• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Syntheses,Crystal Structures and Photoluminescent Properties of Three Zinc(Ⅱ)Coordination Polymers Constructed from 9,10-Di(1H-imidazol-1-yl)anthracene

    2020-12-29 13:41:22
    無機化學學報 2020年12期

    (Nanjing Key Laboratory of Advanced Functional Materials,School of Environmental Science,Nanjing Xiaozhuang University,Nanjing 211171,China)

    Abstract:Three zinc(Ⅱ) coordination polymers,[Zn2(DIA)(bdc)2]n(1),{[Zn(DIA)(cdc)]·H2O}n(2)and[Zn(DIA)(chdc)]n(3)(DIA=9,10-di(1H-imidazol-1-yl)anthracene,H2bdc=1,4-benzenedicarboxylic acid,H2cdc=4,4′-carbonyldibenzoic acid,H2chdc=trans-1,4-cyclohexanedicarboxylic acid),have been synthesized and characterized by IR spectroscopy,elemental analyses,thermogravimetric analyses and single-crystal X-ray diffraction.Structural analyses reveal that complex 1 displays an unprecedented three-dimensional(3D)(4,7)-connected framework featuring{32.4.52.6}{32.48.54.65.72}2topology.Complex 2 has a two-dimensional(2D)structure,which is further packed into a 3D supramolecular architecture by intermolecular weak interactions,whereas complex 3 features a 2D two-fold interpenetrating layer structure.The results show that the length and the flexibility of the carboxylates exert obvious influence on the resulting architectures.Meanwhile,the photoluminescent properties of three complexes at room temperature were also investigated.CCDC:1814085,1;1814086,2;1986966,3.

    Keywords:zinc(Ⅱ)coordination polymer;bis(imidazole)ligand;dicarboxylate;crystal structure;photoluminescence

    Coordination polymers(CPs)are an emerging field of crystalline solid materials with well-organized network structures built by the linkage of metal ions/clusters/chains/layers with organic ligands and have attracted great interest over the last few decades because of their multitudinous fascinating structures,unlimited tunability,and a wide variety of applications such as gas storage and separation,chemical sensing,heterogeneous catalysis,luminescence and magnetism[1-7].Despite that a comparatively large number of interesting coordination polymers with intricate structural architectures have been reported to date,the design and construction of multi-functional CPs with desired structures and properties remains a significant challenge for chemists.This is because many intrinsic and external factors,such as the coordination nature of the metal ions,the structural characteristics of the organic ligands,stoichiometry,temperature,solvent and the pH of the solution,may considerably influence the formation of resulting CPs[8-16].Of all the influencing factors,the deliberate selection of functionalized organic ligands plays a crucially important role in the structural assembly process,and in some cases,a subtle alteration of organic motifs may lead to a novel architecture[17-19].

    Recently,some coordination polymers based on πconjugated molecules have been constructed and show superior physical properties[20-22].As a crucial class of π-conjugated molecules,the anthracene derivates possess unique properties in building luminescent materials.It should be an excellent strategy to synthesize luminescent materials with outstanding sensing properties through the incorporation of anthracene moieties into networks[23-28].Meanwhile,the five-membered heterocycles,such as imidazole,triazole and tetrazoles,are promising candidates in the design and fabrication of luminescent CPs[29-32].Keeping the aforementioned reasons in mind,we select the ligand 9,10-bis(1H-imidazol 1 yl)-anthracene(DIA),in which the anthracene spacers are directly bonded to the imidazole as bulky bis(imidazole)ligand to obtain microporous luminescent materials[33-36].In this work,three coordination polymers,[Zn2(DIA)(bdc)2]n(1),{[Zn(DIA)(cdc)]·H2O}n(2)and[Zn(DIA)(chdc)]n(3),have been synthesized by using DIA ligand and different dicarboxylic acid,where H2bdc=1,4-benzenedicarboxylic acid,H2cdc=4,4′-carbonyldibenzoic acid and H2chdc=trans-1,4-cyclohexanedicarboxylic acid.The effects of anions on their structures are unraveled in detail.Moreover,the photo-luminescent properties of three complexes have also been studied.

    1 Experimental

    1.1 Materials and general methods

    All chemicals and solvents were of reagent grade and used as received without further purification.The DIA ligand was synthesized according to the reported method[34].Elemental analyses(C,H and N)were performed on a Vario ELⅢelemental analyzer.Infrared spectra were recorded on KBr discs using a PerkinElmer Frontier FT-IR spectrometer in a range of 4 000~400 cm-1.Thermogravimetric analyses(TGA)were performed on a Netzsch STA-409PC instrument in flowing N2with a heating rate of 10℃·min-1.The luminescent spectra for the powdered samples were measured at ambient temperature on a Horiba FluoroMax-4P-TCSPC fluorescence spectrophotometer.All the measurements were carried out under the same experimental conditions.

