• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Zn-Doped BiOBr with Enhanced Photoreduction CO2Activity under Visible Light Irradiation

    2020-12-29 13:41:26

    (College of Environment and Public Health,Xiamen Huaxia University,Xiamen,Fujian 361024,China)

    Abstract:The bismuth oxybromide(BiOBr)semiconductor has been used in photocatalytic CO2reduction for a long time,but the catalytic activity remains low.Herein,the Zn-doped BiOBr photocatalysts(called Zn-BiOBr)was synthesized by a simple hydrothermal method,which put out higher catalytic activity than pure BiOBr under visible light.The results showed that the synthesized 2%Zn-BiOBr exhibited the highest photocatalytic rate of 8.49 μmol·h-1,which was 13 times higher than pure BiOBr.The enhancement mechanism of photocatalytic activity was also studied.Under visible light,Zn-BiOBr catalyst is excited and creates photo-induced electrons and holes,which effectively improve the conversion of CO2into CO.Doping of zinc provides BiOBr with a more suitable band gap and energy band defects,facilitates the separation of photogenerated charges,and reduces the recombination rate of photogenerated electrons,all of which contribute to the CO2conversion efficiency.

    Keywords:Zn-doped BiOBr;semiconductors;photocatalyst;CO2reduction;visible light;energy storage and conversion

    0 Introduction

    With the progress of human society,more and more attention has been paid to environmental and energy issues[1].Photocatalytic conversion of CO2into energy compound is a very promising approach to solvethe energy crisis and environmental problems[2].For example,conversion of carbon dioxide with pure water into carbon oxide is one of the most challenging reactions[3].Lots of oxide semiconductors materials,as well as their composites,have been applied to photocatalytic CO2reduction.Most of the investigated photocatalyt-ic materials(e.g.,TiO2[4],ZnO[5],ZrO2[6],Ga2O3[7])can only be excited by ultraviolet light,which severely limits the conversion of solar energy.Therefore,it is very important and urgent to develop visible light driven and highly efficient photocatalyst.

    The unique layered structure and anisotropic property of bismuth oxyhalide(BiOX)semiconductor,such as BiOBr,consisting of tetragonal[Bi2O2]positively charged[8-9],bring about the big advantage to regulate their band and energy structures.The self built electric field between[Bi2O2]and Br layers would effectively separate the photoinduced electron hole pairs,and transfer the electrons and holes to the surface of BiOBr,which would enhance the photocatalytic activity[10].The band gap of BiOBr is about 2.8 eV and can be excited by visible light theoretically[11].Recent studies have demonstrated that BiOBr can be used as a photocatalyst for CO2reduction to solar fuels.The product of CO2photoreduction through BiOBr photocatalyst is usually CO(sometimes with a small amount of CH4),which is an industrial gas that has many applications in bulk chemicals manufacturing.Therefore,BiOBr is a very promising photocatalyst for CO2reduction.Some strategies,such as size and morphology control[12],developing oxygen-deficient defects[13]and noble metal modified[14],have been used for developing BiOBr photocatalystsinrecentyears.Nevertheless,BiOBr showed inappreciable active for CO2reduction under visible light,even the light sources on BiOBr were simulated sunlight irradiation in many reports.All of these revealed that the BiOBr photocatalyst is inefficient in the visible light region,which seriously limits the conversion utilization of solar energy.

    In this paper,we reported a novel and unique Zn doped BiOBr micro sheets photocatalyst for CO2photoreduction to CO.The CO evolution was studied under visible light without sacrificial reagents H2O.A possible catalytic mechanism has been suggested,and the excellent photocatalytic efficiency can be attributed to the following characteristics:(1)the conduction band(CB)bottom level of 2%Zn-BiOBr was more negative than the redox potentials of CO2/CO;(2)the photogenerated holes on the valence band(VB)could be con-sumed by H2O;(3)the lattice defects caused by zinc may accelerate separation and transfer of photoinduced charge carriers.

    1 Experimental

    1.1 Materials

    All the chemical reagents were of analytical grade and purchased from Aladdin Industrial Corporation without further purification before use.Deionized water was used throughout the work.

    1.2 Synthesis

    Zn doped BiOBr photocatalysts were synthesized by a one-step hydrothermal method.First,0.01 mol bismuth nitrate pentahydrate(Bi(NO3)3·5H2O)and proper amount of zinc nitrate were dissolved in 20 mL of 10%(w/w)diluted HNO3solution under vigorous stirring to obtain a transparency liquid.In addition,0.02 mol potassium bromide(KBr)were dissolved in 20 mL deionized water,and the obtained solution was added quickly into the above mixed solution.Then,the suspension was transferred into Teflon lined stainless steel autoclaves(100 mL)and kept at 160℃for 8 h.After reaction,the complex precursors precipitate was obtained by centrifugation,and then washed with deionized water.Finally,it was dried at 60℃under air atmosphere.Through changing the molar ratio(x%)of Zn(NO3)2to Bi(NO3)3,x%Zn doped BiOBr samples(labeled as x%Zn-BiOBr)were obtained.

