• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    耐洗型疏水疏油絲綢織物的制備及性能研究

    2020-12-28 02:02:36DOKhaiLy鐘申潔徐浪左甜易玲敏
    絲綢 2020年12期

    DO Khai Ly 鐘申潔 徐浪 左甜 易玲敏

    摘要: 目前所制備的疏水疏油絲綢織物大多難以同時(shí)滿足疏水疏油及耐洗性,或制備過程過于復(fù)雜。因此,文章提出在絲綢表面浸涂一層疏水改性的二氧化硅納米粒子以提供一定的粗糙度,隨之將聚(偏氟乙烯-六氟丙烯)溶液噴涂于其上以提供低表面能,兩者的協(xié)同作用可使絲綢織物具有高度的疏水疏油性和良好的耐洗性能。結(jié)果顯示,通過這一簡(jiǎn)單易實(shí)施的兩步法,制備所得絲綢織物表面的水接觸角高達(dá)149.5°、滾動(dòng)角小至5.5°,色拉油的接觸角可達(dá)132°,表現(xiàn)出高度的疏水疏油性。經(jīng)20次標(biāo)準(zhǔn)洗滌后,水接觸角仍在140°以上,且滾動(dòng)角小于10°,表現(xiàn)出優(yōu)異的耐洗色牢度。

    關(guān)鍵詞: 絲綢織物;疏水;疏油;耐洗牢度;疏水改性SiO2

    中圖分類號(hào): TS195.6 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 10017003(2020)12002608

    引用頁碼: 121105 DOI: 10.3969/j.issn.1001-7003.2020.12.005(篇序)

    Preparation of hydrophobic and oleophobic silk fabric with good washing durabilityand research on its performance

    DO Khai Ly, ZHONG Shenjie, XU Lang, ZUO Tian, YI Lingmin

    (a.College of Textile Science and Engineering; b.Key Laboratory of Advanced Textile Materials & Manufacturing Technology,Ministry of Education; c.Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education,Zhejiang Sci-Tech University, Hangzhou 310018, China)

    Abstract: It is difficult for current hydrophobic and oleophobic silk fabrics to meet hydrophobic and oleophobic characteristics as well as washing durability at the same time, or the preparation process is too complex. Thus, in this study, we proposed to coat hydrophobic modified silica nanoparticles on the fiber surface to provide certain roughness, and then spray poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) to provide low surface energy. The synergistic effect of the two could make the silk fabric had high hydrophobic and oleophobic properties as well as good washing durability. The results indicated that via this simple two-step method, the prepared silk fabric presented a water contact angle(WCA) of 149.5°, a water sliding angle(WSA) of 5.5°, and an oil contact angle(OCA) of 132.0°, demonstrating the high hydrophobicity and oleophobicity of silk. After standard washing for 20 times, the WCA was still more than 140° and the WSA was less than 10°, showing excellent laundering durability.

    Key words: silk fabric; hydrophobic; oleophobic; washing durability; hydrophobic modified silica

    During the last decades, researchers have been continuously exploring the functional coatings on textile surfaces, for example, superhydrophobic coatings[1-2], anti-fouling coatings[3-4], self-cleaning coatings[5-6], and so on[7-8]. Silk fabric products have been popular in textile industry due to good mechanical strength, toughness and elasticity[9], as well as the elegant appearance and soft hand touch[10], which have attracted the attention of researchers. However, because of a great number of groups containing carboxyl, hydroxyl and amine groups which caused the poor anti-fouling properties[11], it is an imperious demand for improvement of water and oil repellency of silk fabrics.

    Several studies of anti-fouling performances of silk fabrics have been reported. For example, Huang et al[12]. obtained the superhydrophobic and anti-UV silk fabric via single-step in-situ synthesis of ZnO nanorods on the surface of silk fabric and modified by n-octadecanethiol, and the WCA reached 151.9°. Wang et al[13]. blended the POSS with fluorinated alkyl silane, then through the dip coating POSS composites onto fibers to get a superhydrobic textile. However, among these work, most of them used silane with long fluorinated chain, which have potential risk to organic organism. On the other hand, fabrics with only water-repellent behavior still can not meet the demand of textile market. Aslanidou et al[14]. dispersed SiO2 nanoparticles(NPs) into a soluble emulsion of silane, siloxane and organic polymer and then sprayed over the surface of silk fabric, as a result, it showed the outstanding WCA and OCA of 161.0° and 159.0°, respectively, However, the washing durability of the modified silk fabric was not studied. Cheng et al[15]. prepared superhydrophobic silk fabrics using enzyme-etching approach by papain and methyltrichlorosilane(MTCS) via thermal chemical vapor deposition(CVD) process at 70 ℃. The MTCS@papain-etched fabric has a WCA of 153.5° and sliding angle of 8.5°, demonstrating superhydrophobic, but the WCA was dropped to about 140° after 10 washing cycles. Based on above works, it could be recognized that the durability in textile materials is also important. Thus, Chen et al[16]. prepared a water-repellent silk surface with excellent washing durability by depositing TiO2 coatings on the surface of silk fabric via atomic layer deposition(ALD) method. However, because of the complicated and time-consuming procedure to obtain robust silk fabrics, it is particularly urgent to discover a simple and facile method for wide production.

    In this work, we report an easy method to fabricate highly hydrophobic and oleophobic silk fabric with outstanding washing durability. Silk fabric was firstly immersed into the modified silica solution to obtain certain roughness, followed by a final coating of fluoric-containing polymer poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) to achieve low surface energy and stable fastness on the surface of silk fabric. The result is useful for the development of self-cleaning silk fabric with desired water and oil-resistant performances as well as laundering durability.