    1.2 Synthesis of[Zn2(DIA)(bdc)2]n(1)

    A mixture containing Zn(NO3)2·6H2O(29.7 mg,0.1 mmol),H2bdc(16.6 mg,0.1 mmol),and DIA(31.0 mg,0.1 mmol)in DMF/H2O(1∶1,V/V)solution(10 mL)was sealed in a Teflon-lined stainless steel container and heated at 150℃for 3 d.After being cooled down to room temperature,light yellow pillar crystals of 1 were obtained in 41%yield based on DIA.Anal.Calcd.for C36H22N4O8Zn2(%):C,56.20;H,2.88;N,7.2.Found(%):C,56.15;H,2.91;N,7.26.IR(KBr,cm-1):3 432(m),3 046(w),1 621(s),1 559(s),1 523(s),1 444(s),1 422(m),1 403(m),1 392(s),1306(m),1 217(m),1 091(m),1 021(w),937(w),822(m),743(m),665(w),541(w).

    1.3 Synthesis of{[Zn(DIA)(cdc)] H2O}n(2)

    Complex 2 was prepared by using a method similar to that used for the preparation of 1,except that H2cdc(27.0 mg,0.1 mmol)was used instead of H2bdc.Colorless block crystals of 2 were collected by filtration and washed with water and ethanol several times with a yield of 62%based on DIA ligand.Anal.Calcd.for C35H24N4O6Zn(%):C,65.50;H,3.65;N,8.46.Found(%):C,65.52;H,3.66;N,8.47.IR(KBr,cm-1):3 427(m),3 065(m),1 687(s),1 583(m),1 521(s),1 453(m),1 387(s),1 251(m),1 081(m),948(m),831(w),763(s),662(m),523(w).

    1.4 Synthesis of[Zn(DIA)(chdc)]n(3)

    The procedure for the synthesis of 3 was similar to that used for 1,except that H2chdc(17.2 mg,0.1 mmol)was used instead of H2bdc.Light yellow block crystals of 3 were collected by filtration and washed with water and ethanol several times with a yield of 51%based on DIA ligand.Anal.Calcd.for C28H24N4O4Zn(%):C,61.60;H,4.43;N,10.26.Found(%):C,61.55;H,4.45;N,10.28.IR(KBr,cm-1):3 471(m),3 053(m),2 927(w),1 587(m),1 518(s),1 445(m),1 379(s),1 263(m),1 091(s),1 022(m),954(m),862(w),737(s),631(m),539(w).

    1.5 X-ray crystallography

    Single-crystal X-ray diffraction data for 1~3 was collected on a Bruker SMART APEXⅡCCD diffrac-tometerequippedwithagraphite monochromatic Mo Kα radiation(λ=0.071 073 nm)using the φ-ω scan mode at 293(2)K.The diffraction data were integrated by using the SAINT program[37],which was also used for the intensity corrections for the Lorentz and polarization effects.Semi-empirical absorption corrections were applied using the SADABS program[38].The structures were solved by direct methods using SHELXS-2014[39]and all the non-hydrogen atoms were refined anisotropically on F2by the full-matrix least-squares technique with the SHELXL-2014[40]crystallographic software package.The hydrogen atoms,except those of water molecules,were generated geometrically and refined isotropically using the riding model.The pertinent crystallographic data collection and structure refinement parameters are presented in Table 1 and selected bond lengths and angles are listed in Table 2.

    CCDC:1814085,1;1814086,2;1986966,3.

    Table 1 Crystal data and structure refinements for complexes 1~3

    Table 2 Selected bond lengths(nm)and angles(°)for complexes 1~3

    2 Results and discussion

    2.1 Crystal structure

    Single crystal X-ray diffraction analysis revealed that complex 1 crystallizes in the monoclinic space group P21/c.The asymmetric unit of complex 1 contains two crystallography independent Zn(Ⅱ)ions,one unique DIA ligand,one bdc2-anion and two half bdc2-anions which are located at an inversion center as illustrated in Fig.1a.The Zn1 ion is four-coordinated by one nitrogen atom from DIA ligand and three carboxylate oxygen atoms from three individual bdc2-anions,conforming a distorted tetrahedrally geometry.The Zn2 ion is five-coordinated by one nitrogen atom from DIA ligand,and four oxygen atoms from four different bdc2-anions in a distorted trigonal bipyramidal geometry with a τ value of 0.632[41].The Zn-O bond lengths are in a range of 0.192 02(17)~0.244 7(2)nm,the Zn-N bond lengths are between 0.200 17(19)and 0.204 03(19)nm,and the coordination angles around Zn(Ⅱ)ions span from 78.00(7)°to 165.40(7)°.The Zn-N and Zn-O bond lengths and the bond angles around Zn(Ⅱ)ions in 1 are comparable with other Zn(Ⅱ)coordination polymers[22].

    The DIA ligand exhibits a cis conformation with interplanar angle between imidazole and anthracene of 71.05°and 77.94°,which is first example up to now.Each DIA ligand links two Zn(Ⅱ)ions with a separation of 1.303 6(5)nm.For the three asymmetric bdc2-anions,two of them adopt a bridging mode of μ4-η1∶η1∶η1∶η1to link four Zn(Ⅱ)ions,and the other uses a bridging mode of μ2-η1∶η0∶η1∶η0to connect two Zn(Ⅱ)ions.Two Zn(Ⅱ)ions are linked by a pair of carboxylate groups to form a binuclear Zn2unit,with a Zn1…Zn2 distance of 0.430 5(8)nm.Each binuclear unit is surrounded by seven organic ligands(two DIA ligands and five bdc2-anions)to produce a three dimensional(3D)framework.Topologically,the μ4-η1∶η1∶η1∶η1-bdcanion can be considered as a 4-connected node,the μ2-η1∶η0∶η1∶η0-bdc anion and DIA ligand can be considered as linkers,and Zn2units can be regarded as 7 connected nodes(Fig.1b).Therefore,the 3D framework of 1 is(4,7)-connected topology with Schl?fli symbol of{32.4.52.6}{32.48.54.65.72}2which is,as expected,unique so far(Fig.1c).