    1.3 Characterization

    X-ray diffraction(XRD)patterns were recorded on a diffractometer(D8 Advanced,Bruker Co.,Germany)operated at 40 kV and 40 mA for Cu Kα(λ=0.154 06 nm).The data were recorded in a 2θ range of 10°~70°with a step width of 0.02.Scanning electron microscope(SEM)images were collected on a JSM 6700F microscope(JEOL Ltd.,Japan)operated at 15 kV.Transmission electron microscopy(TEM)images,high resolution TEM(HRTEM)were performed with and a JEM-2100 microscope(JEOL Ltd.,Japan)at 160 kV.The Brunauer Emmett Teller(BET)specific surface areas of the samples were investigated according to N2 adsorption desorption data obtained by a Quantachrome Autosorb IQ-C nitrogen adsorption apparatus.X ray photoelectron spectroscopy(XPS)was recorded using an X-ray photoelectron spectrometer(Kratos Axis Ultra)which uses Al Kα(1 486.6 eV)X ray source.The curve fitting was done using Casa XPS software by means of least square peak fitting procedure using a Gaussian-Lorentzian function.Ultraviolet-Visible(UVVis)diffuse reflectance spectra(DRS)of the samples wererecordedonaUV 3600spectrophotometer(Shimadzu,Japan).

    1.4 Photocatalytic CO2conversion

    Photocatalytic reduction of CO2in the presence of H2O was carried out as a gas-solid heterogeneous reaction in a 40 mL Schlenk flask with a silicone rubber septum under atmospheric pressure at ambient temperature(298 K).A xenon lamp(300D,Perfectlight,China)with a 420 nm cutoff filter was used to simulate sunlight.10 mg of photocatalyst was placed into the reaction tube.Then,this system was evacuated by a mechanical pump and filled with pure CO2gas.This evacuation-filling operation was repeated three times.Finally,20 μL of pure water was introduced into the reactor via the silicone rubber septum.The photocatalytic reaction was typically performed for 3 h,while the stability test was performed 5 h per cycle.The reaction system was evacuated after each 4 h and refilled with CO2and pure water.After the irradiation,the production amount of CO,CH4,H2and O2was analyzed using the Agilent GC 7890B gas chromatograph equipped with a FID detector,a TCD detector and a chromatographic column(TDX-01).The CO gas produced from 13CO2isotope experiments was examined by a gas chromatograph-mass spectrometer(GC-MS,HP 5973).The equipped column in GC-MS analysis was HP-MOLESIEVE(Agilent Technologies,30 m×0.32 mm,serial number:USD 130113H).

    1.5 Photoelectrochemical measurement

    Photoelectrochemical measurements were carried out with a BAS Epsilon workstation using a standard three electrode electrochemical cell with a working electrode,a platinum foil as the counter electrode,and a saturated Ag/AgCl electrode as the reference.A sodium sulfate solution(0.2 mol·L-1)was used as the electrolyte.The working electrode was prepared by FTOglass pieces,which was cleaned by sonication in cleanout fluid,acetone and ethanol in sequence.The photocatalyst was dispersed in ethanol under sonication to form a suspension.A photocatalyst film was fabricated by spreading the suspension onto the conductive surface of the FTO glass.Periodic photocurrent response was measured by introducing a 300 W Xe lamp as the light source.Mott-Schottky experiments were also carried out with the three-electrode system.The potential window ranged from-1 to 0 V,and the perturbation signal was 10 mV with the frequency at 1.0 kHz.

    2 Results and discussion

    2.1 Crystallinity and texture analysis

    Fig.1 showed the XRD patterns of pure BiOBr and x%Zn-BiOBr.The pure BiOBr′s XRD pattern is in evidently agreement with BiOBr(PDF No.73 2061),which is of tetragonal phase(Lattice constant:a=b=0.392 nm,c=0.808 nm).In the case of x%Zn-BiOBr,no apparent peaks of zinc oxide or other phases were detected,which suggested that the doping of Zn hardly affected the crystallization properties of BiOBr.For Zn-BiOBr photocatalysts,obvious shifts in the XRD peaks of(001),(002)and(102)were observed(Fig.2),due to the smaller radius of Zn2+(0.074 nm)than that of Bi3+(0.103 nm)[15-16].The results imply that Zn2+cations are incorporated into the BiOBr lattice,while the valence of Zn ion has not changed.

    Fig.1 XRD patterns of BiOBr and x%Zn-BiOBr

    Fig.3 presents SEM images of BiOBr and 2%Zn-BiOBr.The pure BiOBr was composed of micro sheets of 1~4 μm(Fig.3a)and the thickness of the microsheet is about 341.3 nm(Fig.3b).As-prepared 2%Zn-BiOBr revealed similar micro sheets structures and the sheet thickness decreased to about 181.8 nm(Fig.3d).The SEM results show that Zn2+doping has no effect on the micromorphology of BiOBr.EDX was used to verify whether Zn is present in the sample.Zn,Bi,O and Br all existed in 2%Zn-BiOBr,as shown in Fig.4.It indicated that Zn had been successfully doped into the crystal lattice of BiOBr.The specific surface areas ofBiOBr and 2%Zn-BiOBr were further characterized,which were 12 and 14 m2·g-1,respectively.The TEM and HRTEM images of 2%Zn-BiOBr are shown in Fig.5.The TEM image of 2%Zn-BiOBr further confirmed its lamellar morphology.The clear lattice fringes could be observed and the distance of the lattice fringes are 0.281 nm,consistent with(110)facet of tetragonal BiOBr.

