is relatively low, the magnetic domain of AF layer is reversed uniformly. The energy barrier is fairly wide. To achieve a reversal,all domains must simultaneously cross the highest energy barrier. This reversal pattern must therefore be powerful enough.As the temperature increases,the reversal mechanism changes from uniform inversion to the inversion in the helical domain form. The energy barrier distribution of the inversion in the spiral domain form is relatively narrow,so it is easier to realize the inversion. As the temperature increases, the number of reversals increases due to the helical domains formed by magnetic domains.[36,38]So this speeds up the decrease ofHex. Therefore,the temperature increase can quicken the thermal relaxation of the spin valve exchange bias fieldHex.

    4. Conclusions

    The effect of temperature on the thermal relaxation of CoFe/Cu/CoFe/IrMn spin valve in an exchange bias field is studied. The results show that the temperature affects the structure and magnetic properties of CoFe/Cu/CoFe/IrMn. As the temperature increases,the texture of IrMn(111)decreases,the surface roughness and interface roughness increase, and the exchange bias field decreases. When the temperature is lower than 200°C,the exchange bias field decreases with residence time increasing, and when the temperature is greater than 200°C, the exchange bias field is basically unchanged though the residence time increases.

    猜你喜歡
    妮娜
    當(dāng)考拉離開桉葉
    女報(bào)(2020年6期)2020-08-17 07:15:49
    電影《黑天鵝》物質(zhì)意象的心理分析
    斑鬣狗的小心愿
    淘氣鬼妮娜
    印度裔女孩首獲美國小姐桂冠 跳寶萊塢舞