    1 實(shí) 驗(yàn)

    1 Experiment

    1.1 材料與儀器

    1.1 Materials and instruments

    Materials: White commercial silk fabric(Hangzhou Xidebao Co. Ltd), methyltrimethoxysilane(MTMS), 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane(HFOTES), ethanol(Hangzhou Gaojing Fine Chemical Industry Co. Ltd), dimethylformamide(DMF) and poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP)(Sigma-Aldrich). SiO2 nanoparticles were synthesized by Stber method[17]. All agents were used without additional purification.

    Instruments: Contact angle measurement DSA20(Krüss, Germany), JSM-5610LV scanning electron microscope(SEM) (JEOL, Japan), X-ray Photoelectron Spectrum(XPS) (K-Alpha, Thermo Fisher Scientific, U.S.A), Launder-O-Meter(Labec Co., Taiwan), (Kato-Tech, Japan), Universal Testing(Instron-2365, INSTRON CORPORATION Co.), Numerical Air Permeability Tester YG461E.

    1.2 方 法

    1.2 Methods

    1.2.1 改性SiO2納米粒子的合成

    1.2.1 Synthesis of modified SiO2

    0.5 g SiO2 nanoparticles were ultrasonicated in 100 mL of ethanol at room temperature for 10 min to ensure good dispersion. Afterwards, HFOTES was added to the above dispersed solution, followed by the dropping addition of MTMS. The modified SiO2(named as H-M-SiO2) solution was obtained by maintaining for 24 h at room temperature under magnetic stirring. Different volume ratios of HFOTES to MTMS were described in Tab.1.

    1.2.2 絲綢樣品的制備

    1.2.2 Preparation of silk samples

    As described in Fig.1 and Fig.2, silk samples were first dipped into the as-prepared H-M-SiO2 solution at ambient temperature for 12 h then dried at 80 ℃ for 1 h(named as H-M-SiO2@Silk). Afterwards, 0.5 g PVDF-HFP was put into 30 mL of DMF and stirred for 20 min. Finally, this PVDF-HFP solution was sprayed over the surface of H-M-SiO2@Silk samples and dried at 80 ℃ for 1 h(labelled as PVDF-HFP/H-M-SiO2@Silk). One sample which was coated by HFOTES modified SiO2 and PVDF-HFP solution was labelled as PVDF-HFP/H-SiO2@Silk. One controlled sample coated by only PVDF-HFP solution was labelled as PVDF-HFP@Silk.

    1.3 測(cè)試與表征

    1.3 Testing and characterization

    1.3.1 接觸角測(cè)試

    1.3.1 Contact angle measurements

    Surface wettability of modified silk fabrics was investigated by contact angle measurement device DSA20(Krüss, Germany) at room temperature. The liquid volume in each measurement was 3 μL(water) or 2.4 μL(oil). Average result was recorded by five testing points for each sample.

    1.3.2 表面形貌表征

    1.3.2 Surface morphology characterization(SEM)

    JSM-5610LV scanning electron microscope(SEM) was employed to analyze the surface morphology of modified silk samples. An ultra-thin layer of Au was coated on sample surfaces to observe the surface morphology properly.

    1.3.3 表面化學(xué)組成分析

    1.3.3 Analysis of surface chemical compositions

    Energy-dispersive X-ray spectrometer(EDS) attached to SEM and X-ray photoelectron spectroscopy(XPS) system were used to measure the surface elements and investigate the surface atomic compositions of silk samples. Fabric samples were packed onto a standard specimen holder and analyzed by microfocused, monochromated Al Kα X-ray source. Photoelectron emission take-off angle of 90° was utilized to analyze the samples, and hydrocarbon C1s line with the position at 284.8 eV was chosen as a reference to rectify the charging effect.

    1.3.4 服用及物理機(jī)械性能測(cè)試

    1.3.4 Wearability and mechanical property tests

    Laundering durability was tested by HB 12P(NEWAVE LAB EQUIPMENTS Co., Ltd) based on AATCC 61-2003 Test No.1A. Samples were washed at 40 ℃ in the presence of 10 stainless steel balls. One washing cycle(45 min) is approximate to five times of commercial laundering. Tensile strength was determined by Universal Testing(Instron-2365, INSTRON CORPORATION Co.) due to GB/T 3923.2-2013. Air permeation test was conducted by Numerical Air Permeability Tester YG461E due to GB/T 5453-1997. Water vapor transmission rates were measured due to GB/T 12704.2-2009 by special aluminum cups. Whiteness and lightness were measured by WSD-3C Whiteness Meter due to GSBA67002 standard. All the tested samples were PVDF-HFP/H-M-SiO2@Silk.

    2 結(jié)果與分析

    2 Results and analysis

    2.1 潤濕性能及影響因素

    2.1 Wettability of silk fabrics and its factors

    The particle size and volume ratio of HFOTES to MTMS have effect on the wettability of silk fabrics. Tab. 2 shows the effect of volume ratio of HFOTES to MTMS on oleophobic property of modified silk fabric. The result indicated that when the volume ratio of HFOTES to MTMS was increased, the oleophobicity was improved correspondingly. Compared to the ratio of HFOTES to MTMS 1︰1, as the volume ratio reached 3︰1, the salad oil contact angle of PVDF-HFP/H-M-SiO2@Silk sample was improved from 126.0° to 132.0°, and that of mineral oil increased from 122.5° to 129.5°. This was attributed to the existence of fluorine element which supplied low surface energy for good oleophobic performance of modified silk fabric. However, as the volume ratio reached 4︰1, the oil contact angle decreased slightly.