    Fig.1 (a)Coordination environments of Zn(Ⅱ)ion in 1 with ellipsoids drawn at 30%probability level,where hydrogen atoms are omitted for clarity;(b)Perspective and schematic views of 4-and 7-connected nodes of 1;(c)Schematic representation of(4,7)-connected framework with{32.4.52.6}{32.48.54.65.72}2topology of 1

    In order to investigate the influence of dicarboxylate ligand on the resulting framework of CPs,another dicarboxylate ligand,H2cdc,which is longer and more flexible than H2bdc,was utilized.Then we obtained complex 2 and it crystallizes in the triclinic space group P1 with one Zn(Ⅱ)ion,one cdc2-anion,and one lattice water molecule in the asymmetric unit.Zn(Ⅱ)ion sits in the center of a distorted tetrahedron constructedfrom two nitrogen atoms belonging to two symmetry related DIA ligands and two oxygen atoms of two individual cdc2-anions.

    The coordination modes of the two carboxylates from cdc2-anion adopts monodentate mode.Both cdc2-and DIA ligands are simultaneously coordinated to two Zn(Ⅱ)ions,which,for their part,are surrounded by four ligands in total.The Zn-O distances lie in a range of 0.193 1(2)~0.197 5(2)nm,whereas the Zn-N distances are 0.202 2(2)and 0.203 0(2)nm,respectively.The separation of Zn(Ⅱ)ions along the bridge formed by DIAandcdcligandsareof1.26880(21)and1.49578(19)nm,respectively.TheDIAligandadoptsacis conformation with torsion angles of imidazole with respect to anthracene planes 63.66°and 83.01°,whichis similar to that of 1.The flexibility of cdc2-anions is reflected in the Zn-C-Zn angle of 127.59°.Two-dimensional network is shown in Fig.2b,where the presence of chains formed by alternating Zn-DIA-Zn and Zn-cdc-Zn units is highlighted(DIA and cdc ligands are represented in red and blue,respectively).In bc plane,these chains form 2D sheets that resemble a herringbone structure,with the ligands acting as linkers,and Zn(Ⅱ)ions as nodes.Thereby,the overall structure can be described as a 4-connected,unimodal net of topological type 44-sql(Fig.2b).

    Fig.2 (a)Coordination environments of the Zn(Ⅱ)ion in 2 with ellipsoids drawn at 30%probability level,where hydrogen atoms and lattice water molecules are omitted for clarity;(b)Perspective view of 2D layer structure of 2;(c)Schematic representation of 2D(4,4)framework in 2

    In the crystal,adjacent 2D layers are stacked in an ABAB…staggering mode and further packed into a 3D supramolecular architecture by O-H…O,C-H…π,π…π stacking noncovalent interactions(Fig.2c).There exist strong O-H…O hydrogen-bonding interactions among the oxygen atoms of lattice water molecules and the carboxylate oxygen atoms.The C-H…π interactions of 0.373 9 nm are observed between the CH bond belonging to the benzene ring of cdc2-anion and the anthracene ring of DIA ligand.Whereas,π…π interactions are seen between the neighboring benzene rings of DIA ligand with ring centroids separated by adistance of 0.401 8 nm.

    The use of flexible H2chdc ligand results in a 2D two fold interpenetrated topology of complex 3.The structure analysis reveals that complex 3 crystallizes in the monoclinic space group C2/c,the asymmetric unit consists of one crystallographically independent Zn(Ⅱ)ion lying on the 2-fold axis,one individual 1,4-chdc anions locating at an inversion center,and one DIA ligand situated at the 2 fold axis.As illustrated in Fig.3a,the Zn(Ⅱ)ion displays a distorted tetrahedral geometry,being surrounded by two carboxylic oxygen atoms from two different chdc2-anions and two nitrogen atoms from two distinct DIA ligands.The Zn-O bond lengths are 0.195 9(3)nm,the Zn-N bond lengths are between 0.199 9(4)and 0.200 0(4)nm,and the coordination angles around Zn(Ⅱ)ions span from 98.3(2)°to 121.6(3)°.

    Fig.3 (a)Coordination environments of Zn(Ⅱ)ion in 3 with ellipsoids drawn at 30%probability level,where hydrogen atoms are omitted for clarity;(b)View of 2D[Zn(DIA)(chdc)]nnetwork of 3;(c)2D+2D 2D interpenetration network in 3

    The DIA ligand exhibits a trans-conformation with interplanar angle between imidazole and anthracene of 82.02°,which is different from those of 1 and 2.The chdc2-anion adopts comparatively stable chair conformation and connects two Zn(Ⅱ)ions through two monodentate carboxylates.Each Zn(Ⅱ)ion is connected totwo different chdc2-anions and each chdc2-anion is connected to two Zn(Ⅱ)ions,building up a 1D chain,which are further connected by DIA ligands to form a 2D puckered sheet(Fig.3b).There is a large window in the puckered sheet with dimensions of 1.369 nm×1.953 nm.Within the sheet,the Zn(Ⅱ)ions are not all coplanar,rather,half fall in one plane,half in the other parallel plane.The puckered nature of the sheets with large square windows may offer a good chance to generate a 2D+2D 2D interpenetration bilayer structure with a{44.62}topology(Fig.3c).

