• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stem Taper Functions for Betula platyphylla in Daxing’anling

    2021-01-05 08:58:50ShahzadMuhammadKhurramHussainAmnaHePeiJiangLichun
    林業(yè)科學 2020年11期

    Shahzad Muhammad Khurram Hussain Amna He Pei Jiang Lichun

    (Key Laboratory of Sustainable Forest Ecosystem Management of Ministry of Education School of Forestry, Northeast Forestry University Harbin 150040)

    Abstract: 【Objective】 Stem taper functions are important components in forest management and planning systems. Currently, there is no taper function for Betula platyphylla in northeast China, therefore, it is necessary to develop the taper function for this species. Eight commonly used taper functions in forestry were compared to evaluate which would provide a better prediction for diameter at a specific height and total volume for B. platyphylla in northeast China.【Method】 The data used in this study were collected from 253 destructively felled sample trees with 3 795 diameter/height measurements in the northwest of the northern slope of Yilehuli Mountains of northeast China. A first-order continuous autoregressive error structure was used to model the error term and account for autocorrelation. Multicollinearity was also evaluated with condition number. Coefficient of determination (R2), mean absolute bias (MAB), root mean square error (RMSE) and mean percentage of bias (MPB) were selected as evaluation criteria of models. Comparison of the taper models was carried out using goodness-of-fit statistics, box plots of diameter and volume residual distributions and validation statistics. 【Result】 1) In terms of model fitting statistics, the models of Kozak (2004)-2, Fang et al. (2000) and Max et al. (1976) were the top three models. The model of Sharma et al. (2001) showed the poorest performance. 2) Based on the box plots of diameter and volume residuals, the models of Bi (2000), Max et al. (1976), Kozak(2004)-2 and Fang et al. (2000) were more accurate in diameter and volume prediction with smaller errors and almost similar residual diameter and volume distribution. The models of Sharma et al. (2001), Sharma et al. (2004), Sharma et al. (2009) and Kozak (2004)-1 had non homogeneous distribution of the diameter residuals along different sections of the stem. 3) Model validation also confirmed that Max et al. (1976), Kozak (2004)-2 and Fang et al. (2000) showed better performances. In general, the model of Kozak (2004)-2 showed consistent performances and was superior to other taper models in predicting diameter and volume.【Conclusion】 Based on the evaluation statistics of fitting and validation, graphic analysis and condition number, the model of Kozak (2004)-2 was recommended for estimating diameter at a specific height, total volume and merchantable volume for B. platyphylla in northeast China.

    Key words: Betula platyphylla; taper; volume; autocorrelation; multicollinearity

    Taper models are one of the essential component in current systems of forest management and planning (Heidarssonetal., 2011). Recently, the estimation of tree volume by using taper equations has gained popularity. As reported in previous studies, taper functions are a valuable tool to estimate the tree contents for a wide range of products. Taper models, owing to their flexibility, are extensively applied in forest inventories to estimate diameter and merchantable stem volume. Merchantable stem volume is of greater concern since it enables the classification of timber products by merchantable dimensions. Additionally, it was indicated by Lietal. (2010) and de-Migueletal. (2012) that taper equations stay ahead of existing volume tables in volume estimation. This benefit is attributed to the ability of taper functions to predict the diameter (over bark or inside bark) accurately at any height along stem. As a result of which, calculation of merchantable volume for any required specification is easily made possible. Besides the prediction of timber volume availability (Zhangetal., 2006), stem taper as a regressor variable, has also been applied to determine the number of growth rings in cross section (Wilhelmsson, 2006) and to evaluate the correct sampling design for the collection of stem diameter data (Newtonetal., 2008).

    Broadly speaking, classification of taper functions exists on the basis of 1) their compatibility with volume equations (Reedetal., 1984); 2) their functional form (Thomasetal., 1991; Muhairweetal., 1994; Sharmaetal., 2001); 3) the origin of these functions such as empirical or geometric (Fangetal., 1999). Principally, taper functions have been arranged into three categories (Diéguez-Arandaetal., 2006). First group contains simple polynomial taper equations (Demaerschalk, 1972; Biging, 1984; Sharmaetal., 2001). Second group comprises of segmented taper functions (Maxetal., 1976; Fangetal. 2000; Jiangetal. 2005). Third type includes variable-form taper functions (Kozak, 1988; 2004; Muhairwe, 1999; Bi, 2000; Leeetal., 2003).

    White birch (Betulaplatyphylla) is extensively distributed in northeast China. Currently, there is no taper function for this species in northeast China. A practical stem taper equation is required to estimate wood volume of white birch. Objectives of this study were to evaluate selected existing taper functions and to develop a taper equation for the prediction of diameter, total volume and merchantable volume of white birch.