    Fig.2 (a~c)XRD patterns corresponding enlarged view for(001),(002)and(102)facets of BiOBr and x%Zn-BiOBr

    Fig.3 SEM images of(a,b)BiOBr and(c,d)2%Zn-BiOBr

    Fig.4 EDX images of 2%Zn-BiOBr

    Fig.5 TEM and HRTEM images of 2%Zn-BiOBr

    2.2 XPS analysis

    To confirm the chemical element compositions and states of the as-prepared Zn-BiOBr,XPS analysis was performed.Fig.6 is the XPS survey spectra of the as-prepared BiOBr and 2%Zn-BiOBr.Fig.7a shows the Bi4f XPS spectrum.The two main peaks are corresponding to Bi4f7/2and Bi4f5/2of Bi3+with binding energies at 164.75 and 159.45 eV,respectively.Compared with BiOBr,there is a downshift of the Bi4f level binding energy in 2%Zn-BiOBr,owing to changes of crystal structure and coordination environment resulting from the substitution of Zn2+for Bi3+.The peaks at 1 020.9 and 1 044.7 eV are attributed to Zn2p3/2and Zn2p1/2,suggesting that Zn is doped in the BiOBr crys-tal in the form of Zn2+(Fig.7b).

    Fig.6 XPS survey spectra of as-prepared BiOBr and 2%Zn-BiOBr

    Fig.7 XPS spectra of(a)Bi4f and(b)Zn2p for 2%Zn-BiOBr

    2.3 Optical properties

    Fig.8 (a)UV-Vis DRS spectra and(b)band structures of BiOBr and 2%Zn-BiOBr

    Fig.9 (a)UV-Vis DRS spectra corresponding(αhν)1/2-(hν)curves of BiOBr and Zn-BiOBr;(b)Mott-Schottky plots

    Fig.8a displays the UV-Vis DRS spectra of pure BiOBr and Zn BiOBr samples at room temperature.BiOBr exhibited a sharp absorption edge respectively at 455 nm due to the band gap transition.Zn BiOBr displayed a slight broader light absorption from the UV to the visible light region as the Zn2+ion content increased.With Zn doped,the fabricated Zn BiOBrsamples,especially 2%Zn BiOBr,showed obvious blue shift in absorption threshold.The optical band gap is calculated to be about 2.72,2.70,2.66 and 2.62 eV for BiOBr,1%Zn-BiOBr,2%Zn-BiOBr and 3%Zn-BiOBr,respectively(Fig.9a).The positive slope of the Mott-Schottky plots indicate that BiOBr and Zn-BiOBr are n type semiconductors[17],as shown in Fig.9b.AccordingtothecalculationresultfromtheMott Schottky plot,the CB position of 2%Zn BiOBr was-0.66 eV.According to DRS results,the VB of BiOBr was calculated to be 2.00 V.In similar way,the CB and VB positions of BiOBr were calculated to be ca.-0.57 and 2.15 eV,respectively.The band positions of pure BiOBr and Zn-BiOBr could also be calculated by the formula:EVB=X-Ee+0.5Eg,ECB=EB-Ee-0.5Eg,where EVBand ECBare the VB edge potential and the CB edge potential,respectively,X is the absolute electro negativity of the semiconductor(the X for BiOBr is 6.45 eV),Eeis the energy of free electrons on the hydrogen scale(the value of Eeis 4.5 eV),and Egis thebandgapenergyofthesemiconductor.Consequently,we determined the band structures of BiOBr and 2%Zn-BiOBr(Fig.8b)as follows:(1)2%Zn-BiOBr′s CB bottom level is more negative than the redox potentials of CO2/CO[18];(2)the light generated holes on the VB can be consumed by H2O.2%Zn-BiOBr fulfills the above tow demands and can be used as a suitable catalyst for CO2reduction.

    The separation rate of the photogenerated electrons and holes is the key factor for photocatalytic process.As shown in Fig.10 and 11,PL and photocurrent response of BiOBr and 2%Zn-BiOBr were detected.In the PL spectra(Fig.10),2%Zn-BiOBr showed greatly reduced fluorescence intensity,which turns out that therecombinationofphotogeneratedelectron hole pairs is greatly prevented.The doping of Zn in the BiOBr provided an electron trap to promote charge trans-fer[19].The charge separation of 2%Zn-BiOBr is further demonstrated by photocurrent response analysis.As displayed in Fig.11,the current intensity of 2%Zn-BiOBr was visibly higher than that of pure BiOBr.PL and photocurrent response analysis strongly indicate that Zn doping can enhance separation velocity of charge carriers of photocatalytic material[20].