    電影畫刊(2013年9期)2013-11-19 03:58:06
    完美的代價(jià)——電影《黑天鵝》的一種解讀
    對(duì)自我的超越:影片《黑天鵝》解讀
    戲劇之家(2012年7期)2012-08-15 00:42:11
    今天你做夢(mèng)了嗎?
    《黑天鵝》:自戀與完美的達(dá)成
    戲劇之家(2011年9期)2011-07-11 03:36:54
    保姆妮娜
    短小說(2009年3期)2009-06-04 09:37:03
    久久草成人影院| 久久精品国产鲁丝片午夜精品| 最近2019中文字幕mv第一页| 国产69精品久久久久777片| 精品人妻一区二区三区麻豆| 久久久欧美国产精品| 人妻制服诱惑在线中文字幕| av在线亚洲专区| 免费看光身美女| 久久久a久久爽久久v久久| 亚洲国产精品久久男人天堂| 亚洲人成网站在线播| 99久久人妻综合| 内地一区二区视频在线| 免费黄网站久久成人精品| 日本一本二区三区精品| 国产精品永久免费网站| 热99re8久久精品国产| 18禁在线无遮挡免费观看视频| 亚洲性久久影院| 国产精品国产高清国产av| 亚洲在线自拍视频| 又爽又黄a免费视频| 欧美另类亚洲清纯唯美| 青春草国产在线视频| 99热6这里只有精品| 国产精品国产三级国产专区5o | 麻豆成人av视频| 一级黄色大片毛片| 1000部很黄的大片| 亚洲精品久久久久久婷婷小说 | 免费搜索国产男女视频| 国产亚洲av嫩草精品影院| 人妻少妇偷人精品九色| 精品久久久久久电影网 | 国产真实伦视频高清在线观看| 国产亚洲5aaaaa淫片| 日日啪夜夜撸| 中文字幕av成人在线电影| 国产中年淑女户外野战色| 国产久久久一区二区三区| 国产精品不卡视频一区二区| 看十八女毛片水多多多| 日韩人妻高清精品专区| 黄片无遮挡物在线观看| 搡老妇女老女人老熟妇| 免费观看的影片在线观看| 麻豆乱淫一区二区| 麻豆精品久久久久久蜜桃| 亚洲美女搞黄在线观看| 国产免费男女视频| 人妻夜夜爽99麻豆av| 亚洲欧美成人综合另类久久久 | av女优亚洲男人天堂| 麻豆成人午夜福利视频| 日韩 亚洲 欧美在线| 九九爱精品视频在线观看| 联通29元200g的流量卡| 亚洲最大成人中文| 欧美日韩一区二区视频在线观看视频在线 | 国内少妇人妻偷人精品xxx网站| 亚洲国产精品sss在线观看| 搡女人真爽免费视频火全软件| 精品午夜福利在线看| 日韩成人av中文字幕在线观看| 免费观看的影片在线观看| 亚洲av成人精品一区久久| 国产免费福利视频在线观看| 中文字幕熟女人妻在线| 如何舔出高潮| 全区人妻精品视频| a级毛片免费高清观看在线播放| 午夜激情福利司机影院| 一个人看视频在线观看www免费| 国产真实伦视频高清在线观看| 一夜夜www| 亚洲av电影不卡..在线观看| 亚洲第一区二区三区不卡| 长腿黑丝高跟| 亚洲一区高清亚洲精品| 小说图片视频综合网站| 国产一区二区在线av高清观看| 国产淫片久久久久久久久| 国产探花在线观看一区二区| av在线观看视频网站免费| 综合色丁香网| 亚洲美女搞黄在线观看| 国产女主播在线喷水免费视频网站 | 天堂√8在线中文| 精品人妻熟女av久视频| 亚洲最大成人中文| 亚洲美女视频黄频| 亚洲av免费高清在线观看| 天堂网av新在线| 国产女主播在线喷水免费视频网站 | 亚洲av一区综合| 18禁动态无遮挡网站| 国产精品.