    1 Materials and methods

    1.1 Data

    Data used in this study were collected from uneven-aged white birch stands in the northwest of the northern slope of Yilehuli Mountains of northeast China. A total of 253 trees covering the existing range of stand conditions and densities were selected for destructive sampling. Before felling, diameter at breast height (D, 1.3 m above ground level) was measured for all trees. Each sample tree was felled to measure total tree height and their diameter near ground, and at 2%, 4%, 6%, 8%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of total height. Measurement intervals along the stem fluctuate from 14 cm to 2.41 m depending upon the total height of the tree. Measurements for two perpendicular diameters (over bark) were taken in each part and arithmetically averaged. Smalian’s formula was used to calculate the log volumes in cubic meters. Stem top was considered as a cone. Total stem volume (over bark) above stump was computed by adding the logs volumes (over bark) and the volume of top section. The data was randomly split into two groups: 191 trees for model fitting and 62 trees for model validation. Summary statistics for tree diameter and total height are shown in Tab.1.

    1.2 Methods

    1.2.1 Functions selected for comparisonEight commonly used taper equations were selected. These models belong to the categories of simple taper function i.e. Sharmaetal. (2001), segmented taper functions i.e. Maxetal. (1976), Fangetal. (2000), and variable form taper functions i.e. Bi (2000), Kozak (2004)-1 and 2, Sharmaetal. (2004), Sharmaetal. (2009). Mathematical expressions of these models are presented in Tab.2.

    Tab.2 Analyzed taper functions①

    1.2.2ModelevaluationTwo goodness-of-fit statistics were used: coefficient of determination (R2) and root mean square error (RMSE). Mean absolute bias (MAB), root mean square error (RMSE), and mean percentage of bias (MPB) were used for validation. The expressions of these statistics are as follows:

    (1)

    (2)

    (3)

    (4)

    Multicollinearity and autocorrelation are two main problems for construction of taper functions. Multicollinearity is the presence of high inter-correlations among predictor variables during analysis of multiple regressions. The existence of multicollinearity in the taper functions was assessed by condition number (CN). CN is square root of the quotient between maximum and minimum eigenvalue of the correlation matrix. Belsley (1991) suggested that there should be no concern about collinearity provided the CN ranges from 5-10, collinearity associated problems are formed if CN values from 30-100 and the CN from 1 000-3 000 signifies a high degree of collinearity related problems. Autocorrelation refers to spatial correlation since taper function requires data collection from multiple observations within each tree (i.e. hierarchical data). Thus a first-order continuous autoregressive error structure CAR(1) was used to model the error terms of the hierarchical data (Lietal., 2010). The taper functions were also evaluated through the use of box and whisker plots ofdresiduals against relative heights along the stem (5%, 15%, 25%, so on up to 95%) and ofvresiduals against diameter classes.

    1.2.3RankingofmodelsA common procedure of rankingmmodels is to assign numbers 1, 2, 3…,mduring comparison of different models. Though the numbers in such procedures show the respective order (descending or ascending) of the model, yet the exact place of a model with reference to other models is not known. For this study, the method proposed by Poudeletal. (2013) was used to get the specific and relative position of each model. The relative rank of the modeliis defined as

    (5)

    WhereRiis the relative rank of the modeli(i=1, 2, 3,…,m),siis the goodness-of-fit statistics produced by modeli,sminis the minimum value ofsi, andsmaxis the maximum value ofsi. The best and the poorest models have relative ranks of 1 andm, respectively in this method. This ranking system was applied forR2, RMSE, MAB and MPB statistics for all variables i.e. diameter and total volume, and average rank value was also calculated.

    2 Results

    Initially, taper functions were fitted with non-liner least squares method and autocorrelation was not taken into account. An example of observed autocorrelation in the model of Kozak (2004)-2 is given in Fig.1. As expected, a strong positive autocorrelation was observed. After a first order continuous autoregressive error structure CAR(1) was incorporated into the model of Kozak (2004)-2, no obvious correlation trend was observed, indicating that autocorrelation can be reduced through CAR(1) (Fig.1).

    Most of the parameters were significant atP<0.05 (Tab.3), with the exception ofb5,b6in function Bi (2000),b2in function Sharmaetal. (2004), andb6in function Kozak (2004)-2. These insignificant parameters will not make any difference to the model. Therefore, taking the values of such parameters as 0, models were refitted.

    The values of coefficient of determination (R2) and root mean squared error (RMSE) for all 8 models are shown in Tab.4. Above 97% of total variance of diameter was explained by five models i.e. Kozak (2004)-2, Fangetal. (2000), Bi (2000), Sharmaetal. (2009), and Maxetal. (1976). However, the models of Bi (2000) and Maxetal. (1976) displayed fairly high multicollinearity. The models of Kozak (2004)-2, Fangetal. (2000) and Maxetal. (1976) were top three models based on RMSE values. The model of Sharmaetal. (2001) showed the poorest performance. Tab.4 also describes the average ranks of 8 models besides the goodness of fit statistics. As a whole, Kozak (2004)-2 equation was ranked as the best model whereas the equation of Sharmaetal. (2001) was the poorest performer. The model of Fangetal. (2000) attained second position with Maxetal. (1976) and Bi (2000) at third and fourth ranks respectively.