    Fig.3-Fig.6 shows the WCA and WSA of silk fabrics modified with different conditions. From Fig.3, it can be seen that the WCA increased with the increase of SiO2 particle size(VHFOTES︰MTMS=1︰1), as the particle size was up to 601 nm, the WCA of H-M-SiO2@Silk can reach 147.0° while the SA was smaller than 10°. This was attributed to the increasing particle size of SiO2 nanoparticles that made the roughness of the surface of the silk increased correspondingly, thus enhanced the hydrophobic property of the silk fabric. However, when the particle size was further increased, the WCA decreased, this phenomenon was due to the particle size was larger, it was easy to fall off from the surface, thus reducing the WCA. Subsequently, the influence of volume ratio of HFOTES to MTMS was also investigated(SiO2 particle size was 601 nm). Fig.4 presents the influence of different ratios of HFOTES to MTMS. We can conclude that the H-M-SiO2@Silk

    sample had excellent hydrophobic performance after being coated by the HFOTES and MTMS co-modified SiO2 nanoparticles. As the volume ratio of HFOTES to MTMS was 3︰1, the highest WCA was 149.5°, and the SA was 5.5°. Therefore, the most appropriate value of SiO2 particle size was 601 nm and volume ratio of HFOTES to MTMS was 3︰1.

    Self-cleaning ability is one essential factor to evaluate the applications of hydrophobic silk textiles[18]. For the investigation of self-cleaning ability of silk fabric, congo red powder was used for testing. Fig.5 shows that the water drop a space can not remove the powder from hydrophilic silk surface, and the fabric was wet and dirty. Meanwhile, the water drop rolled off quickly from the surface of PVDF-HFP/H-M-SiO2@Silk sample, took away all congo red powder and left the dry and clean silk surface(Fig.6), it was due to the low adhesive force to fabric and powder. This result proved the excellent self-cleaning properties of PVDF-HFP/H-M-SiO2@Silk sample.

    2.2 織物表面微觀形貌分析

    2.2 Surface morphology analysis

    SEM images of pristine silk fabric and modified silk fabric were shown in Fig.7. Fig.7(a) exhibits the smooth fiber surface of original silk fabric. After coated by PVDF-HFP, there was a clear layer of PVDF-HFP on the fiber surface of PVDF-HFP@Silk sample(Fig.7(b)). Fig.7(d-f) reveal that as the concentration of HFOTES was increased, more SiO2 nanoparticles were packed onto the fiber surface of PVDF-HFP/H-M-SiO2@Silk, leading to an increase of surface roughness and better hydrophobicity. This was attributed to the concentration of HFOTES was increased, the cross-linked density of modified SiO2 was increased correspondingly, which made the particles stick to the fabric and not fallen off easily. Surface element analysis of PVDF-HFP/H-M-SiO2@Silk sample was presented by EDS and mapping in Fig.7(c、g). The EDS data(Fig.7(c)) showed that the Si and F element had appeared on the surface of PVDF-HFP/H-M-SiO2@Silk, the element content was 2.04% and 13.29 % respectively, which confirmed the successful coating on the surface of modified silk fabric[15]. On the other hand, we can observe from the F mapping(Fig.7(g)) that the F element was covered on the silk fabric surface uniformly, this provided the possibility of stable hydrophobicity of the PVDF-HFP/H-M-SiO2@Silk.

    2.3 織物表面化學(xué)組成分析

    2.3 Surface compositions of silk fabrics

    XPS survey confirms the appearance of F 1s on PVDF-HFP@Silk sample, and Si 2p and F 1s on PVDF-HFP/H-M-SiO2@Silk sample with binding energy at 103.5 eV and 688.9 eV, respectively(Fig.8). Those new peaks of Si 2p and F 1s indicate the successful chemical modification on silk fabric surface, which corresponds to EDS result. In Fig.9, three peaks at 284.8 eV, 286.2 eV and 288.5 eV corresponding to —C—C—, C—OH and CO groups of pristine silk fabric, respectively. Furthermore, Si 2p spectrum of PVDF-HFP/H-M-SiO2@Silk sample displayed the larger amount of SiO2 than Si-O, which meaned that more SiO2 nanoparticles were packed onto silk fabric surface and created the surface roughness(Fig.10). After modification, in C 1s spectrum there were three new peaks —CF3, —CF2— and C—F at 293.5 eV, 291.2 eV and 287.9 eV, respectively[19]. The peak-CF3 accounts for 11.39 % and the peak —CF2— was about 48.51 %(Fig.11), which resulting in low surface energy.

    2.4 服用及物理機(jī)械性能

    2.4 Wearability and mechanical properties

    Air permeability and water vapor permeability are the important properties of textile fabrics for wearing. It can be seen from Tab.3 that compared to the pristine silk fabric, the water vapor transmission rate of PVDF-HFP/H-M-SiO2@Silk sample was slightly decreased from 0.17 g/(m2·t) to 0.16 g/(m2·t), indicated that there was no significant deterioration of water vapor permeability after surface modification. Simultaneously, the air permeability was also decreased by 10.85%, this was mainly caused by the modified coating which formed a film on the surface of silk fabric and covered the space between two yarns. This result declared that there was almost no negative impact of coatings on the breathability of silk fabric.