久久久| 久久久久久伊人网av| 亚洲四区av| 99久久精品一区二区三区| 2022亚洲国产成人精品| 久久6这里有精品| 亚洲精品一区蜜桃| 久久久亚洲精品成人影院| 丰满乱子伦码专区| 亚洲人成网站在线播| 99视频精品全部免费 在线| 日韩三级伦理在线观看| 久久99热6这里只有精品| 日韩,欧美,国产一区二区三区 | 美女被艹到高潮喷水动态| 汤姆久久久久久久影院中文字幕 | 日韩高清综合在线| 欧美高清成人免费视频www| 只有这里有精品99| 日韩欧美精品免费久久| 18+在线观看网站| 成人三级黄色视频| 久久韩国三级中文字幕| 国产高清三级在线| 日日啪夜夜撸| 国模一区二区三区四区视频| 久久久欧美国产精品| av免费观看日本| 欧美xxxx黑人xx丫x性爽| 国产又黄又爽又无遮挡在线| 亚洲真实伦在线观看| 国产高清有码在线观看视频| 国产色婷婷99| 深夜a级毛片| 亚洲精品影视一区二区三区av| 男女那种视频在线观看| 久久99精品国语久久久| 一区二区三区乱码不卡18| 青春草视频在线免费观看| 国产av在哪里看| 欧美zozozo另类| 超碰97精品在线观看| 如何舔出高潮| 3wmmmm亚洲av在线观看| 亚洲精品亚洲一区二区| 亚洲欧美日韩无卡精品| 国产成人福利小说| 国语对白做爰xxxⅹ性视频网站| 99在线视频只有这里精品首页| 亚洲综合精品二区| 看十八女毛片水多多多| 亚洲成人av在线免费| 男人舔奶头视频| 国产精品人妻久久久影院| 精品久久久久久久末码| 欧美丝袜亚洲另类| 亚洲在线自拍视频| 国产精品.久久久| 只有这里有精品99| 国产亚洲午夜精品一区二区久久 | 三级国产精品欧美在线观看| 精品一区二区免费观看| 国产成人a∨麻豆精品| 午夜精品一区二区三区免费看| 2022亚洲国产成人精品| 国产精品久久视频播放| 国产伦一二天堂av在线观看| 爱豆传媒免费全集在线观看| 欧美日韩精品成人综合77777| 乱人视频在线观看| 亚洲在线自拍视频| 男女下面进入的视频免费午夜| 男人和女人高潮做爰伦理| 日日摸夜夜添夜夜添av毛片| 最近最新中文字幕免费大全7| 免费黄色在线免费观看| 插逼视频在线观看| a级毛片免费高清观看在线播放| 男人狂女人下面高潮的视频| 精品一区二区三区人妻视频| 99久久无色码亚洲精品果冻| 国产精品人妻久久久久久| 搡女人真爽免费视频火全软件| 亚洲最大成人手机在线| 黄色配什么色好看| 国产成年人精品一区二区| 建设人人有责人人尽责人人享有的 | 精品人妻视频免费看| 一本久久精品| 看免费成人av毛片| 国国产精品蜜臀av免费| 久久人妻av系列| 又粗又爽又猛毛片免费看| 岛国在线免费视频观看| 看片在线看免费视频| 婷婷色综合大香蕉| 日韩 亚洲 欧美在线| 成年版毛片免费区| 激情 狠狠 欧美| 亚洲国产精品久久男人天堂| 村上凉子中文字幕在线| 国产精品一区www在线观看| 免费看光身美女| 亚洲国产欧洲综合997久久,| 一卡2卡三卡四卡精品乱码亚洲| 两个人的视频大全免费| 最后的刺客免费高清国语| 国产午夜精品一二区理论片| 爱豆传媒免费全集在线观看| 亚洲美女搞黄在线观看| 国产精品无大码| 国产亚洲精品久久久com| 精品少妇黑人巨大在线播放 | 久久久a久久爽久久v久久| 看黄色毛片网站| 三级国产精品片| 国产av一区在线观看免费| 欧美不卡视频在线免费观看| 看免费成人av毛片| 久久国产乱子免费精品| 亚洲五月天丁香| 高清在线视频一区二区三区 | 亚洲怡红院男人天堂| 男插女下体视频免费在线播放| 99热这里只有是精品50| 精品人妻偷拍中文字幕| 亚洲av电影在线观看一区二区三区 | 日产精品乱码卡一卡2卡三| 99久久精品热视频| 国产免费视频播放在线视频 | 国产色婷婷99| 最近中文字幕2019免费版| 免费不卡的大黄色大毛片视频在线观看 | or卡值多少钱| 国产一级毛片在线| 