    More interestingly,the neighboring 2D sheets are staggered parallel with each other.The 2D layers are sustained by π…π interactions between the neighboring benzene rings of DIA ligand with ring centroids separated by a distance of 0.416 nm and C-H…π interactions among the DIA ligands.Obviously,this packing mode decreases the molecular repulsion and stabilizes the whole structure of 3.

    2.2 FTIR spectra

    The IR spectra of 1~3 showed the absence of the characteristic bands at around 1 700 cm-1attributed to the protonated carboxylate group,which indicates the complete deprotonation of H2bdc,H2cdc and H2chdc ligands upon reaction with Zn(Ⅱ)ion.The presence of vibrational bands 1 650~1 550 cm-1,which are characteristic of the asymmetric stretching of the deprotonated carboxylic groups of bdc2-,cdc2-and chdc2-anions.The difference between asymmetric and symmetric carbonyl stretching frequencies(Δν=νasym-νsym)was used to fetch information on the metal carboxylate binding modes.Complex 1 showed two pairs of νasymand νsym frequencies at 1 621,1 422 cm-1(Δν=199 cm-1)and 1 559,1 392 cm-1(Δν=167 cm-1)for the carbonyl functionality indicating two coordination modes as observed in the crystal structure.Complex 2 showed a pair of νasymand νsymfrequencies at 1 583,1 387 cm-1(Δν=196 cm-1)corresponding to the carbonyl functionality of dicarboxylate ligand indicating a symmetric monodentate coordination mode.Complex 3 showed a pair of νasymand νsymfrequencies at 1 587,1 379 cm-1(Δν=208 cm-1)corresponding to the carbonyl functionality of dicarboxylate ligand indicating a symmetric monoden-tate coordination mode.The OH stretching broad bands at 3 427 cm-1for 2 are attributable to the lattice water.The bands in the region of 630~1 270 cm-1are attributed to the-CH-in-plane or out-of-plane bend,ring breathing,and ring deformation absorptions of benzene ring,respectively.The IR spectra exhibit the characteristic peaks of imidazole groups at ca.1 520 cm-1[42].

    2.3 Thermal stability

    To examine the thermal stabilities of three complexes,thermogravimetric analyses(TGA)were carried out at a heating rate of 10℃·min-1under a dry air atmosphere at the temperature from 20 to 800℃.As shown in Fig.4,the TGA curve of 1 revealed that no obvious weight loss was observed until the temperature rose to 280℃.The anhydrous compound decomposed from 280 to 800℃,indicating the release of organic components.For 2,the first weight loss of 2.44%(Calcd.2.39%)occurred in a range of 55 to 150℃,indicating the loss of one free water molecules.Then,the framework of2 decomposed gradually above 245℃.Complex 3 was stable up to ca.240℃,and the framework collapsed in a temperature range of 240~800℃before the final formation of a metal oxide.

    Fig.4 TGA curves of complexes 1~3

    2.4 Photoluminescent properties

    Photoluminescent properties of Zn(Ⅱ)complexes have attracted intense interest due to their potential applications in photochemistry,chemical sensors,and electroluminescent display[43-47].The photoluminescent properties of 1~3 and DIA ligand were investigated insolid state at room temperature.The DIA ligand exhibited emission band with a maximum at 474 nm upon excitation at 370 nm,which may be assigned to π* n or π* π transitions of the ligand[48-50].

    As shown in Fig.5a,the emission peaks of three complexes occurred at 428 nm(λex=365 nm)for 1,442 nm(λex=370 nm)for 2 and 454 nm(λex=377 nm)for 3.Under the same experimental conditions,the emission intensities from free H2bdc,H2cdc and H2chdc are much weaker than that from DIA ligand,so it is considered that they has no significant contribution to the fluorescent emission of the complexes in the presence of DIA ligand.Comparison to free DIA ligand,the emission peaks for 1~3 were blue-shifted by ca.47,33 and 21 nm,respectively.These emissions are neither metalto-ligand charge transfer(MLCT)nor ligand-to-metal charge transfer(LMCT)in nature,since Zn(Ⅱ)ion is difficult to oxidize or reduce due to its d10configuration[51-53].The photoluminescent of 1~3 may originate from the intraligand π* π or π* n transition since similar emissions were also observed for the ligandsthemselves.The emission discrepancy of these complexes is probably due to the different configurations of DIA ligand,the differences of organic ligands and coordination environments of central metal ions,which have a close relationship to the photoluminescence behavior[54-55].The chromaticity coordinates for 1~3 are(0.234 7,0.234 6),(0.218 7,0.201 6)and(0.230 5,0.255 9),respectively(Fig.5b).As we know that the luminescence characteristic of CPs is closely related to their structures[56].The size of the metal,the structure of the secondary building units(SBUs)and the orientation of the linkers all affect the emission properties of the material[57-60].Complexes 1~3 contain the same linker(DIA)in different configurations,allowing comparative study of their photoluminescence diversity.The different visual fluorescence may be attributed to the various structures of three complexes(1:3D,2:2D,3:2D).The enhancement of their emission intensity compared with that of DIA ligand can be properly attributed to theincreasedrigidityofDIAligandwhenbindingtoZn(Ⅱ)ion,which will effectively reduce the loss of energy.