    Fig.12-Fig.14 shows the tensile strength, whiteness, lightness and washing durability of pristine silk fabric and PVDF-HFP/H-M-SiO2@Silk sample. After the treatment by PVDF-HFP/H-M-SiO2, there was a sharp growth in tensile strength of fabric sample from 17.78 MPa to 46.46 MPa, as shown in Fig.12. The change in tensile strength of treated silk fabric sample was caused by the deposition of coatings on their surface. This caused an efficient stress transfer form matrix to the particles, which increased the tensile strength of fabric.

    Fig.13 presents the changes in original color of whiteness and lightness of silk fabric before and after modification. It can be seen that the whiteness of silk fabric decreases from 59.02 to 51.06, and lightness had a little drop from 78.22 to 73.43 after being treated by PVDF-HFP/H-M-SiO2 coating. These parameters conformed that the coating did not create a negative effect on silk fabric color, and the original color is almost maintained after the finishing process.

    Laundering durability is also one important aspect to assess the quality of silk fabrics[20]. Fig.14 shows that after 20 times washing, the WCA of PVDF-HFP/H-M-SiO2@Silk sample was dropped from 149.5° to 144.0° and the WSA was increased to 8.0°. This result demonstrated that PVDF-HFP/H-M-SiO2@Silk fabric has good washing durability.

    3 結(jié) 論

    3 Conclusions

    In conclusion, a simple two-step method was presented to fabricate highly hydrophobic and oleophobic silk fabric with good laundering durability by using modified-SiO2 nanoparticles and a final coating of PVDF-HFP. As a result, the most appropriate value of SiO2 particle size was 601 nm and volume ratio of HFOTES to MTMS was 3︰1. PVDF-HFP/H-M-SiO2@Silk fabric sample displayed excellent water and oil resistant performances with WCA of 149.5°, WSA of 5.5° and OCA of 132.0°. After 20 times washing, the WCA of PVDF-HFP/H-M-SiO2@Silk sample was only dropped from 149.5° to 144.0° with the WSA of 8.0. Moreover, there was still more works on preparing the super hydrophobic and oleophobic silk fabric with good washing durability.

    參考文獻(xiàn):

    [1]WANG F, PI J, SONG F, et al. A superhydrophobic coating to create multi-functional materials with mechanical/chemical/physical robustness[J]. Chemical Engineering Journal, 2020, 381:122539.

    [2]PAN G M, XIAO X Y, YU N L, et al. Fabrication of superhydrophobic coatings on cotton fabric using ultrasound-assisted in-situ growth method[J]. Progress in Organic Coatings, 2018, 125: 463-471.

    [3]HE Z C, BAO B W, FAN J, et al. Photochromic cotton fabric based on microcapsule technology with anti-fouling properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594:124661.

    [4]WU J D, ZHANG C, XU S, et al. Preparation of zwitterionic polymer-functionalized cotton fabrics and the performance of anti-biofouling and long-term biofilm resistance[J]. Colloid and Interface Science Communications, 2018, 24: 98-104.

    [5]CHEN K L, ZHOU J L, CHE X G, et al. One-step synthesis of core shell cellulose-silica/n-octadecane microcapsules and their application in waterborne self-healing multiple protective fabric coatings[J]. Journal of Colloid and Interface Science, 2020, 566: 401-410.

    [6]KALE B M, WIENER J, MILITKY J, et al. Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness[J]. Carbohydrate Polymers, 2016, 150: 107-113.

    [7]QIN R H, SONG Y H, NIU M, et al. Construction of flame retardant coating on polyester fabric with ammonium polyphosphate and carbon microspheres[J]. Polymer Degradation and Stability, 2019, 171:109028.

    [8]PAN G M, XIAO X Y, YE Z H. Fabrication of stable superhydrophobic coating on fabric with mechanical durability, UV resistance and high oil-water separation efficiency[J]. Surface & Coatings Technology, 2019, 360: 318-328.

    [9]OMENETTO F G, KAPLAN D L. New opportunities for an ancient material[J]. Science, 2010, 329: 528-531.

    [10]LIU X S, XING T L, XU D M, et al. Study on novel eco-friendly anti-creasing agents for natural silk fabric[J]. Chinese Chemical Lettles, 2012, 23: 665-668.

    [11]CHEN F G, LIU X, YANG H Y, et al. A simple one-step approach to fabrication of highly hydrophobic silk fabrics[J]. Applied Surface Science, 2016, 360: 207-212.

    [12]HUANG J J, YANG Y Y, YANG L, et al. Fabrication of multifunctional silk fabrics via one step in-situ synthesis of ZnO[J]. Materials Letters, 2019, 237: 149-151.

    [13]WANG H, ZHOU H, GESTOS A, et al. Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages[J]. ACS Applied Materials & Interfaces, 2013, 5: 10221-10226.

    [14]ASLANIDOU D, KARAPANAGIOTIS I, PANAYIOTOU C. Superhydrophobic, superoleophobic coatings for the protection of silk textiles[J]. Progress in Organic Coatings, 2016, 97: 44-52.

    [15]CHENG Y, ZHUA T X, LI S H, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chemical Engineering Journal, 2019, 355: 290-298.

    [16]CHEN F G, YANG H Y, LIU X, et al. Facile fabrication of multifunctional hybrid silk fabrics with controllable surface wettability and laundering durability[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5653-5660.

    [17]STBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26: 62-69.

    [18]NITAYAPHAT W, JIRAWONGCHAROEN P, TRIJATURON T. Self-cleaning properties of silk fabrics functionalized with TiO2/SiO2 composites[J]. Journal of Natural Fibers, 2018, 15: 262-272.