    Fig.1 Lagged residuals for the Kozak (2004)-2 model fitted without considering the autocorrelation parameters and using continuous-time autoregressive error structures of first order

    The box plots ofdresiduals versus relative height classes (Fig.2) indicated that the distribution of error along the stem is not same among different taper functions. The models of Sharmaetal. (2001) and Sharmaetal. (2004) overestimated the diameter above 10% of relative height. The model of Sharmaetal. (2009) overestimated the diameter in the middle bole section (10%-90%). The model of Kozak (2004)-1 has non homogeneous distribution of the residuals along different sections of the stem. It underestimates the middle (30%-70%) and overestimates the upper portions (>80%) of the stem. The models of Bi (2000), Maxetal. (1976), Kozak (2004)-2 and Fangetal. (2000) are more accurate in diameter prediction with smaller errors and almost similar residual diameter distribution.

    The box plots ofvresiduals against diameter classes (Fig.3) indicated that the models of Bi (2000), Maxetal. (1976), Kozak (2004)-2, Fangetal. (2000) and Sharmaetal. (2004) showed more accuracy and similar volume residual distribution since the medians and means of prediction errors are mainly scattered near zero. The model of Kozak (2004)-1 underestimated the volume throughout the diameter classes, especially for larger diameter classes (>20 cm). The models of Sharmaetal. (2001) and Sharmaetal. (2009) overestimated the volume throughout the diameter classes, especially for larger diameter classes (>20 cm).

    Validation data was also used to evaluate the performance of the models for the prediction of diameter and total stem volume (Tab.5). According to the ranking, top three models in diameter prediction were Maxetal. (1976), Kozak (2004)-2, and Fangetal. (2000).

    For total volume prediction, the scenario was a bit changed. The models of Kozak (2004)-1, Kozak (2004)-2 and Maxetal. (1976) were the best three models. The model of Kozak (2004)-2 also had a smaller volume prediction error in the lower section below 40% of total height when compared to the models of Kozak (2004)-1 and Maxetal. (1976). It was noticed that the model of Kozak (2004)-2 maintained its position and offered best results followed by the Fangetal. (2000) model in the prediction of diameter and total volume in overall ranking (Tab.5). The model of Sharmaetal. (2001) consistently displayed the poorest results in comparison with all candidate models.

    3 Discussion

    Numerous taper functions have been developed for many species. However, stem taper models for white birch have not been developed in northeast China. In the present study, a total of 8 commonly used stem taper functions from three groups (simple polynomial, segmented and variable form taper functions) were fitted to estimate the stem diameter and total volume of white birch. Autocorrelation and multicollinearity were considered in model fitting process. It should be noted that inclusion of autocorrelation was to improve the interpretation of statistical properties of taper models. There was no substantial difference between the estimation of the models fitted with and without autocorrelation. Multicollinearity is not a decisive factor for selecting a best taper model, however, models with lower CN should be preferred.

    The goodness of fit statistics, validation statistics and box plots ofdandvresiduals put the models of Kozak (2004)-2 and Fangetal. (2000) at the higher position in estimating diameters along the stem and total stem volume for white birch. The model of Kozak (2004)-2 showed slightly better fitting and validation results than the model of Fangetal. (2000). Thus, the model of Kozak (2004)-2 was recommended for predicting diameters and volume of white birch in northeast China.

    Tab.3 Parameter estimates (standard errors in bracket) of taper models for white birch

    Tab.4 Goodness-of-fit statistics, rank of models, and condition number of taper models

    Fig.2 Box plots of d residuals (Y-axis, cm) against relative height classes (X-axis, percent) for different models The boxes represent interquartile ranges with their edges being 25th and 75th percentiles, maximum and minimum diameter over bark prediction errors are represented by the upper and lower small horizontal lines crossing the vertical bars, the plus sign represent the mean of prediction errors for the corresponding relative height classes.

    Fig.3 Residuals box plots of estimated total volume over bark against diameter classes for different models The boxes represent interquartile ranges with their edges being 25th and 75th percentiles, maximum and minimum prediction errors are represented by the upper and lower small horizontal lines crossing the vertical bars, the plus sign represent the mean of prediction errors for the corresponding diameter classes.

    Tab.5 Evaluation statistics with ranking of different taper models in estimating diameter and volume

    The results of this study are similar to those reported by Kozak (2004), Rojoetal. (2005), Antaetal. (2007), Corral-Rivasetal. (2007), Crecente-Campoetal. (2009), Lietal. (2010), Heidarssonetal. (2011), Jiangetal. (2016).