    Fig.10 PL spectra and of BiOBr and 2%Zn-BiOBr

    Fig.11 Photocurrent response of BiOBr and 2%Zn-BiOBr

    2.4 Results of photocatalytic CO2reduction

    The photocatalytic CO2reduction over the Zn doped BiOBr photocatalyst was performed under visible light irradiation with H2O.The photocatalytic rates of CO over BiOBr and Zn-BiOBr are shown in Fig.12a.2%Zn-BiOBr exhibited the best CO generation rate of 8.49 μmol·h-1,which is 13 fold conversion activity compared to the pure BiOBr.Comparison with the recent reports on BiOBr photocatalyst for CO2reduction is showed in Table 1.Furthermore,2%Zn-BiOBr kept its high production rate of CO after five cycle reaction during total 25 h,as shown in Fig.12b.13C-labelled isotopic experiment was performed to confirm the carbon origin in CO generation process.The GC MS results are shown in Fig.13.In GC spectrum(Fig.13a),the CO peak was at 7.5 min and the m/z value of 29(Fig.13b)is assigned to13CO.The results suggest that CO comes from the reduced CO2,not other carbon substances in the reaction system.Furthermore,CO was major product,and only negligible CH4was detected.

    The effect of different conditions on the conversion of CO2to CO was studied(Table 2).Obviously,when there is no visible light illumination or no catalyst in the reaction mixture,the CO evolution was greatly suppressed,implying that both light illumination and catalyst are necessary conditions for CO2photoreduction reaction.What's important is that no CO was detected in the case of Ar rather than CO2after light irradiation for 5 h.

    Fig.12 (a)CO generation rate of BiOBr and Zn-BiOBr;(b)Stability tests of 2%Zn-BiOBr sample

    Table 1 Recent reports on BiOBr photocatalyst for CO2reduction

    Fig.13 (a)GC and(b)MS spectrum of CO from the13CO2isotope experiments

    Table 2 CO evolution of 2%Zn-BiOBr detected under different conditions

    2.5 Discussion for reaction mechanism

    From what has been discussed above,we can infer that 2%Zn doped BiOBr has suitable band gap and band-edge positions for photocatalytic CO2reduction.Moreover,the substitution of Zn2+for Bi3+provides the defect states in BiOBr band structure(Fig.14),resulting in the low recombination rate of photogenerated electrons and holes,which are favorable for the photocatalytic process[22].In the end,a probable mechanism of enhanced photocatalytic CO2reduction rate over the Zn doped BiOBr is proposed.Under visible light illumination,Zn-BiOBr semiconductors are excited,causing the creation of photo-induced electron-hole pairs.Then photoinduced electrons could effectively improve theconversion of CO2into CO.Meanwhile,photoinduced electrons are electronegative and exhibit high reducibility,which are helpful to the conversion.And the holes in the valence band of Zn-BiOBr could be scavenged by H2O to generate O2and other oxidation products.

    Fig.14 Mechanism of enhanced photocatalytic activity over Zn-BiOBr

    3 Conclusions

    In conclusion,Zn doped BiOBr photocatalysts was successfully synthesized using a simple hydrothermal method.And the prepared catalysts were first used for photocatalytic CO2reduction under visible light illumination at room temperature.The doping of Zn2+changed the band structure of BiOBr.2%Zn doped BiOBr has a smaller band gap and the suitable CB and VB position for photocatalytic CO2reduction.Furthermore,Zn doped BiOBr has better separation efficiency of light-generated electrons and holes.As a result,the 2%Zn-BiOBr exhibited the best photocatalytic rate of 8.49 μmol·h-1,which was 13-fold conversion activity compared to the pure BiOBr materials.All the results show that Zn2+doping in the BiOBr photocatalyst can substantially enhance the CO2conversion efficiency.This work provided a new way for discovering new materials and new methods for renewable energy conversion.

    Acknowledgements:We acknowledge the support from the National Natural Science Foundation of China(Grant No.21103095)and Program of Fujian provincial outstanding youth research talent training(Grant No.MJK201-31-158).Dr.HUANG Jian-Hui and Prof.LI Xian-Xue are acknowledged for helpful discussion and suggestion on research.