    Fig.5 (a)Solid-state photoluminescent spectra of complexes 1~3 and DIA ligand;(b)CIE chromaticity diagrams of complexes 1~3 and DIA ligand

    高清欧美精品videossex| 性插视频无遮挡在线免费观看| 狂野欧美白嫩少妇大欣赏| 日日啪夜夜爽| 久久鲁丝午夜福利片| 亚洲精品久久久久久婷婷小说| 国产精品人妻久久久影院| 嫩草影院入口| 亚洲精品中文字幕在线视频 | 国产精品.久久久| 亚洲精品乱码久久久久久按摩| av免费在线看不卡| 一区二区三区免费毛片| 最近最新中文字幕大全电影3| 国产成人freesex在线| 精品一区二区三区人妻视频| 精品久久国产蜜桃| 久久人人爽人人片av| 成人欧美大片| 精品人妻偷拍中文字幕| 色哟哟·www| 精品欧美国产一区二区三| 天堂影院成人在线观看| 欧美xxⅹ黑人| 色哟哟·www| 国产老妇伦熟女老妇高清| 又爽又黄a免费视频| 久久久久久久久久久免费av| 草草在线视频免费看| av在线播放精品| 干丝袜人妻中文字幕| 欧美日本视频| 精华霜和精华液先用哪个| 视频中文字幕在线观看| 欧美丝袜亚洲另类| 日本熟妇午夜| 欧美日韩在线观看h| 嫩草影院精品99| 欧美xxxx性猛交bbbb| 成人午夜精彩视频在线观看| av在线观看视频网站免费| 综合色av麻豆| 又爽又黄无遮挡网站| 日韩成人伦理影院| 美女主播在线视频| 亚洲婷婷狠狠爱综合网| 又黄又爽又刺激的免费视频.| 99视频精品全部免费 在线| 久久久成人免费电影| 亚洲高清免费不卡视频| 欧美高清性xxxxhd video| 99久久九九国产精品国产免费| 哪个播放器可以免费观看大片| 18禁在线播放成人免费| 欧美成人午夜免费资源| 亚洲欧美精品自产自拍| 一级a做视频免费观看| 男人爽女人下面视频在线观看| 国产成人a区在线观看| 国产精品久久久久久久电影| 又粗又硬又长又爽又黄的视频| 久久国内精品自在自线图片| 80岁老熟妇乱子伦牲交| 国产午夜精品久久久久久一区二区三区| 国产亚洲最大av| 国产美女午夜福利| 精品少妇黑人巨大在线播放| 精品久久久久久久久亚洲| 国产黄片视频在线免费观看| 别揉我奶头 嗯啊视频| 免费av不卡在线播放| 久久久久久久久大av| 欧美成人一区二区免费高清观看| 亚洲在线观看片| av在线蜜桃| 高清av免费在线| 人妻少妇偷人精品九色| 尾随美女入室| 欧美日韩精品成人综合77777| 国产高清有码在线观看视频| 日日啪夜夜爽| 久久精品人妻少妇| 一个人免费在线观看电影| 成人二区视频| 成人亚洲欧美一区二区av| 国产成人免费观看mmmm| 狂野欧美白嫩少妇大欣赏| 亚洲精品一二三| 国产av在哪里看| 国产高清国产精品国产三级 | 精品欧美国产一区二区三| 欧美潮喷喷水| 亚洲国产精品sss在线观看| 久久97久久精品| 蜜桃久久精品国产亚洲av| 欧美不卡视频在线免费观看| 国内精品美女久久久久久| 国产有黄有色有爽视频| 大陆偷拍与自拍| 人妻夜夜爽99麻豆av| 午夜福利在线在线| 日韩制服骚丝袜av| a级毛片免费高清观看在线播放| 日韩av在线大香蕉| 少妇熟女欧美另类| 高清在线视频一区二区三区| 欧美高清成人免费视频www| 99久久九九国产精品国产免费| 99久久中文字幕三级久久日本| 午夜亚洲福利在线播放| 毛片女人毛片| 人妻少妇偷人精品九色| 欧美高清性xxxxhd video| 干丝袜人妻中文字幕| av在线观看视频网站免费| 丰满人妻一区二区三区视频av| 最近视频中文字幕2019在线8| 成年人午夜在线观看视频 | 国产精品久久久久久久久免| 国产色婷婷99| 大陆偷拍与自拍| 国产真实伦视频高清在线观看| 亚洲精品国产成人久久av| 久久久久网色| 国产日韩欧美在线精品| 黄色日韩在线| 全区人妻精品视频| 精品亚洲乱码少妇综合久久| 日日啪夜夜爽| 国产亚洲精品av在线| kizo精华| 国产av码专区亚洲av| 尾随美女入室| 久久人人爽人人片av| 精品99又大又爽又粗少妇毛片| 欧美成人精品欧美一级黄| 国产色婷婷99| 亚洲经典国产精华液单| 亚洲真实伦在线观看| 国产男人的电影天堂91| 欧美成人a在线观看| 免费看日本二区| 波多野结衣巨乳人妻| 岛国毛片在线播放| 亚洲精品日韩在线中文字幕| 美女国产视频在线观看| 一区二区三区四区激情视频| 