    Kozak (2004) confirmed that the model of Kozak (2004)-2 was the best overall model for 38 species groups. In Galicia (northwestern Spain), 31 taper functions were assessed and the model of Kozak (2004)-2 was recommended forPinuspinaster(Rojoetal., 2005). Antaetal. (2007) reported that the model of Kozak (2004)-2 appeared to be the best option for stem profile description of Pedunculate oak in northwestern Spain. Corral-Rivasetal., (2007) found that the models of Fangetal. (2000) and Kozak (2004)-2 were equally precise in estimatingdat any position of the stem for the five pine species in El Salto, Mexico. Crecente-Campoetal. (2009) compared the models of Fangetal. (2000) and Kozak (2004)-2 and found no clear advantage of one model against the other forPinussylvestrisin Spain. Although Crecente-Campoetal. (2009) found that the condition number of the Fangetal. (2000) model was slightly less than that of the Kozak (2004)-2 model, in our study, the condition number of the Kozak (2004)-2 model was slightly less than that of the Fangetal. (2000) model. Heidarssonetal. (2011) suggested that the model of Kozak (2004)-2 was the best option forPinuscontortaandLarixsibiricain Iceland. In another study that included 10 taper functions to estimate DIB forPicearubensandPinusstrobus, in north america, this model was declared as the most accurate model (Lietal., 2010). Moreover, it served as a base equation for modeling stem taper equation for 11 conifer species in north America (Lietal., 2012) and forBetulapubescensin northwestern Spain (Gómez-Garcíaetal., 2013). Lately, Lumbresetal. (2016) indicated that Kozak (2004)-2 model out of six taper models showed best performance forCeltisluzonica,Diplodiscuspaniculatus,parashoreaandSwieteniamacrophyllain Philippines. Jiangetal. (2016) reported that the model of Kozak (2004)-2 was the best for describing the stem profile ofLarixgmeliniiin northeast China. In our analysis, we found minimal difference in estimating diameter and volume for the models of the Kozak (2004)-2 and Fangetal. (2000). It should be noted that Kozak(2004)-2 model cannot be directly integrated to calculate total and merchantable volume, numerical integration methods or classical volume formulate (e.g. Smalian or Huber) must be used for volume calculation.

    4 Conclusions

    In this study, a taper equation for white birch in northeast China was developed to estimate diameters at any position along the stem, total and merchantable volume. A total of eight well-known taper functions were evaluated: simple taper function of Sharmaetal. (2001), the segmented taper functions proposed by Maxetal. (1976) and Fangetal. (2000), the trignonmetric and variable form taper functions proposed by Bi (2000), Kozak (2004), Sharmaetal. (2004), and Sharmaetal. (2009). It is obvious from the summary statistics and graphical analysis that the model of Kozak (2004)-2 showed the best performance followed by Fangetal. (2000) with a marginal difference in the prediction of diameters along the stem and total stem volume. Thus, the model of Kozak (2004)-2 was recommended for estimating diameter at a specific height and total volume for white birch.