    久久精品国产亚洲网站| 亚洲欧美日韩无卡精品| 男女边吃奶边做爰视频| 亚洲高清免费不卡视频| 欧美高清性xxxxhd video| 免费观看精品视频网站| 美女脱内裤让男人舔精品视频| 男人舔奶头视频| 最近最新中文字幕免费大全7| 噜噜噜噜噜久久久久久91| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久人人爽人人片av| 丝袜喷水一区| 欧美三级亚洲精品| 亚洲精品色激情综合| 91在线精品国自产拍蜜月| 秋霞在线观看毛片| 97超碰精品成人国产| 国内精品美女久久久久久| 草草在线视频免费看| 欧美一区二区国产精品久久精品| 人妻少妇偷人精品九色| 青春草视频在线免费观看| 日本一本二区三区精品| 欧美三级亚洲精品| 久久精品影院6| 美女cb高潮喷水在线观看| 中文字幕免费在线视频6| 91狼人影院| 中文天堂在线官网| 成年女人永久免费观看视频| 少妇人妻精品综合一区二区| 人人妻人人看人人澡| 1000部很黄的大片| 久久久久精品久久久久真实原创| 男女视频在线观看网站免费| 亚洲国产精品国产精品| 你懂的网址亚洲精品在线观看 | 久久久精品大字幕| 成人毛片60女人毛片免费| 亚洲av.av天堂| 免费搜索国产男女视频| 久久精品国产鲁丝片午夜精品| 九草在线视频观看| 久久婷婷人人爽人人干人人爱| 亚洲av熟女| 干丝袜人妻中文字幕| 人人妻人人看人人澡| 久久热精品热| 中文字幕熟女人妻在线| 久久久国产成人精品二区| 亚洲欧美成人精品一区二区| 亚洲欧美日韩无卡精品| 久久韩国三级中文字幕| 亚洲天堂国产精品一区在线| 午夜福利在线观看免费完整高清在| 精品久久久久久电影网 | 亚洲欧美精品自产自拍| 国产黄a三级三级三级人| 亚洲最大成人手机在线| 久久精品熟女亚洲av麻豆精品 | 国产精品福利在线免费观看| 一个人免费在线观看电影| 久久99热6这里只有精品| 日韩在线高清观看一区二区三区| 午夜福利在线在线| 久久6这里有精品| 日本黄色片子视频| 三级经典国产精品| 亚洲av.av天堂| 日韩高清综合在线| 美女被艹到高潮喷水动态| 午夜福利网站1000一区二区三区| 色综合站精品国产| 欧美3d第一页| 免费av不卡在线播放| 欧美bdsm另类| 禁无遮挡网站| 国产精品蜜桃在线观看| www日本黄色视频网| 深爱激情五月婷婷| 中文字幕免费在线视频6| 日本熟妇午夜| 国产精品av视频在线免费观看| 丝袜美腿在线中文| 丝袜喷水一区| 亚洲精品自拍成人| 天美传媒精品一区二区| 蜜桃久久精品国产亚洲av| 亚洲国产精品合色在线| 国产不卡一卡二| 嫩草影院精品99| 欧美丝袜亚洲另类| 白带黄色成豆腐渣| 五月玫瑰六月丁香| 51国产日韩欧美| 欧美高清成人免费视频www| 亚洲精品久久久久久婷婷小说 | 中文字幕久久专区| 人人妻人人澡欧美一区二区| 我要搜黄色片| 老师上课跳d突然被开到最大视频| 精品国产一区二区三区久久久樱花 | 99久久精品热视频| 少妇的逼水好多| 午夜福利在线在线| 欧美xxxx黑人xx丫x性爽| 亚洲av免费高清在线观看| 成人欧美大片| 亚洲成人中文字幕在线播放| 亚洲精品国产av成人精品| 日韩欧美国产在线观看| 午夜福利在线在线| 亚洲国产最新在线播放| a级一级毛片免费在线观看| 只有这里有精品99| 美女内射精品一级片tv| 成人综合一区亚洲| 国产三级中文精品| 亚洲精品影视一区二区三区av| 男人狂女人下面高潮的视频| 免费av不卡在线播放| 亚洲自偷自拍三级| 99久国产av精品国产电影| 国产淫语在线视频| 亚洲精品日韩在线中文字幕| 男女视频在线观看网站免费| 国产午夜精品一二区理论片| 亚洲美女视频黄频| 午夜激情福利司机影院| 在线a可以看的网站| 日韩欧美三级三区| 国产单亲对白刺激| 欧美区成人在线视频| 久久人人爽人人爽人人片va| 特大巨黑吊av在线直播| 波野结衣二区三区在线| 久久久精品94久久精品| 99久久成人亚洲精品观看| 永久网站在线| 国产黄色小视频在线观看| 欧美成人午夜免费资源| 日本免费在线观看一区| av在线天堂中文字幕| 99热这里只有精品一区| 精品人妻偷拍中文字幕| 91精品伊人久久大香线蕉| 99热这里只有是精品50| 日韩欧美精品v在线| 99国产精品一区二区蜜桃av| 级片在线观看| 国产精品福利在线免费观看| 亚洲国产最新在线播放| 国产成人午夜福利电影在线观看| 