    [19]PALCHAN I, CRESPON M, ESTRADE-SZWARCKOPF H, et al. Graphite fluorides: an XPS study of a new type of C-F bonding[J]. Chemical Physics Letters, 1989, 157(4): 321-327.

    [20]LIANG Z H, ZHOU Z Z, DONG B H, et al. Fabrication of superhydrophobic and UV-resistant silk fabrics with laundering durability and chemical stabilities[J]. Coatings, 2020, 10(4): 349.

    收稿日期: 20200524; 修回日期: 20201107

    基金項(xiàng)目: 浙江省基礎(chǔ)公益研究計(jì)劃資助項(xiàng)目(LGG18E030009)

    作者簡(jiǎn)介: Do Khai Ly(1993),女,碩士研究生,研究方向?yàn)榧徔椈瘜W(xué)與染整工程。通信作者:易玲敏,教授,lmyi@zstu.edu.cn。

    18禁裸乳无遮挡免费网站照片| 欧美潮喷喷水| 日韩国内少妇激情av| 麻豆久久精品国产亚洲av| 日韩欧美一区二区三区在线观看| 18禁在线播放成人免费| 欧美色视频一区免费| 久久国内精品自在自线图片| 一级黄片播放器| 中出人妻视频一区二区| 国产精品一区二区免费欧美| 国产亚洲精品av在线| 看片在线看免费视频| 尾随美女入室| 亚洲最大成人中文| 3wmmmm亚洲av在线观看| 成人三级黄色视频| 99久久精品热视频| 免费高清视频大片| 九九热线精品视视频播放| 国产成年人精品一区二区| 亚洲狠狠婷婷综合久久图片| 亚洲av日韩精品久久久久久密| 一夜夜www| 日本一二三区视频观看| 亚洲天堂国产精品一区在线| 欧美日韩综合久久久久久 | 欧美一区二区国产精品久久精品| 真人一进一出gif抽搐免费| 亚洲天堂国产精品一区在线| 久久香蕉精品热| 国产主播在线观看一区二区| 免费人成视频x8x8入口观看| 午夜福利成人在线免费观看| 日韩国内少妇激情av| 国产午夜精品久久久久久一区二区三区 | 动漫黄色视频在线观看| 国产91精品成人一区二区三区| 毛片一级片免费看久久久久 | 久久欧美精品欧美久久欧美| 欧美一区二区国产精品久久精品| 无人区码免费观看不卡| 看黄色毛片网站| 国产一级毛片七仙女欲春2| 91麻豆精品激情在线观看国产| 一个人免费在线观看电影| 非洲黑人性xxxx精品又粗又长| 可以在线观看毛片的网站| 国产一区二区三区视频了| 一进一出好大好爽视频| 国模一区二区三区四区视频| 午夜久久久久精精品| 少妇高潮的动态图| 精品久久久久久久久亚洲 | .国产精品久久| 精品人妻视频免费看| 琪琪午夜伦伦电影理论片6080| 俺也久久电影网| 亚洲久久久久久中文字幕| 亚洲最大成人中文| 久久亚洲精品不卡| 国产精品久久视频播放| 精品久久久久久久久久久久久| 国语自产精品视频在线第100页| 婷婷色综合大香蕉| 成人午夜高清在线视频| 亚洲av不卡在线观看| 亚洲欧美日韩东京热| 精品人妻视频免费看| 搡老妇女老女人老熟妇| 如何舔出高潮| 国产精品乱码一区二三区的特点| 午夜福利欧美成人| 少妇猛男粗大的猛烈进出视频 | xxxwww97欧美| 日韩国内少妇激情av| 精华霜和精华液先用哪个| 日本爱情动作片www.在线观看 | 国内精品一区二区在线观看| 午夜a级毛片| 亚洲黑人精品在线| 日韩欧美在线二视频| 婷婷精品国产亚洲av| 久久精品国产亚洲av香蕉五月| 欧美黑人巨大hd| 国产久久久一区二区三区| 国产黄片美女视频| 久久久久久久久大av| 性色avwww在线观看| 老师上课跳d突然被开到最大视频| 女同久久另类99精品国产91| 亚洲av.av天堂| 18禁裸乳无遮挡免费网站照片| 真实男女啪啪啪动态图| 我的老师免费观看完整版| 十八禁网站免费在线| 久久久国产成人免费| 窝窝影院91人妻| 波多野结衣高清无吗| 免费看美女性在线毛片视频| 人妻久久中文字幕网| 亚洲av五月六月丁香网| 国产精品国产三级国产av玫瑰| 男人的好看免费观看在线视频| 又黄又爽又刺激的免费视频.