    少妇粗大呻吟视频| 国产成人精品无人区| 午夜福利一区二区在线看| 欧美 亚洲 国产 日韩一| www.熟女人妻精品国产| 国产激情久久老熟女| 亚洲国产中文字幕在线视频| 亚洲午夜理论影院| 日韩国内少妇激情av| 成人国产综合亚洲| 老熟妇仑乱视频hdxx| 人人妻人人澡欧美一区二区| 久久狼人影院| 精品乱码久久久久久99久播| 欧美成人一区二区免费高清观看 | 长腿黑丝高跟| 麻豆国产av国片精品| 观看免费一级毛片| 老汉色∧v一级毛片| 精华霜和精华液先用哪个| 亚洲性夜色夜夜综合| 亚洲人成电影免费在线| 丁香六月欧美| 自线自在国产av| 在线天堂中文资源库| 在线观看免费日韩欧美大片| 人妻丰满熟妇av一区二区三区| 国产乱人伦免费视频| 18禁黄网站禁片免费观看直播| 久久中文字幕一级| 国产精品亚洲av一区麻豆| 看黄色毛片网站| 亚洲国产欧美日韩在线播放| 91成年电影在线观看| 欧美日韩一级在线毛片| 色播在线永久视频| 亚洲自拍偷在线| 极品教师在线免费播放| 亚洲欧美精品综合久久99| 国产伦在线观看视频一区| 亚洲精品在线观看二区| 男女之事视频高清在线观看| 国产v大片淫在线免费观看| 亚洲专区字幕在线| 男人舔女人下体高潮全视频| 最近最新免费中文字幕在线| 成人18禁在线播放| 国产午夜福利久久久久久| 国产精品,欧美在线| 国产精品久久视频播放| 精品国产乱子伦一区二区三区| 夜夜看夜夜爽夜夜摸| 国产私拍福利视频在线观看| 后天国语完整版免费观看| 国产精品一区二区免费欧美| 国产爱豆传媒在线观看 | 中文字幕人妻熟女乱码| 亚洲国产日韩欧美精品在线观看 | 欧美国产日韩亚洲一区| 变态另类成人亚洲欧美熟女| 91麻豆精品激情在线观看国产| 18美女黄网站色大片免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品乱码一区二三区的特点| 日本 av在线| cao死你这个sao货| 久久久久精品国产欧美久久久| 黄色成人免费大全| 国产成年人精品一区二区| 91国产中文字幕| 亚洲人成网站高清观看| 夜夜看夜夜爽夜夜摸| 免费在线观看完整版高清| 嫁个100分男人电影在线观看| 天堂影院成人在线观看| 日韩欧美 国产精品| 一二三四社区在线视频社区8| 欧美成狂野欧美在线观看| 亚洲在线自拍视频| 天天躁夜夜躁狠狠躁躁| 欧美日韩乱码在线| 亚洲男人的天堂狠狠| 欧美不卡视频在线免费观看 | 男女视频在线观看网站免费 | 亚洲精品一卡2卡三卡4卡5卡| 久久亚洲精品不卡| 久久天躁狠狠躁夜夜2o2o| 国产高清videossex| 侵犯人妻中文字幕一二三四区| 精品国产美女av久久久久小说| 1024视频免费在线观看| 757午夜福利合集在线观看| 日韩精品青青久久久久久| 极品教师在线免费播放| svipshipincom国产片| 在线观看免费视频日本深夜| 亚洲国产欧洲综合997久久, | 久久国产精品男人的天堂亚洲| 日本a在线网址| 亚洲一区高清亚洲精品| 黑人巨大精品欧美一区二区mp4| 18禁国产床啪视频网站| 99久久国产精品久久久| 欧美不卡视频在线免费观看 | 成人手机av| 我的亚洲天堂| 久久久久亚洲av毛片大全| 欧美激情高清一区二区三区| 亚洲av电影不卡..在线观看| 欧美日韩黄片免| 欧美激情极品国产一区二区三区| 可以免费在线观看a视频的电影网站| 欧美激情久久久久久爽电影| 久久久久久久久久黄片| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久人妻蜜臀av| 国产av在哪里看| 亚洲欧美一区二区三区黑人| 制服人妻中文乱码| 97碰自拍视频| 亚洲国产欧美一区二区综合| 成人18禁高潮啪啪吃奶动态图| 亚洲中文字幕一区二区三区有码在线看 | 国产精品一区二区免费欧美| 国产野战对白在线观看| a在线观看视频网站| xxx96com| 久热爱精品视频在线9| 欧美在线黄色| 日韩欧美免费精品| 桃色一区二区三区在线观看| 丁香六月欧美| 亚洲全国av大片| 亚洲av成人av| 久久九九热精品免费| 午夜福利成人在线免费观看| 美国免费a级毛片| 此物有八面人人有两片| 日本精品一区二区三区蜜桃| 啪啪无遮挡十八禁网站| 精品日产1卡2卡| 久久国产亚洲av麻豆专区| 国产精品国产高清国产av| 大型黄色视频在线免费观看| 男女做爰动态图高潮gif福利片| 日韩视频一区二区在线观看| 69av精品久久久久久| 夜夜夜夜夜久久久久| www日本在线高清视频| 他把我摸到了高潮在线观看| 