极品教师在线视频| 你懂的网址亚洲精品在线观看| 2018国产大陆天天弄谢| 狠狠精品人妻久久久久久综合| av福利片在线观看| 中国国产av一级| 女的被弄到高潮叫床怎么办| 寂寞人妻少妇视频99o| 男女国产视频网站| 久久久久久久国产电影| 亚洲精品亚洲一区二区| videossex国产| 天堂网av新在线| 国产av在哪里看| 大片免费播放器 马上看| 免费少妇av软件| 国产三级在线视频| videossex国产| 日韩欧美一区视频在线观看 | 亚洲国产色片| 精品酒店卫生间| 国产精品一区二区三区四区久久| 99久国产av精品| 高清午夜精品一区二区三区| 欧美性猛交╳xxx乱大交人| 亚洲av不卡在线观看| 欧美日韩一区二区视频在线观看视频在线 | 搞女人的毛片| 国产成人精品婷婷| 亚洲久久久久久中文字幕| 亚洲电影在线观看av| av一本久久久久| 精品久久久久久成人av| 欧美xxⅹ黑人| 视频中文字幕在线观看| 观看免费一级毛片| 国产av在哪里看| 天天躁日日操中文字幕| av专区在线播放| 美女主播在线视频| 最近的中文字幕免费完整| 特级一级黄色大片| 97超视频在线观看视频| 女人被狂操c到高潮| 成人亚洲欧美一区二区av| 国国产精品蜜臀av免费| 中文字幕免费在线视频6| 边亲边吃奶的免费视频| 一个人观看的视频www高清免费观看| 国产精品麻豆人妻色哟哟久久 | 尤物成人国产欧美一区二区三区| 国产午夜精品久久久久久一区二区三区| 97热精品久久久久久| 久久久精品免费免费高清| 黄片wwwwww| 国产老妇伦熟女老妇高清| 伊人久久精品亚洲午夜| 男女边吃奶边做爰视频| 亚洲天堂国产精品一区在线| av免费观看日本| 在现免费观看毛片| 黄色日韩在线| 视频中文字幕在线观看| 赤兔流量卡办理| 精品久久久久久久久亚洲| 日本欧美国产在线视频| 国产白丝娇喘喷水9色精品| 九色成人免费人妻av| 欧美成人精品欧美一级黄| 国产免费福利视频在线观看| 亚洲高清免费不卡视频| 不卡视频在线观看欧美| 欧美另类一区| 尤物成人国产欧美一区二区三区| 日韩中字成人| 久久精品国产亚洲网站| .国产精品久久| 国产精品久久久久久精品电影| 免费观看a级毛片全部| 国产成人精品久久久久久| 最新中文字幕久久久久| 日本爱情动作片www.在线观看| 亚洲国产精品成人久久小说| 国产91av在线免费观看| 国产成人freesex在线| 亚洲av国产av综合av卡| or卡值多少钱| 少妇熟女欧美另类| 亚洲人成网站在线观看播放| 欧美精品一区二区大全| 国产午夜精品论理片| 免费高清在线观看视频在线观看| 国产综合精华液| 如何舔出高潮| 成人亚洲精品一区在线观看 | 一个人免费在线观看电影| 超碰97精品在线观看| 精品熟女少妇av免费看| 一区二区三区免费毛片| 亚洲欧美日韩东京热| 国产男人的电影天堂91| 丝瓜视频免费看黄片| 亚洲精品日韩在线中文字幕| 简卡轻食公司| 午夜福利在线观看免费完整高清在| 一夜夜www| 欧美潮喷喷水| 日日撸夜夜添| 国产亚洲av嫩草精品影院| 欧美xxxx性猛交bbbb| 成年人午夜在线观看视频 | 日本一本二区三区精品| 国产又色又爽无遮挡免| 人妻夜夜爽99麻豆av| 亚洲国产精品专区欧美| 亚洲综合精品二区| 日韩欧美一区视频在线观看 | 亚洲国产欧美在线一区| 国产淫片久久久久久久久| 赤兔流量卡办理| 亚洲国产精品sss在线观看| 少妇猛男粗大的猛烈进出视频 | 国产欧美日韩精品一区二区| 精品人妻偷拍中文字幕| 搡老乐熟女国产| av线在线观看网站| 26uuu在线亚洲综合色| 狂野欧美白嫩少妇大欣赏| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久伊人网av| 亚洲精品第二区| 成人亚洲精品一区在线观看 | 婷婷色综合大香蕉| 日本黄色片子视频| 国产亚洲5aaaaa淫片| 精品一区二区三区视频在线| 全区人妻精品视频| 最后的刺客免费高清国语| 国产成人freesex在线| 综合色av麻豆| 亚洲人成网站在线观看播放| 国产精品日韩av在线免费观看| 老女人水多毛片| 91av网一区二区| 国产黄色视频一区二区在线观看| 看十八女毛片水多多多| 有码 亚洲区| 日本三级黄在线观看| av网站免费在线观看视频 | 免费少妇av软件| 少妇人妻一区二区三区视频| 干丝袜人妻中文字幕| 男女边摸边吃奶| 日本欧美国产在线视频| 国产一级毛片七仙女欲春2| 