| 悠悠久久av| 成年女人永久免费观看视频| aaaaa片日本免费| 91狼人影院| 亚洲国产精品sss在线观看| 丝袜美腿在线中文| 欧美另类亚洲清纯唯美| 女同久久另类99精品国产91| 91麻豆精品激情在线观看国产| 国内精品宾馆在线| 久久人妻av系列| 国产精品一区二区性色av| 女生性感内裤真人,穿戴方法视频| 无人区码免费观看不卡| 看免费成人av毛片| 99久久精品热视频| 精品一区二区三区视频在线| 18+在线观看网站| 国产精品福利在线免费观看| 91久久精品国产一区二区成人| 亚洲图色成人| 亚洲中文字幕一区二区三区有码在线看| 国产av不卡久久| 久久久久性生活片| 国语自产精品视频在线第100页| 丰满人妻一区二区三区视频av| 真人一进一出gif抽搐免费| 午夜免费男女啪啪视频观看 | 岛国在线免费视频观看| 又黄又爽又刺激的免费视频.| 22中文网久久字幕| 免费看美女性在线毛片视频| 亚洲不卡免费看| 全区人妻精品视频| 成人欧美大片| 成人毛片a级毛片在线播放| 露出奶头的视频| 成人鲁丝片一二三区免费| 亚洲色图av天堂| 国产精品,欧美在线| 精品欧美国产一区二区三| 看片在线看免费视频| 亚洲精品日韩av片在线观看| 久久久久国内视频| 成人综合一区亚洲| 欧美日本亚洲视频在线播放| 欧美黑人巨大hd| 精品久久久噜噜| 亚洲精品亚洲一区二区| 一区二区三区四区激情视频 | 精品午夜福利视频在线观看一区| 熟女电影av网| 91久久精品国产一区二区三区| 免费看av在线观看网站| 一级黄色大片毛片| 有码 亚洲区| 久久99热6这里只有精品| 国产白丝娇喘喷水9色精品| 色吧在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品合色在线| 日本精品一区二区三区蜜桃| 夜夜夜夜夜久久久久| 少妇高潮的动态图| 麻豆国产97在线/欧美| 夜夜夜夜夜久久久久| .国产精品久久| 精品久久久久久久久av| 国产v大片淫在线免费观看| 三级男女做爰猛烈吃奶摸视频| 免费高清视频大片| 亚洲欧美精品综合久久99| 女同久久另类99精品国产91| 国产精品自产拍在线观看55亚洲| 久久精品国产亚洲av天美| 色哟哟哟哟哟哟| 亚洲性夜色夜夜综合| 中文字幕免费在线视频6| 日韩中文字幕欧美一区二区| 我要看日韩黄色一级片| 观看免费一级毛片| 人人妻人人澡欧美一区二区| 中亚洲国语对白在线视频| 黄色欧美视频在线观看| 精品人妻视频免费看| 亚洲欧美清纯卡通| 亚洲无线观看免费| 91麻豆精品激情在线观看国产| 在线免费观看不下载黄p国产 | 国产真实乱freesex| 天天一区二区日本电影三级| 日本精品一区二区三区蜜桃| 国产v大片淫在线免费观看| av.在线天堂| 狂野欧美激情性xxxx在线观看| 国产久久久一区二区三区| 久久热精品热| 成人无遮挡网站| 小蜜桃在线观看免费完整版高清| 热99在线观看视频| 51国产日韩欧美| 少妇高潮的动态图| 成年女人永久免费观看视频| 高清在线国产一区| 波多野结衣高清无吗| 久久天躁狠狠躁夜夜2o2o| 日韩大尺度精品在线看网址| 18禁黄网站禁片免费观看直播| 美女cb高潮喷水在线观看| 欧美日本视频| 国产男人的电影天堂91| 欧美另类亚洲清纯唯美| 日韩精品青青久久久久久| 一个人观看的视频www高清免费观看| 久久久精品大字幕| 午夜a级毛片| 亚洲人与动物交配视频| 久久久久国产精品人妻aⅴ院| 国产男人的电影天堂91| 欧美高清性xxxxhd video| 亚洲第一区二区三区不卡| 俄罗斯特黄特色一大片| 国产又黄又爽又无遮挡在线| 亚洲av中文av极速乱 | 男人舔奶头视频| 一边摸一边抽搐一进一小说| 91狼人影院| 日本精品一区二区三区蜜桃| 国产精品久久电影中文字幕| 免费看a级黄色片| 给我免费播放毛片高清在线观看| 久久精品国产亚洲av涩爱 | 亚洲自拍偷在线| 国产精品嫩草影院av在线观看 | a级毛片a级免费在线| 亚洲图色成人| 亚洲成人精品中文字幕电影| 亚洲成人久久爱视频| 成人高潮视频无遮挡免费网站| 久久精品影院6| 亚洲美女搞黄在线观看 | 中文字幕熟女人妻在线| 最近最新中文字幕大全电影3| 精品人妻视频免费看| av女优亚洲男人天堂| 黄色日韩在线| 嫩草影院新地址| 国产色婷婷99| 久久99热这里只有精品18| 在线免费观看不下载黄p国产 | 久久精品国产亚洲网站| 国产午夜福利久久久久久| 久久久久久久精品吃奶| 亚洲性久久影院| 亚洲自偷自拍三级| 亚洲第一电影网av| 亚洲美女黄片视频| 国产麻豆成人av免费视频| 欧美区成人在线视频| 欧美一区二区亚洲| 国产精品电影一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 国产日本99.免费观看| 日本黄色视频三级网站网址| 亚洲精品影视一区二区三区av| 在线国产一区二区在线| 精品午夜福利在线看| 内地一区二区视频在线| 色在线成人网| bbb黄色大片| 欧美日韩综合久久久久久 | 色综合婷婷激情| 五月玫瑰六月丁香| 久久精品国产鲁丝片午夜精品 | 亚洲天堂国产精品一区在线| 久久精品夜夜夜夜夜久久蜜豆| 久久久久性生活片| 国产乱人视频| 性色avwww在线观看| 久久久久国产精品人妻aⅴ院| 亚洲最大成人av| 又黄又爽又刺激的免费视频.