非洲黑人性xxxx精品又粗又长| 国产免费男女视频| 久久久久久久久久黄片| 久久久国产成人精品二区| 精品福利观看| 视频区欧美日本亚洲| 久久久久国产一级毛片高清牌| av免费在线观看网站| 亚洲av成人av| 欧洲精品卡2卡3卡4卡5卡区| 97碰自拍视频| av超薄肉色丝袜交足视频| 欧美久久黑人一区二区| 色在线成人网| 久9热在线精品视频| 女人爽到高潮嗷嗷叫在线视频| 一区福利在线观看| 国产精品美女特级片免费视频播放器 | 国产极品粉嫩免费观看在线| 国产黄片美女视频| 精品久久久久久久毛片微露脸| 老司机午夜福利在线观看视频| 变态另类成人亚洲欧美熟女| 俄罗斯特黄特色一大片| 精品久久久久久久久久免费视频| 亚洲美女黄片视频| 欧美人与性动交α欧美精品济南到| 国产成+人综合+亚洲专区| 精品国产一区二区三区四区第35| 久久香蕉国产精品| 国产精华一区二区三区| 亚洲欧洲精品一区二区精品久久久| 女性被躁到高潮视频| 午夜免费成人在线视频| 亚洲av电影在线进入| 国产精品美女特级片免费视频播放器 | 午夜福利高清视频| 亚洲精品粉嫩美女一区| 国产成人一区二区三区免费视频网站| 无限看片的www在线观看| 亚洲国产看品久久| 男女之事视频高清在线观看| 欧美日韩一级在线毛片| 久久久久久久久免费视频了| 一二三四在线观看免费中文在| 女生性感内裤真人,穿戴方法视频| 99久久综合精品五月天人人| 男人舔奶头视频| 69av精品久久久久久| 看免费av毛片| 免费av毛片视频| 99热6这里只有精品| 婷婷亚洲欧美| videosex国产| 淫妇啪啪啪对白视频| 村上凉子中文字幕在线| 麻豆成人午夜福利视频| 一二三四在线观看免费中文在| 视频区欧美日本亚洲| 国产久久久一区二区三区| 大型黄色视频在线免费观看| 午夜福利免费观看在线| 给我免费播放毛片高清在线观看| 岛国在线观看网站| 亚洲真实伦在线观看| 日本a在线网址| 久久久久精品国产欧美久久久| 国产精品亚洲一级av第二区| 在线观看一区二区三区| 美女大奶头视频| 国产精品日韩av在线免费观看| av片东京热男人的天堂| 曰老女人黄片| 亚洲精品在线美女| 欧美在线一区亚洲| 国产成人av教育| 好看av亚洲va欧美ⅴa在| 一进一出抽搐gif免费好疼| 91麻豆精品激情在线观看国产| cao死你这个sao货| 高清在线国产一区| 国产视频一区二区在线看| 亚洲激情在线av| 俺也久久电影网| 精品久久久久久久久久免费视频| 黄色 视频免费看| 一个人免费在线观看的高清视频| www.熟女人妻精品国产| 美女午夜性视频免费| 黄色片一级片一级黄色片| 又紧又爽又黄一区二区| 亚洲性夜色夜夜综合| 久久久久久久久免费视频了| 国产av一区二区精品久久| 日韩一卡2卡3卡4卡2021年| 麻豆成人av在线观看| 国产精品自产拍在线观看55亚洲| 日日爽夜夜爽网站| 亚洲久久久国产精品| 午夜福利成人在线免费观看| 亚洲欧美日韩无卡精品| 热99re8久久精品国产| 女同久久另类99精品国产91| 亚洲欧美一区二区三区黑人| 国产亚洲精品一区二区www| 99精品欧美一区二区三区四区| 免费看日本二区| 国产爱豆传媒在线观看 | 精品熟女少妇八av免费久了| 久久精品91蜜桃| 18禁美女被吸乳视频| 看片在线看免费视频| 久久精品国产清高在天天线| 国产久久久一区二区三区| 人人妻人人澡欧美一区二区| 人人妻人人澡人人看| 日韩中文字幕欧美一区二区| 露出奶头的视频| 国内久久婷婷六月综合欲色啪| 欧美又色又爽又黄视频| 日韩有码中文字幕| 老司机靠b影院| 久久久久久久精品吃奶| 欧美最黄视频在线播放免费| 大型黄色视频在线免费观看| 51午夜福利影视在线观看| 一级毛片精品| 亚洲熟妇中文字幕五十中出| 国产aⅴ精品一区二区三区波| 美女午夜性视频免费| 亚洲欧美激情综合另类| 天天躁夜夜躁狠狠躁躁| 在线观看日韩欧美| 久久婷婷成人综合色麻豆| 一个人观看的视频www高清免费观看 | 国产成人精品久久二区二区91| 午夜日韩欧美国产| 国产精品九九99| 最新美女视频免费是黄的| 在线观看一区二区三区| 亚洲av电影不卡..