一区二区三区免费毛片| 欧美最新免费一区二区三区| 91精品伊人久久大香线蕉| 日日摸夜夜添夜夜添av毛片| 一级毛片电影观看| 少妇的逼水好多| 777米奇影视久久| 亚洲天堂国产精品一区在线| 亚洲av.av天堂| 蜜桃久久精品国产亚洲av| 少妇人妻一区二区三区视频| 国产单亲对白刺激| 国产午夜精品久久久久久一区二区三区| 国产成人aa在线观看| 午夜福利在线观看免费完整高清在| 国产精品久久视频播放| 亚洲成人av在线免费| 久久6这里有精品| 中国美白少妇内射xxxbb| 色哟哟·www| 日韩视频在线欧美| 少妇的逼好多水| 国产成人精品一,二区| 国产精品久久久久久精品电影| 欧美极品一区二区三区四区| 日韩精品有码人妻一区| 亚洲精品乱码久久久v下载方式| 亚洲国产精品sss在线观看| 国产乱来视频区| 国产永久视频网站| 国产黄色视频一区二区在线观看| 日韩人妻高清精品专区| 国产精品美女特级片免费视频播放器| 国产乱人视频| 久久精品夜色国产| 亚洲av中文av极速乱| 国产人妻一区二区三区在| 亚洲欧美一区二区三区黑人 | 亚洲精品亚洲一区二区| 少妇人妻精品综合一区二区| 日日啪夜夜撸| 国产乱来视频区| 日韩精品青青久久久久久| 国产成人aa在线观看| 男的添女的下面高潮视频| 毛片女人毛片| 纵有疾风起免费观看全集完整版 | 久久久久国产网址| 日日干狠狠操夜夜爽| 久久精品国产亚洲av涩爱| 深爱激情五月婷婷| 精品少妇黑人巨大在线播放| 女人十人毛片免费观看3o分钟| 日本熟妇午夜| 国产成人a∨麻豆精品| 色综合色国产| 天天躁日日操中文字幕| 九九在线视频观看精品| 国产亚洲av嫩草精品影院| 你懂的网址亚洲精品在线观看| 性色avwww在线观看| .国产精品久久| 亚洲高清免费不卡视频| 国产老妇女一区| 国产精品久久视频播放| 全区人妻精品视频| 最近手机中文字幕大全| 寂寞人妻少妇视频99o| 99久国产av精品国产电影| 国产熟女欧美一区二区| 日本欧美国产在线视频| 精品人妻偷拍中文字幕| 国产精品国产三级国产专区5o| 国产av在哪里看| 天堂俺去俺来也www色官网 | 97精品久久久久久久久久精品| 国产爱豆传媒在线观看| 国产美女午夜福利| 婷婷色麻豆天堂久久| 非洲黑人性xxxx精品又粗又长| 男人舔奶头视频| 三级毛片av免费| 日韩精品青青久久久久久| 99热全是精品| 97人妻精品一区二区三区麻豆| 如何舔出高潮| www.色视频.com| 天堂影院成人在线观看| 777米奇影视久久| 免费观看精品视频网站| 国产亚洲最大av| 日日摸夜夜添夜夜添av毛片| 久久国产乱子免费精品| 99久国产av精品国产电影| 永久免费av网站大全| 老司机影院成人| 亚洲欧美精品自产自拍| 51国产日韩欧美| 午夜日本视频在线| 一级av片app| 黄片wwwwww| 国产久久久一区二区三区| 国产精品久久久久久精品电影| 老师上课跳d突然被开到最大视频| 色吧在线观看| 精品久久久噜噜| 又粗又硬又长又爽又黄的视频| 午夜免费观看性视频| 精品一区在线观看国产| 熟妇人妻久久中文字幕3abv| 亚洲精品影视一区二区三区av| 三级男女做爰猛烈吃奶摸视频| 一本久久精品| 国产高潮美女av| 51国产日韩欧美| 自拍偷自拍亚洲精品老妇| 成人二区视频| 亚洲乱码一区二区免费版| 极品教师在线视频| 99热网站在线观看| 欧美 日韩 精品 国产| 亚洲精品日韩在线中文字幕| 性插视频无遮挡在线免费观看| 大又大粗又爽又黄少妇毛片口| 久久国产乱子免费精品| 成年人午夜在线观看视频 | 深夜a级毛片| 亚洲精品国产av成人精品| 日韩国内少妇激情av| 久久久精品94久久精品| 观看免费一级毛片| 日韩伦理黄色片| 最近2019中文字幕mv第一页| 夜夜看夜夜爽夜夜摸| 男女视频在线观看网站免费| 午夜视频国产福利| 色吧在线观看| 内地一区二区视频在线| 日本与韩国留学比较| 简卡轻食公司| 日本免费在线观看一区| 午夜福利视频精品| 麻豆成人av视频| 成人特级av手机在线观看| 又黄又爽又刺激的免费视频.