| 最新中文字幕久久久久| 欧美3d第一页| 一区二区三区高清视频在线| 春色校园在线视频观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲性夜色夜夜综合| 亚洲av免费高清在线观看| 久久久久免费精品人妻一区二区| 欧美黑人欧美精品刺激| 在线播放国产精品三级| 精品久久久久久,| 热99re8久久精品国产| 日本黄色视频三级网站网址| 日韩高清综合在线| 免费无遮挡裸体视频| 亚洲性夜色夜夜综合| 成人一区二区视频在线观看| 亚洲av免费在线观看| 亚洲第一电影网av| 欧美日韩精品成人综合77777| 三级毛片av免费| 人妻夜夜爽99麻豆av| 97热精品久久久久久| 国产精品乱码一区二三区的特点| 国产精品精品国产色婷婷| 亚洲三级黄色毛片| 国产精品一区二区三区四区久久| 国产综合懂色| 色噜噜av男人的天堂激情| 97超级碰碰碰精品色视频在线观看| 久久久久久九九精品二区国产| 18禁裸乳无遮挡免费网站照片| 亚洲色图av天堂| 91在线精品国自产拍蜜月| 欧美高清成人免费视频www| 国产男人的电影天堂91| 黄色欧美视频在线观看| 亚洲熟妇中文字幕五十中出| 国产色爽女视频免费观看| 久久99热这里只有精品18| 人妻久久中文字幕网| 精品久久久久久,| 欧美色欧美亚洲另类二区| 国产精品综合久久久久久久免费| 国产真实乱freesex| 欧美日韩黄片免| 一边摸一边抽搐一进一小说| 女同久久另类99精品国产91| 亚洲va在线va天堂va国产| 色综合色国产| 亚洲欧美日韩卡通动漫| 色综合色国产| 欧美成人a在线观看| 国产精品一区二区三区四区免费观看 | 美女xxoo啪啪120秒动态图| 可以在线观看毛片的网站| 欧美精品国产亚洲| 天堂网av新在线| 88av欧美| 又黄又爽又刺激的免费视频.| 91麻豆精品激情在线观看国产| 直男gayav资源| 午夜福利欧美成人| 欧美高清性xxxxhd video| 午夜福利欧美成人| 亚洲国产精品久久男人天堂| 免费av毛片视频| 免费黄网站久久成人精品| 日本色播在线视频| 亚洲人成网站在线播| 美女免费视频网站| 极品教师在线视频| www日本黄色视频网| 免费看av在线观看网站| 18禁黄网站禁片免费观看直播| 久久精品国产99精品国产亚洲性色| av天堂在线播放| 热99re8久久精品国产| 欧美+亚洲+日韩+国产| 热99re8久久精品国产| 又粗又爽又猛毛片免费看| 狂野欧美白嫩少妇大欣赏| 日韩欧美 国产精品| 久久午夜亚洲精品久久| 国产一级毛片七仙女欲春2| 男人和女人高潮做爰伦理| 国产精品久久久久久久电影| 国产亚洲av嫩草精品影院| 亚洲人成网站在线播放欧美日韩| 男插女下体视频免费在线播放| 亚洲中文字幕日韩| 99在线视频只有这里精品首页| 动漫黄色视频在线观看| 成人性生交大片免费视频hd| 久久精品人妻少妇| 亚洲欧美激情综合另类| 日本色播在线视频| 精品日产1卡2卡| av国产免费在线观看| 亚洲av不卡在线观看| 最新中文字幕久久久久| 中文在线观看免费www的网站| 99热网站在线观看| 成人美女网站在线观看视频| 亚洲国产欧美人成| 91狼人影院| 校园人妻丝袜中文字幕| 国产白丝娇喘喷水9色精品| 最近最新免费中文字幕在线| 亚洲人成网站在线播放欧美日韩| 好男人在线观看高清免费视频| 国产高潮美女av| bbb黄色大片| av天堂在线播放| 国产单亲对白刺激| 一a级毛片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产不卡一卡二| 亚洲av电影不卡..在线观看| 久久婷婷人人爽人人干人人爱| 欧洲精品卡2卡3卡4卡5卡区| 国产91精品成人一区二区三区| 男女那种视频在线观看| 变态另类丝袜制服| 午夜日韩欧美国产| 两个人视频免费观看高清| 网址你懂的国产日韩在线| 嫩草影院入口| 色哟哟哟哟哟哟| bbb黄色大片| 国产精品福利在线免费观看| 蜜桃久久精品国产亚洲av| 香蕉av资源在线| 最近最新中文字幕大全电影3| 国产亚洲91精品色在线| 在线播放无遮挡| 在线观看美女被高潮喷水网站| 国产精品乱码一区二三区的特点| 日韩欧美精品免费久久| 久久久久久九九精品二区国产| 亚洲人成伊人成综合网2020| 91av网一区二区| 亚洲精品乱码久久久v下载方式| 精品一区二区免费观看| 欧美最黄视频在线播放免费| 亚洲最大成人av| 老司机深夜福利视频在线观看| 少妇猛男粗大的猛烈进出视频 | 免费av不卡在线播放| 午夜老司机福利剧场| av.