在线观看| 亚洲美女黄片视频| 欧美乱妇无乱码| 麻豆一二三区av精品| 国产精品久久久久久精品电影 | 男女床上黄色一级片免费看| 久久国产精品人妻蜜桃| 久久精品国产清高在天天线| 国产人伦9x9x在线观看| 久热这里只有精品99| 女人被狂操c到高潮| 自线自在国产av| 精品欧美国产一区二区三| 国语自产精品视频在线第100页| 免费看美女性在线毛片视频| av电影中文网址| 女性生殖器流出的白浆| 国产精品野战在线观看| 亚洲中文av在线| 精品国产乱子伦一区二区三区| 久久狼人影院| 精品久久久久久成人av| 久久精品夜夜夜夜夜久久蜜豆 | 天堂影院成人在线观看| 国产欧美日韩一区二区三| 亚洲欧美精品综合久久99| 亚洲精品一区av在线观看| 欧美人与性动交α欧美精品济南到| 国产视频一区二区在线看| 一个人观看的视频www高清免费观看 | 给我免费播放毛片高清在线观看| 麻豆成人av在线观看| 国产黄色小视频在线观看| 人人妻人人看人人澡| 波多野结衣高清作品| 97超级碰碰碰精品色视频在线观看| 又紧又爽又黄一区二区| 丝袜人妻中文字幕| 国产熟女xx| 在线永久观看黄色视频| 国内久久婷婷六月综合欲色啪| 国产不卡一卡二| 久久精品国产99精品国产亚洲性色| 波多野结衣高清无吗| 操出白浆在线播放| 97碰自拍视频| 国产视频内射| 国产三级在线视频| 在线av久久热| 国产在线观看jvid| 一卡2卡三卡四卡精品乱码亚洲| 国产成人系列免费观看| 午夜福利成人在线免费观看| 欧美黑人精品巨大| 亚洲欧洲精品一区二区精品久久久| 国内揄拍国产精品人妻在线 | 亚洲精品在线观看二区| 成年免费大片在线观看| 无遮挡黄片免费观看| xxxwww97欧美| 国产亚洲精品第一综合不卡| 国产单亲对白刺激| 国产不卡一卡二| 精品日产1卡2卡| 啦啦啦免费观看视频1| 亚洲一区高清亚洲精品| 亚洲第一av免费看| 国产精品久久电影中文字幕| 亚洲第一av免费看| 亚洲欧美精品综合久久99| 搡老岳熟女国产| 老司机午夜福利在线观看视频| 在线视频色国产色| 91麻豆av在线| 日本 av在线| 久久伊人香网站| 午夜福利一区二区在线看| 日本在线视频免费播放| 免费电影在线观看免费观看| 怎么达到女性高潮| videosex国产| 亚洲欧洲精品一区二区精品久久久| 99久久久亚洲精品蜜臀av| 国产精品久久久久久人妻精品电影| 高潮久久久久久久久久久不卡| 国产精品免费一区二区三区在线| 精品久久久久久久久久免费视频| 亚洲精品粉嫩美女一区| 成人精品一区二区免费| 国产精品自产拍在线观看55亚洲| 免费在线观看视频国产中文字幕亚洲| 两个人视频免费观看高清| 女性被躁到高潮视频| 大型av网站在线播放| 白带黄色成豆腐渣| a在线观看视频网站| 日韩中文字幕欧美一区二区| 国产熟女午夜一区二区三区| 男人舔奶头视频| 97超级碰碰碰精品色视频在线观看| 欧美日本亚洲视频在线播放| 精品日产1卡2卡| 久久精品aⅴ一区二区三区四区| 日韩一卡2卡3卡4卡2021年| 日本成人三级电影网站| 国产精品久久视频播放| 国产一区二区三区视频了| 99在线视频只有这里精品首页| 国产成人欧美| 99久久国产精品久久久| 亚洲国产精品sss在线观看| 精品午夜福利视频在线观看一区| 久久亚洲精品不卡| 九色国产91popny在线| 日本精品一区二区三区蜜桃| 一区二区三区国产精品乱码| 制服丝袜大香蕉在线| 女性被躁到高潮视频| 一级片免费观看大全| 在线观看66精品国产| 久久久久九九精品影院| 日韩免费av在线播放| 国内精品久久久久久久电影| 国产一区在线观看成人免费| 国产高清videossex| 亚洲男人天堂网一区| 啦啦啦观看免费观看视频高清| 国产黄a三级三级三级人| 亚洲av中文字字幕乱码综合 | 一进一出好大好爽视频| 久久伊人香网站| 久久中文看片网| 啦啦啦观看免费观看视频高清| 久久久久久国产a免费观看| 亚洲国产日韩欧美精品在线观看 | 色哟哟哟哟哟哟| 国产精品美女特级片免费视频播放器 | 在线国产一区二区在线| 制服丝袜大香蕉在线| 欧美不卡视频在线免费观看 | 50天的宝宝边吃奶边哭怎么回事| 91成年电影在线观看| 熟妇人妻久久中文字幕3abv| 久久天躁狠狠躁夜夜2o2o| 久久精品91蜜桃| 可以在线观看的亚洲视频| 人人妻人人澡欧美一区二区| 国产激情久久老熟女| 国产精品,欧美在线| 99精品在免费线老司机午夜| 亚洲性夜色夜夜综合| 岛国在线观看网站| 成人手机av| 好男人电影高清在线观看| 首页视频小说图片口味搜索| 久久99热这里只有精品18| 男女那种视频在线观看| or卡值多少钱| 午夜激情av网站| 欧美乱妇无乱码| 此物有八面人人有两片| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产清高在天天线| 国产精品野战在线观看| 亚洲精品中文字幕一二三四区| 变态另类成人亚洲欧美熟女| 中文字幕人妻熟女乱码| 