国产精品久久久久久久电影| 变态另类丝袜制服| 午夜激情欧美在线| 麻豆成人av视频| 少妇丰满av| 午夜精品在线福利| av在线亚洲专区| 亚洲国产精品专区欧美| 国产成人aa在线观看| 亚洲国产精品合色在线| 又粗又硬又长又爽又黄的视频| 亚洲精品456在线播放app| 熟女电影av网| 超碰av人人做人人爽久久| 亚洲天堂国产精品一区在线| 在线观看av片永久免费下载| 18禁在线播放成人免费| 尤物成人国产欧美一区二区三区| 午夜日本视频在线| 99国产精品一区二区蜜桃av| 亚洲在线观看片| 中文欧美无线码| 日韩高清综合在线| 久久久欧美国产精品| 亚洲国产精品专区欧美| 久久精品国产亚洲网站| 成年版毛片免费区| 色综合站精品国产| av线在线观看网站| 午夜日本视频在线| 国模一区二区三区四区视频| 国产精品人妻久久久久久| 美女国产视频在线观看| 青春草国产在线视频| 你懂的网址亚洲精品在线观看 | 国产探花极品一区二区| 国产精品人妻久久久影院| 国产单亲对白刺激| 欧美三级亚洲精品| 舔av片在线| 超碰97精品在线观看| av天堂中文字幕网| 舔av片在线| 老女人水多毛片| 午夜福利高清视频| 国产视频首页在线观看| 国产单亲对白刺激| 熟女电影av网| 久久久精品94久久精品| 成年免费大片在线观看| 精品酒店卫生间| 99在线人妻在线中文字幕| 久久人人爽人人片av| 国产白丝娇喘喷水9色精品| 亚洲国产欧美在线一区| 久久精品国产亚洲网站| 少妇的逼水好多| 成人国产麻豆网| 午夜精品在线福利| 国产精品不卡视频一区二区| 精品一区二区免费观看| 51国产日韩欧美| 少妇熟女aⅴ在线视频| 日韩欧美三级三区| 国产成人aa在线观看| 少妇高潮的动态图| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 91狼人影院| 亚洲精品,欧美精品| 六月丁香七月| 夜夜爽夜夜爽视频| 黄片无遮挡物在线观看| 亚洲综合精品二区| 免费无遮挡裸体视频| 精品午夜福利在线看| 成年免费大片在线观看| 亚洲成人av在线免费| 久久久精品欧美日韩精品| 亚洲av不卡在线观看| 国内精品美女久久久久久| 免费观看性生交大片5| 又黄又爽又刺激的免费视频.| 国产三级在线视频| 国产在视频线精品| 亚洲性久久影院| 日韩大片免费观看网站 | 亚洲在久久综合| 亚洲国产精品专区欧美| 午夜激情福利司机影院| 黄色日韩在线| 嫩草影院精品99| 尤物成人国产欧美一区二区三区| 成人亚洲欧美一区二区av| 日日撸夜夜添| 一本一本综合久久| 国产午夜精品一二区理论片| 日韩欧美精品v在线| 亚洲综合精品二区| 久久久久久久久中文| 国产不卡一卡二| 在现免费观看毛片| 亚洲成av人片在线播放无| 99久久精品热视频| 精品人妻熟女av久视频| 天天一区二区日本电影三级| 少妇被粗大猛烈的视频| 毛片女人毛片| 欧美潮喷喷水| 少妇人妻一区二区三区视频| 女人十人毛片免费观看3o分钟| 欧美另类亚洲清纯唯美| 国产免费福利视频在线观看| 久久久久久大精品| 蜜桃亚洲精品一区二区三区| 99视频精品全部免费 在线| 国产成人91sexporn| 午夜爱爱视频在线播放| 可以在线观看毛片的网站| 日韩中字成人| 禁无遮挡网站| 看片在线看免费视频| 日韩精品有码人妻一区| 国产精品熟女久久久久浪| 国产激情偷乱视频一区二区| 亚洲精品成人久久久久久| 能在线免费看毛片的网站| 国产在线男女| 日韩制服骚丝袜av| 日本黄色片子视频| 免费观看在线日韩| 日韩成人av中文字幕在线观看| 亚洲精华国产精华液的使用体验| 国产高清国产精品国产三级 | 91在线精品国自产拍蜜月| 