| 少妇被粗大猛烈的视频| 建设人人有责人人尽责人人享有的 | 国产精品久久久久久av不卡| 天堂中文最新版在线下载 | 欧美极品一区二区三区四区| 免费不卡的大黄色大毛片视频在线观看 | 在线观看一区二区三区| 国产色爽女视频免费观看| 高清av免费在线| 日日摸夜夜添夜夜添av毛片| 毛片一级片免费看久久久久| 大话2 男鬼变身卡| 麻豆av噜噜一区二区三区| eeuss影院久久| av黄色大香蕉| 色综合站精品国产| 黄色配什么色好看| 美女cb高潮喷水在线观看| 国产午夜福利久久久久久| 久久精品夜色国产| 少妇人妻一区二区三区视频| 嘟嘟电影网在线观看| 亚洲av男天堂| 成人一区二区视频在线观看| 国产精品爽爽va在线观看网站| 内射极品少妇av片p| 午夜福利在线观看吧| 我的老师免费观看完整版| 久久精品国产亚洲网站| 亚洲av成人精品一二三区| 国产免费又黄又爽又色| 青青草视频在线视频观看| 色综合色国产| 亚洲精品亚洲一区二区| 欧美成人精品欧美一级黄| av免费观看日本| 久久精品国产鲁丝片午夜精品| 在线免费观看的www视频| 国产激情偷乱视频一区二区| 91在线精品国自产拍蜜月| 亚洲成人av在线免费| 乱系列少妇在线播放| 日韩欧美精品v在线| 色尼玛亚洲综合影院| 亚洲内射少妇av| 国产午夜精品论理片| videossex国产| 国产乱人视频| 99热这里只有精品一区| 国产精品一区二区三区四区久久| 人妻一区二区av| 好男人视频免费观看在线| 国产精品综合久久久久久久免费| 国产单亲对白刺激| 爱豆传媒免费全集在线观看| av在线亚洲专区| 性插视频无遮挡在线免费观看| 91久久精品电影网| 晚上一个人看的免费电影| 国产成年人精品一区二区| 91精品一卡2卡3卡4卡| 大片免费播放器 马上看| 午夜福利高清视频| 99热这里只有精品一区| 精品久久国产蜜桃| 大香蕉久久网| 成人av在线播放网站| 亚洲精品日韩av片在线观看| 久久久a久久爽久久v久久| 91久久精品国产一区二区三区| 成年版毛片免费区| 国产成人aa在线观看| 日韩精品有码人妻一区| 天堂av国产一区二区熟女人妻| 精品久久国产蜜桃| 午夜免费男女啪啪视频观看| 国内揄拍国产精品人妻在线| 色哟哟·www| 欧美一级a爱片免费观看看| 亚洲国产精品专区欧美| 晚上一个人看的免费电影| 亚洲国产精品sss在线观看| 啦啦啦啦在线视频资源| 亚洲欧美日韩无卡精品| 美女高潮的动态| 久久久午夜欧美精品| 人妻系列 视频| 免费看a级黄色片| 天堂俺去俺来也www色官网 | 亚洲av成人精品一二三区| 亚洲不卡免费看| 26uuu在线亚洲综合色| 九九爱精品视频在线观看| 国产精品av视频在线免费观看| 美女xxoo啪啪120秒动态图| 亚洲无线观看免费| 日本免费a在线| 天天一区二区日本电影三级| 综合色丁香网| 国产成人freesex在线| 日韩av在线大香蕉| 国产男女超爽视频在线观看| 日韩av在线大香蕉| 22中文网久久字幕| 亚洲精品一区蜜桃| 嫩草影院精品99| 美女脱内裤让男人舔精品视频| 韩国av在线不卡| 亚洲欧美成人综合另类久久久| 天堂av国产一区二区熟女人妻| 嫩草影院入口| 蜜臀久久99精品久久宅男| 乱码一卡2卡4卡精品| 美女xxoo啪啪120秒动态图| 亚洲电影在线观看av| 亚洲精品中文字幕在线视频 | 国产在视频线在精品| 我要看日韩黄色一级片| 你懂的网址亚洲精品在线观看| 亚洲成人一二三区av| 午夜激情久久久久久久| 国内精品一区二区在线观看| 亚洲欧美中文字幕日韩二区| 草草在线视频免费看| 亚洲国产日韩欧美精品在线观看| 亚洲欧美清纯卡通| 美女大奶头视频| 大又大粗又爽又黄少妇毛片口| 卡戴珊不雅视频在线播放| 91午夜精品亚洲一区二区三区| 精品人妻一区二区三区麻豆| 亚洲av一区综合| 寂寞人妻少妇视频99o| 久久久久久久国产电影| 国产亚洲最大av| 少妇高潮的动态图| 丰满少妇做爰视频| 一区二区三区高清视频在线| 美女国产视频在线观看| 国产中年淑女户外野战色| 亚洲av中文av极速乱| 99热全是精品| 亚洲精品视频女| 国产精品美女特级片免费视频播放器| 国产精品福利在线免费观看| 国产久久久一区二区三区| 国产精品一区二区三区四区久久| 波多野结衣巨乳人妻| 久久99热这里只频精品6学生| 美女脱内裤让男人舔精品视频| 亚洲av免费高清在线观看| 国产免费一级a男人的天堂| 免费黄色在线免费观看| av在线观看视频网站免费| 久久草成人影院| 免费播放大片免费观看视频在线观看| 国产在视频线在精品| 又粗又硬又长又爽又黄的视频| 人人妻人人看人人澡| 日本av手机在线免费观看| 一个人看的www免费观看视频| 午夜精品在线福利| freevideosex欧美| 中文字幕制服av| 国产成年人精品一区二区| 国产亚洲精品av在线| av卡一久久| 中文天堂在线官网|