国产成人系列免费观看| 观看免费一级毛片| 淫秽高清视频在线观看| 婷婷亚洲欧美| 99在线视频只有这里精品首页| 午夜免费成人在线视频| 午夜成年电影在线免费观看| 哪里可以看免费的av片| 免费在线观看视频国产中文字幕亚洲| 日韩高清综合在线| 亚洲 国产 在线| 精品久久蜜臀av无| 亚洲激情在线av| 国产精品野战在线观看| 两个人视频免费观看高清| 亚洲中文字幕日韩| 免费在线观看成人毛片| 婷婷六月久久综合丁香| 啦啦啦观看免费观看视频高清| 欧美性猛交╳xxx乱大交人| 精品福利观看| 中文字幕人妻熟女乱码| www日本黄色视频网| 久久热在线av| 日韩视频一区二区在线观看| 婷婷精品国产亚洲av| 后天国语完整版免费观看| 欧美日本亚洲视频在线播放| 正在播放国产对白刺激| 淫秽高清视频在线观看| 国产精品98久久久久久宅男小说| 在线观看免费午夜福利视频| 久久国产精品男人的天堂亚洲| 观看免费一级毛片| 国产精品精品国产色婷婷| 精品福利观看| 免费在线观看黄色视频的| 美女大奶头视频| 观看免费一级毛片| 欧美性猛交╳xxx乱大交人| 婷婷精品国产亚洲av| 99精品久久久久人妻精品| 搡老岳熟女国产| 两个人看的免费小视频| 丝袜美腿诱惑在线| 国产免费男女视频| 最近最新中文字幕大全免费视频| 又黄又爽又免费观看的视频| a级毛片在线看网站| 在线观看免费视频日本深夜| 欧美乱妇无乱码| 久久久久久九九精品二区国产 | 99久久综合精品五月天人人| 国产又色又爽无遮挡免费看| 国产片内射在线| 在线永久观看黄色视频| 久久伊人香网站| 美女高潮喷水抽搐中文字幕| 50天的宝宝边吃奶边哭怎么回事| 在线免费观看的www视频| 正在播放国产对白刺激| 久久天堂一区二区三区四区| 正在播放国产对白刺激| 日韩欧美三级三区| 精品一区二区三区av网在线观看| 一二三四社区在线视频社区8| 久久午夜综合久久蜜桃| 在线免费观看的www视频| 国产精品一区二区免费欧美| 国产成年人精品一区二区| 啦啦啦观看免费观看视频高清| 日韩三级视频一区二区三区| 麻豆一二三区av精品| 亚洲狠狠婷婷综合久久图片| 国产伦一二天堂av在线观看| 欧美日韩乱码在线| www日本在线高清视频| 一级片免费观看大全| 午夜两性在线视频| 最近在线观看免费完整版| 午夜视频精品福利| 日韩一卡2卡3卡4卡2021年| 亚洲美女黄片视频| 亚洲av电影不卡..在线观看| 久久99热这里只有精品18| 久久人妻av系列| АⅤ资源中文在线天堂| 国产精品野战在线观看| 极品教师在线免费播放| 亚洲国产精品合色在线| 国产精品 国内视频| 动漫黄色视频在线观看| 亚洲成人久久爱视频| 亚洲国产精品sss在线观看| 熟女少妇亚洲综合色aaa.| 亚洲精品色激情综合| 天天一区二区日本电影三级| 欧美日韩一级在线毛片| 日韩欧美一区视频在线观看| 一区二区三区国产精品乱码| 日韩高清综合在线| 精品久久久久久,| 怎么达到女性高潮| 国产精品久久久久久人妻精品电影| 91字幕亚洲| 伦理电影免费视频| 日韩欧美免费精品| 免费在线观看影片大全网站| 欧美中文综合在线视频| 久久久精品欧美日韩精品| 黄网站色视频无遮挡免费观看| 久久久国产成人精品二区| 国产欧美日韩精品亚洲av| 久久久久国产精品人妻aⅴ院| 亚洲成人久久爱视频| 丰满的人妻完整版| 欧美乱码精品一区二区三区| 青草久久国产| 美女免费视频网站| 丁香六月欧美| 久久久久国内视频| 亚洲国产精品999在线| 国产精品一区二区免费欧美| 成人免费观看视频高清| 美国免费a级毛片| 国产精品久久久久久人妻精品电影| 国产亚洲精品久久久久久毛片| 丝袜人妻中文字幕| 不卡一级毛片| 黄色片一级片一级黄色片| 欧美日本亚洲视频在线播放| 熟女少妇亚洲综合色aaa.| 香蕉av资源在线| 免费观看精品视频网站| 国产精品精品国产色婷婷| 亚洲国产精品合色在线| 国产精品久久视频播放| 国产一级毛片七仙女欲春2 | 国产精品综合久久久久久久免费| 国产97色在线日韩免费| 亚洲精品久久成人aⅴ小说| 满18在线观看网站| 中文亚洲av片在线观看爽| 久99久视频精品免费| 欧美av亚洲av综合av国产av| 99热这里只有精品一区 | 国产高清videossex| 国产一区二区激情短视频| 国产亚洲精品一区二区www| 国产精品久久视频播放| 午夜视频精品福利| 精品久久蜜臀av无| 久久中文看片网| 亚洲av成人一区二区三| 亚洲aⅴ乱码一区二区在线播放 | 久久人人精品亚洲av| 国产高清videossex| 90打野战视频偷拍视频|