欧美日韩国产亚洲二区| 免费观看人在逋| 欧美日本视频| 深爱激情五月婷婷| 成人高潮视频无遮挡免费网站| 最近中文字幕高清免费大全6| 伊人久久精品亚洲午夜| 男女视频在线观看网站免费| 欧美区成人在线视频| 欧美xxxx黑人xx丫x性爽| av天堂中文字幕网| 久久国内精品自在自线图片| 国产高潮美女av| 少妇裸体淫交视频免费看高清| 成人美女网站在线观看视频| 联通29元200g的流量卡| 岛国毛片在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 大又大粗又爽又黄少妇毛片口| 男女下面进入的视频免费午夜| 亚洲人与动物交配视频| 免费av观看视频| 日韩大片免费观看网站 | 91精品国产九色| av天堂中文字幕网| 久久久久久久午夜电影| 亚洲国产精品久久男人天堂| 日韩人妻高清精品专区| 最近中文字幕高清免费大全6| 亚洲不卡免费看| 只有这里有精品99| 一本久久精品| 两性午夜刺激爽爽歪歪视频在线观看| 成人国产麻豆网| 人妻系列 视频| 高清午夜精品一区二区三区| 一级毛片久久久久久久久女| 中文在线观看免费www的网站| 日产精品乱码卡一卡2卡三| 毛片女人毛片| 精品酒店卫生间| 我要看日韩黄色一级片| 成人美女网站在线观看视频| a级毛片免费高清观看在线播放| 亚洲欧美成人精品一区二区| av视频在线观看入口| 国产精品1区2区在线观看.| 国语对白做爰xxxⅹ性视频网站| 免费观看在线日韩| 热99re8久久精品国产| 欧美日本亚洲视频在线播放| 精品久久久久久成人av| 99久久中文字幕三级久久日本| 国产色爽女视频免费观看| 天堂√8在线中文| 久久久久久久久中文| 亚洲av一区综合| 精品酒店卫生间| 一边摸一边抽搐一进一小说| 国产一级毛片七仙女欲春2| 国产片特级美女逼逼视频| 国内少妇人妻偷人精品xxx网站| 久久久久性生活片| 午夜a级毛片| 尤物成人国产欧美一区二区三区| 国产国拍精品亚洲av在线观看| 国产成人午夜福利电影在线观看| 最近中文字幕高清免费大全6| 一个人看的www免费观看视频| 美女cb高潮喷水在线观看| 我的老师免费观看完整版| 秋霞在线观看毛片| 国产不卡一卡二| 国产大屁股一区二区在线视频| 一边亲一边摸免费视频| 伦精品一区二区三区| 99久久无色码亚洲精品果冻| 国产成人精品久久久久久| 国产麻豆成人av免费视频| 亚洲欧美日韩无卡精品| 又爽又黄a免费视频| 国产亚洲91精品色在线| 色5月婷婷丁香| 亚洲国产精品成人综合色| 色网站视频免费| 亚洲国产精品成人久久小说| 欧美日韩在线观看h| 别揉我奶头 嗯啊视频| 国产精品一区二区三区四区久久| 午夜免费男女啪啪视频观看| 国产高清三级在线| 国产一区二区亚洲精品在线观看| 伊人久久精品亚洲午夜| 亚洲欧美清纯卡通| 欧美三级亚洲精品| 免费黄色在线免费观看| 26uuu在线亚洲综合色| 内地一区二区视频在线| eeuss影院久久| 青春草亚洲视频在线观看| 久久国内精品自在自线图片| 黄色配什么色好看| 一夜夜www| 啦啦啦韩国在线观看视频| 日本wwww免费看| 免费看日本二区| 亚洲精品久久久久久婷婷小说 | 麻豆精品久久久久久蜜桃| 22中文网久久字幕| 99在线视频只有这里精品首页| av天堂中文字幕网| 一二三四中文在线观看免费高清| 亚洲性久久影院| 99九九线精品视频在线观看视频| 国产伦精品一区二区三区四那| 亚洲国产欧美在线一区| 日韩欧美国产在线观看| 精品国产三级普通话版| 又爽又黄无遮挡网站| 人人妻人人澡欧美一区二区| 国产人妻一区二区三区在| 日本-黄色视频高清免费观看| 日日摸夜夜添夜夜爱| 