色综合亚洲欧美另类图片| 日韩亚洲欧美综合| 天天一区二区日本电影三级| 亚洲av福利一区| 久久人人爽人人片av| 国产毛片a区久久久久| 亚洲av.av天堂| 国产精品美女特级片免费视频播放器| 亚洲经典国产精华液单| 嫩草影院精品99| 蜜桃久久精品国产亚洲av| 大话2 男鬼变身卡| 国产黄色小视频在线观看| 别揉我奶头 嗯啊视频| 国产女主播在线喷水免费视频网站 | 亚洲精品色激情综合| 久久久久性生活片| 一级黄色大片毛片| 欧美性感艳星| 天堂网av新在线| 日本五十路高清| 91精品伊人久久大香线蕉| 成人综合一区亚洲| 免费播放大片免费观看视频在线观看 | videos熟女内射| 天堂中文最新版在线下载 | 国产 一区精品| 丰满少妇做爰视频| 久久久久久久久中文| 精华霜和精华液先用哪个| 日本一二三区视频观看| 欧美日本视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美性感艳星| 免费观看精品视频网站| 久久99热这里只有精品18| 国产人妻一区二区三区在| 国产免费男女视频| 国产一区二区亚洲精品在线观看| 在线播放国产精品三级| 国产精品无大码| 男插女下体视频免费在线播放| 美女被艹到高潮喷水动态| av国产免费在线观看| 乱人视频在线观看| 国产91av在线免费观看| 日本免费在线观看一区| 色综合亚洲欧美另类图片| 久久久国产成人免费| 尾随美女入室| 99在线人妻在线中文字幕| 国产精品伦人一区二区| 午夜福利高清视频| 一区二区三区乱码不卡18| 欧美高清成人免费视频www| 亚洲怡红院男人天堂| 久久久久久大精品| 国产在线一区二区三区精 | 男人和女人高潮做爰伦理| av在线亚洲专区| 亚洲精品乱久久久久久| 国产91av在线免费观看| 日本与韩国留学比较| 一级毛片我不卡| 中文资源天堂在线| 一级爰片在线观看| av播播在线观看一区| 插阴视频在线观看视频| 久久鲁丝午夜福利片| 亚洲av福利一区| 18禁动态无遮挡网站| 国产女主播在线喷水免费视频网站 | 插阴视频在线观看视频| 伦理电影大哥的女人| 男女边吃奶边做爰视频| 国产成人a区在线观看| 婷婷色综合大香蕉| 国产精品国产三级国产专区5o | 一级黄片播放器| 国产高清不卡午夜福利| 女人十人毛片免费观看3o分钟| 日韩视频在线欧美| 久久婷婷人人爽人人干人人爱| 少妇熟女欧美另类| 国产爱豆传媒在线观看| videossex国产| 91狼人影院| 又粗又硬又长又爽又黄的视频| 亚洲国产成人一精品久久久| 黄片无遮挡物在线观看| 狂野欧美白嫩少妇大欣赏| 人人妻人人澡人人爽人人夜夜 | 性插视频无遮挡在线免费观看| 成人亚洲精品av一区二区| 国内少妇人妻偷人精品xxx网站| 一二三四中文在线观看免费高清| 成人午夜精彩视频在线观看| 亚洲一级一片aⅴ在线观看| 色视频www国产| 永久网站在线| av卡一久久| 久久久久久久亚洲中文字幕| 黄色日韩在线| 日本午夜av视频| 观看美女的网站| 91精品国产九色| 欧美+日韩+精品| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲网站| 国产精品1区2区在线观看.| 天堂√8在线中文| 中文字幕免费在线视频6| 国产午夜福利久久久久久| 国产精品爽爽va在线观看网站| 一级黄片播放器| 伦理电影大哥的女人| 国内揄拍国产精品人妻在线| 亚洲欧美日韩高清专用| 国产精品麻豆人妻色哟哟久久 | 2021天堂中文幕一二区在线观| 嫩草影院新地址| av线在线观看网站| 两个人的视频大全免费| 99九九线精品视频在线观看视频| 国产在线一区二区三区精 | 日本av手机在线免费观看| 成人美女网站在线观看视频| 自拍偷自拍亚洲精品老妇| 国产免费视频播放在线视频 | 欧美日韩国产亚洲二区| 亚洲av男天堂| 国产中年淑女户外野战色| 国产免费男女视频| 亚洲欧洲国产日韩| 欧美xxxx性猛交bbbb| 国产精品1区2区在线观看.