在线天堂| 乱系列少妇在线播放| 最好的美女福利视频网| 村上凉子中文字幕在线| 国产单亲对白刺激| 草草在线视频免费看| 日本一本二区三区精品| 综合色av麻豆| 亚洲va日本ⅴa欧美va伊人久久| 中亚洲国语对白在线视频| 欧美三级亚洲精品| 99热6这里只有精品| 97人妻精品一区二区三区麻豆| 中文字幕免费在线视频6| 国产91精品成人一区二区三区| 欧美最黄视频在线播放免费| 我要搜黄色片| 精品不卡国产一区二区三区| 国产精品美女特级片免费视频播放器| 最好的美女福利视频网| 欧美国产日韩亚洲一区| 亚洲国产欧洲综合997久久,| 尾随美女入室| 欧美成人一区二区免费高清观看| 三级国产精品欧美在线观看| 久久99热6这里只有精品| 久久精品久久久久久噜噜老黄 | 舔av片在线| 亚洲狠狠婷婷综合久久图片| 久久久久国产精品人妻aⅴ院| 日韩欧美精品免费久久| 日韩一本色道免费dvd| 成年女人毛片免费观看观看9| 国产主播在线观看一区二区| 啦啦啦韩国在线观看视频| 91久久精品国产一区二区三区| 欧美精品啪啪一区二区三区| 免费观看的影片在线观看| 亚洲av中文av极速乱 | 亚洲国产欧洲综合997久久,| 欧美日韩国产亚洲二区| 中亚洲国语对白在线视频| 免费在线观看影片大全网站| 久久99热6这里只有精品| 国产高清激情床上av| 日韩大尺度精品在线看网址| 少妇裸体淫交视频免费看高清| 国产黄片美女视频| 国产人妻一区二区三区在| 日本五十路高清| 校园春色视频在线观看| 久久精品影院6| 国产精品99久久久久久久久| 高清毛片免费观看视频网站| 日韩一本色道免费dvd| 精品日产1卡2卡| 日本精品一区二区三区蜜桃| 欧美+日韩+精品| 久久天躁狠狠躁夜夜2o2o| 91久久精品电影网| 成人二区视频| 高清日韩中文字幕在线| 看片在线看免费视频| 欧美激情在线99| 日本黄大片高清| 女人被狂操c到高潮| 国产精品一及| 中文字幕av在线有码专区| 69人妻影院| 成年女人看的毛片在线观看| 在线看三级毛片| 精品一区二区免费观看| 午夜免费男女啪啪视频观看 | 天堂影院成人在线观看| 久久久精品欧美日韩精品| 黄色日韩在线| 午夜激情欧美在线| 黄色女人牲交| 免费一级毛片在线播放高清视频| 91在线精品国自产拍蜜月| 国产一级毛片七仙女欲春2| 啦啦啦啦在线视频资源| 久久久久久久久大av| 18+在线观看网站| 亚洲五月天丁香| 日韩欧美 国产精品| 精品日产1卡2卡| 免费高清视频大片| 国内精品一区二区在线观看| 麻豆成人午夜福利视频| 男人舔女人下体高潮全视频| 国产av麻豆久久久久久久| 69av精品久久久久久| av.在线天堂| 亚洲一区高清亚洲精品| 88av欧美| 日本熟妇午夜| 国内精品宾馆在线| 97人妻精品一区二区三区麻豆| 淫妇啪啪啪对白视频| av在线天堂中文字幕| 国产精品久久久久久久电影| 干丝袜人妻中文字幕| 深夜精品福利| 熟妇人妻久久中文字幕3abv| 亚洲欧美日韩高清专用| 亚洲精品日韩av片在线观看| 联通29元200g的流量卡| 国产高清有码在线观看视频| 三级国产精品欧美在线观看| 色av中文字幕| 少妇的逼好多水| 色综合色国产| 在线免费观看不下载黄p国产 | 人人妻人人看人人澡| 久久亚洲真实| 大型黄色视频在线免费观看| 黄色丝袜av网址大全| a级毛片a级免费在线| 久久香蕉精品热| 亚洲一区高清亚洲精品| 十八禁网站免费在线| 国产毛片a区久久久久| 在线免费十八禁| 热99在线观看视频| 国产亚洲精品综合一区在线观看| 欧美成人一区二区免费高清观看| 欧美日本亚洲视频在线播放| 亚洲在线自拍视频| 久久6这里有精品| 99久久久亚洲精品蜜臀av| 欧美高清性xxxxhd video| a级毛片a级免费在线| 亚洲成人免费电影在线观看| 国产69精品久久久久777片| 日韩欧美三级三区| 人妻制服诱惑在线中文字幕| 99精品久久久久人妻精品| 国产伦精品一区二区三区视频9| 亚洲av中文字字幕乱码综合| 最后的刺客免费高清国语| 国产午夜精品久久久久久一区二区三区 | 欧美极品一区二区三区四区| 变态另类丝袜制服| 免费av不卡在线播放| 日本黄色片子视频| 国产亚洲91精品色在线| 精品福利观看| 国产亚洲欧美98| 久久人人爽人人爽人人片va| 少妇高潮的动态图| 免费在线观看成人毛片| 免费电影在线观看免费观看| 少妇熟女aⅴ在线视频| 亚洲人与动物交配视频| 丰满人妻一区二区三区视频av| 欧美精品啪啪一区二区三区| 三级毛片av免费| 亚州av有码| 老熟妇乱子伦视频在线观看| xxxwww97欧美| 亚洲av成人av| 99久久九九国产精品国产免费| 国内精品久久久久久久电影| 国产精品国产三级国产av玫瑰| 亚洲国产精品合色在线| 精品无人区乱码1区二区| 亚洲自偷自拍三级| 国产黄片美女视频| 最新在线观看一区二区三区| 欧美精品国产亚洲| av福利片在线观看| 一级av片app| 久久精品综合一区二区三区| 欧美日韩综合久久久久久 | 国产av在哪里看| 亚洲在线观看片| 色播亚洲综合网|