波多野结衣巨乳人妻| 日韩三级伦理在线观看| 精品久久久久久成人av| 中文欧美无线码| 久久精品久久久久久久性| 国产成人精品久久久久久| 国产精品熟女久久久久浪| 欧美日韩一区二区视频在线观看视频在线 | 久99久视频精品免费| 91久久精品电影网| 一本一本综合久久| 麻豆久久精品国产亚洲av| 18禁裸乳无遮挡免费网站照片| 最近中文字幕2019免费版| 国模一区二区三区四区视频| 在线观看66精品国产| 97热精品久久久久久| 老司机影院毛片| 最后的刺客免费高清国语| 色网站视频免费| 最后的刺客免费高清国语| 国产老妇女一区| 一边摸一边抽搐一进一小说| 国产老妇女一区| 亚洲精品国产av成人精品| 高清午夜精品一区二区三区| 性色avwww在线观看| 一个人看视频在线观看www免费| 综合色av麻豆| 99热精品在线国产| 国产高清视频在线观看网站| 韩国高清视频一区二区三区| 边亲边吃奶的免费视频| 好男人在线观看高清免费视频| 亚洲av日韩在线播放| 亚洲综合精品二区| 身体一侧抽搐| 能在线免费观看的黄片| 午夜日本视频在线| 精品人妻熟女av久视频| 男女啪啪激烈高潮av片| 久久久久网色| 午夜福利高清视频| 久久精品夜色国产| 国产av在哪里看| 成年免费大片在线观看| 亚洲真实伦在线观看| 国产亚洲一区二区精品| 国产精品国产三级专区第一集| 久久人人爽人人片av| 国产极品天堂在线| 中文乱码字字幕精品一区二区三区 | av在线老鸭窝| 国产成年人精品一区二区| 国产成人精品一,二区| АⅤ资源中文在线天堂| 国产激情偷乱视频一区二区| 久久久久久大精品| 国产精品不卡视频一区二区| 在线观看美女被高潮喷水网站| 两性午夜刺激爽爽歪歪视频在线观看| 日本爱情动作片www.在线观看| 成人高潮视频无遮挡免费网站| 亚洲五月天丁香| 日本黄色视频三级网站网址| 国内精品宾馆在线| 日本免费一区二区三区高清不卡| 国产麻豆成人av免费视频| 久久99蜜桃精品久久| 中文字幕制服av| 高清日韩中文字幕在线| 啦啦啦观看免费观看视频高清| 国产高清国产精品国产三级 | 一个人看视频在线观看www免费| 狂野欧美激情性xxxx在线观看| 亚洲三级黄色毛片| 国国产精品蜜臀av免费| 日韩在线高清观看一区二区三区| 少妇裸体淫交视频免费看高清| 少妇高潮的动态图| av国产久精品久网站免费入址| 欧美最新免费一区二区三区| 免费观看的影片在线观看| 欧美一区二区精品小视频在线| 国产中年淑女户外野战色| 久久99精品国语久久久| 国产精品蜜桃在线观看| 亚洲欧美成人综合另类久久久 | 看非洲黑人一级黄片| 中文字幕免费在线视频6| 热99在线观看视频| 老师上课跳d突然被开到最大视频| 亚洲综合色惰| 联通29元200g的流量卡| 成年女人永久免费观看视频| 日韩成人伦理影院| 搡老妇女老女人老熟妇| 亚洲色图av天堂| 日本一二三区视频观看| 永久免费av网站大全| 久久精品国产亚洲网站| 精品久久久久久久久亚洲| 亚洲天堂国产精品一区在线| 久久精品影院6| 在线播放无遮挡| 99久久无色码亚洲精品果冻| 日本-黄色视频高清免费观看| 少妇人妻精品综合一区二区| av国产免费在线观看| 乱码一卡2卡4卡精品| 欧美一区二区国产精品久久精品| 两性午夜刺激爽爽歪歪视频在线观看| 久久午夜福利片| 国内精品美女久久久久久| 麻豆乱淫一区二区| 亚洲av成人精品一二三区| 大又大粗又爽又黄少妇毛片口| av在线天堂中文字幕| 国产精品一区二区三区四区免费观看| 99久久精品国产国产毛片| 波多野结衣高清无吗| 亚洲人成网站在线播| 少妇的逼好多水| 亚洲最大成人中文| 大香蕉97超碰在线| 免费看a级黄色片|