| 99在线人妻在线中文字幕| 国产精品伦人一区二区| 国产免费福利视频在线观看| 深爱激情五月婷婷| 一级爰片在线观看| 国产精品无大码| 亚洲av免费高清在线观看| 免费看光身美女| 变态另类丝袜制服| 精品99又大又爽又粗少妇毛片| 插逼视频在线观看| 嫩草影院精品99| 真实男女啪啪啪动态图| 美女大奶头视频| 在现免费观看毛片| 亚洲性久久影院| 亚洲国产精品专区欧美| 亚洲国产精品成人久久小说| 伊人久久精品亚洲午夜| 日本wwww免费看| 亚洲av免费高清在线观看| 国产综合懂色| 波多野结衣高清无吗| 欧美xxxx黑人xx丫x性爽| 看片在线看免费视频| 国产精品av视频在线免费观看| 乱系列少妇在线播放| 日本三级黄在线观看| 亚洲精品自拍成人| 欧美xxxx黑人xx丫x性爽| 久久精品熟女亚洲av麻豆精品 | 国产探花极品一区二区| 99久久中文字幕三级久久日本| 免费在线观看成人毛片| av福利片在线观看| 国产亚洲午夜精品一区二区久久 | 99久久精品热视频| 18禁在线无遮挡免费观看视频| 欧美成人免费av一区二区三区| 精品国产一区二区三区久久久樱花 | 在线播放无遮挡| 色噜噜av男人的天堂激情| 精品人妻熟女av久视频| 国产av一区在线观看免费| 欧美日本视频| 国产真实伦视频高清在线观看| 超碰av人人做人人爽久久| 嘟嘟电影网在线观看| 色综合色国产| 亚洲综合色惰| 久久国内精品自在自线图片| 美女被艹到高潮喷水动态| 国产 一区精品| 最近手机中文字幕大全| 亚洲丝袜综合中文字幕| 亚洲精品,欧美精品| 国语对白做爰xxxⅹ性视频网站| 高清视频免费观看一区二区 | 精品国产三级普通话版| 成年免费大片在线观看| 人人妻人人澡欧美一区二区| 日本黄色片子视频| av免费观看日本| 婷婷色av中文字幕| 亚洲精品成人久久久久久| 国产精品伦人一区二区| 少妇丰满av| 中文字幕亚洲精品专区| 久久精品夜夜夜夜夜久久蜜豆| 一卡2卡三卡四卡精品乱码亚洲| 深夜a级毛片| 久久精品国产99精品国产亚洲性色| 蜜臀久久99精品久久宅男| 韩国av在线不卡| 神马国产精品三级电影在线观看| 99久国产av精品国产电影| 欧美激情国产日韩精品一区| 亚洲av.av天堂| 国产亚洲一区二区精品| 黄片无遮挡物在线观看| 特大巨黑吊av在线直播| 搡女人真爽免费视频火全软件| 18禁动态无遮挡网站| 3wmmmm亚洲av在线观看| 国产在线一区二区三区精 | 中国国产av一级| av专区在线播放| 国产一区二区亚洲精品在线观看| 在线播放无遮挡| av在线天堂中文字幕| 色5月婷婷丁香| 欧美一区二区亚洲| 九草在线视频观看| 97热精品久久久久久| 亚洲成人av在线免费| 久久午夜福利片| 夫妻性生交免费视频一级片| 午夜免费激情av| 亚洲中文字幕日韩| 国产淫片久久久久久久久| 久久久久久九九精品二区国产| 国产美女午夜福利| 亚洲真实伦在线观看| 神马国产精品三级电影在线观看| 午夜福利高清视频| 99久久精品热视频| 少妇熟女欧美另类| 国产av一区在线观看免费| 久久久久久九九精品二区国产| 国产视频首页在线观看| 国产乱人偷精品视频| 日韩精品青青久久久久久| 亚洲av福利一区| 久99久视频精品免费| 大香蕉久久网| 男女边吃奶边做爰视频| 精品人妻一区二区三区麻豆| ponron亚洲| 日韩欧美精品免费久久| 亚洲国产日韩欧美精品在线观看| 26uuu在线亚洲综合色| 午夜激情欧美在线| 欧美日韩综合久久久久久| av又黄又爽大尺度在线免费看 | 国产高潮美女av| 69人妻影院| 99久久精品一区二区三区| 久久亚洲精品不卡| 99热全是精品| 国产成人精品久久久久久| 亚洲av熟女| 可以在线观看毛片的网站| 97在线视频观看| 嘟嘟电影网在线观看| 亚洲精品日韩在线中文字幕| 亚洲最大成人手机在线| 岛国毛片在线播放| 国产一区二区在线av高清观看| 尤物成人国产欧美一区二区三区| 国产三级中文精品| 男人和女人高潮做爰伦理| 国产成人freesex在线| 国产成年人精品一区二区| 桃色一区二区三区在线观看| 成人亚洲欧美一区二区av| 国产精品一区二区三区四区久久| 国产单亲对白刺激| 在线观看av片永久免费下载| 搡老妇女老女人老熟妇| 国产高清三级在线| 国产不卡一卡二| 国产美女午夜福利| 你懂的网址亚洲精品在线观看 | 亚洲国产日韩欧美精品在线观看| 中文精品一卡2卡3卡4更新| 一卡2卡三卡四卡精品乱码亚洲| 久久久午夜欧美精品| 国产亚洲精品久久久com| 大香蕉久久网| 观看美女的网站| 精品久久久久久久人妻蜜臀av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲最大成人av| 国产片特级美女逼逼视频| 不卡视频在线观看欧美| 久久久精品94久久精品| 国产免费又黄又爽又色| 精品一区二区免费观看| 蜜桃亚洲精品一区二区三区| 亚洲精品久久久久久婷婷小说 | 国产在线男女| 国产成人精品婷婷| 日韩欧美国产在线观看| 亚洲欧美成人综合另类久久久 | 国产精品一区二区性色av| 国产精品久久久久久av不卡| 搞女人的毛片| 国产高清国产精品国产三级 | 日本五十路高清| 成人av在线播放网站| 身体一侧抽搐| 一本久久精品| av天堂中文字幕网| 男女视频在线观看网站免费| 日韩国内少妇激情av| 中国国产av一级| 久久久欧美国产精品| 97在线视频观看| 国产高清三级在线| 免费不卡的大黄色大毛片视频在线观看 | 亚洲18禁久久av| 直男gayav资源| 日韩av在线免费看完整版不卡| 两个人视频免费观看高清| 一级爰片在线观看| 久久99热这里只有精品18| 狂野欧美白嫩少妇大欣赏| 精品国产露脸久久av麻豆 | 丰满乱子伦码专区| 国产欧美日韩精品一区二区| 天堂√8在线中文| 亚洲三级黄色毛片| 久久久久久久久久黄片| 日韩欧美国产在线观看| 男女下面进入的视频免费午夜| 成人亚洲精品av一区二区| 久久国产乱子免费精品| 日本黄色片子视频| 久久99蜜桃精品久久| a级毛色黄片| 天天躁夜夜躁狠狠久久av| 简卡轻食公司| 亚洲av日韩在线播放| 精品人妻熟女av久视频| ponron亚洲| av女优亚洲男人天堂| 边亲边吃奶的免费视频| 久久国内精品自在自线图片| 欧美日韩综合久久久久久| 国产精品久久久久久av不卡| 免费无遮挡裸体视频| 国产高清有码在线观看视频| 国产伦在线观看视频一区| 嫩草影院精品99| 国产又色又爽无遮挡免| 淫秽高清视频在线观看| 国产一区有黄有色的免费视频 | 国产精品一区二区性色av| 亚洲av免费高清在线观看| 欧美bdsm另类| 99热这里只有精品一区| 欧美日韩精品成人综合77777| 国产精品伦人一区二区| 日韩中字成人| 91精品国产九色| 亚洲成人精品中文字幕电影| 成人鲁丝片一二三区免费| 亚洲自拍偷在线| 亚洲精品456在线播放app| 免费观看a级毛片全部| 男人狂女人下面高潮的视频| 91aial.com中文字幕在线观看| 青春草国产在线视频| 亚洲真实伦在线观看| a级毛色黄片| 久久99精品国语久久久| 精品无人区乱码1区二区| 国产精品综合久久久久久久免费| 在线免费十八禁| 在线观看av片永久免费下载| 国产精品美女特级片免费视频播放器| 美女高潮的动态| 国产真实伦视频高清在线观看| 麻豆av噜噜一区二区三区| 村上凉子中文字幕在线| 人妻系列 视频| 久久99蜜桃精品久久| 久久99热6这里只有精品| 国产乱人视频| 精品无人区乱码1区二区| 亚洲精品日韩在线中文字幕| 国产精品一二三区在线看| 少妇人妻一区二区三区视频| 热99re8久久精品国产| 午夜福利在线在线| 人妻系列 视频| 国产 一区精品| 国产精品久久久久久久久免| av国产免费在线观看| 国产精品永久免费网站| 免费电影在线观看免费观看| 久久久久久久亚洲中文字幕| 精品久久久久久久久av| 欧美日本视频| 亚洲av一区综合| www.av在线官网国产| 亚洲精品影视一区二区三区av| 插逼视频在线观看| 久久久色成人| 久久欧美精品欧美久久欧美| 麻豆av噜噜一区二区三区| www日本黄色视频网| 精品久久久久久成人av| 免费电影在线观看免费观看| 成人欧美大片| 中文字幕熟女人妻在线| 一个人看视频在线观看www免费| 长腿黑丝高跟| 免费人成在线观看视频色| 精品久久国产蜜桃| 欧美+日韩+精品| 美女内射精品一级片tv| 亚洲第一区二区三区不卡| 国产美女午夜福利| 97人妻精品一区二区三区麻豆| 蜜桃久久精品国产亚洲av| 免费不卡的大黄色大毛片视频在线观看 | 亚洲人与动物交配视频| 中文欧美无线码| 精品99又大又爽又粗少妇毛片| 搡女人真爽免费视频火全软件| 久久人妻av系列| 国产精品三级大全| 日日摸夜夜添夜夜添av毛片| 69人妻影院| 你懂的网址亚洲精品在线观看 | 国产女主播在线喷水免费视频网站 | 最近中文字幕高清免费大全6| 亚洲av二区三区四区| 久久国内精品自在自线图片| 22中文网久久字幕| 国产精品久久久久久久久免| 精品一区二区免费观看| 大又大粗又爽又黄少妇毛片口| 国产亚洲最大av| 欧美激情久久久久久爽电影| 久久国内精品自在自线图片| 午夜福利在线在线| 高清毛片免费看| 高清av免费在线| 高清视频免费观看一区二区 | 国产麻豆成人av免费视频| 国产精品无大码| 乱码一卡2卡4卡精品| 国产一区二区在线av高清观看|