• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the direct products of cyclic groups and the quotient group Zm×Zn/N

    2020-12-28 12:47:24-,-,-
    廣州大學學報(自然科學版) 2020年3期

    -, -, -

    (School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China)

    Abstract:For the general group, it is not easy to find a simple and concrete group to characterize it.In this paper, we consider the quotient group Zm×Zn/N with normal subgroup N and give its equivalence for the cases gcd(m,n)=1 and gcd(m,n)≠1(m is prime), respectively.

    Key words:direct product; normal subgroup; cyclic group; quotient group

    0 Introduction

    On the other hand, Cayley Theorem proved that any group is isomorphic to a transformation group, especially, any finite group is isomorphic to a permutation group.The meaning of Cayley Theorem tells us that it is convenient to study the structure of the general group if we use the simple and concrete group to express the general group, and thus the above question will be simple.However, for the general groups, it is not easy to give the simple and concrete groups to characterize them.

    It is well-known that every cyclic group of ordernis isomorphic toZnand every cyclic group of infinite order is isomorphic toZ[12].If we want to consider the cyclic case of the quotient groupG1×G2/Nfor the general groupsGi, whereNis the normal subgroup ofG1×G2, it will be useful to consider the structure ofZm×Zn/Nfirstly.We know thatZmis cyclic, andZm×Znis cyclic if and only if gcd(m,n)=1, which implies thatZm×Zn?Zmnif and only if gcd(m,n)=1.Following these results, we can characterize the structure ofZm×Zn/N, and give its equivalence.In this paper, the main purpose is to use simple and concrete group to characterize the cyclic case ofZm×Zn/Nwith gcd(m,n)=1 and gcd(m,n)≠1(mis prime), respectively.

    The paper is organized as follows.In Section 1, we introduce some fundamental results for the general groups and the direct productZm×Znwith gcd(m,n)=1, and its equivalence.For the quotient group ofZm×Znwith gcd(m,n)=1(resp.with primemand gcd(m,n)≠1), we give an equivalence of the quotient group ofZm×Znin Section 2.

    1 Direct products of cyclic groups

    In this section, we mainly study the direct productZm×Znunder the operation

    ([a1],[b1])+([a2],[b2])=([a1+a2],

    [b1+b2]),[a1],[a2]∈

    Zm,[b1],[b2]∈Zn

    (1)

    and the direct productsZm1×Zm2×…×Zmrunder the operation

    ([a1],[a2],…,[ar])+([b1],[b2],…,[br])=

    ([a1+b1],[a2+b2],…,[ar+br])

    (2)

    where[ai],[bi]∈Zmi, and consider them in each case to be cyclic groups.In fact, it is clear thatZm×ZnandZm1×Zm2×…×Zmrare groups under the operations(1)and(2), respectively.

    Theorem1[12]LetG1,G2,…,Gnbe finite groups, and suppose thatai∈Gihas orderrifor eachi.Then(a1,…,an)∈G1×…×Gnhas orderlcm(r1,…,rn)under the operation(a1,a2,…,an)(b1,b2,…,bn)=(a1b1,a2b2,…,anbn)for anyai,bi∈Gi,i=1,2,…,n.

    Theorem2[13]LetGbe a group anda∈Ghas finite orderm.Then

    ([5],[2])+([5],[2])+([5],[2])+

    ([5],[2])=([20],[8])=([0],[0]).

    In order to consider the structure ofZm×Znin detail, we should first consider the structure of each element inZm×Zn.It is clear that there is no generator inZ2×Z4and([1],[1])is a generator ofZ2×Z3.SinceZm,Znare cyclic groups, so there is a natural question to ask whenZm×Znis a cyclic group?

    Theorem3[14]The groupZm×Znunder the operation(1)is cyclic if and only if gcd(m,n)=1.

    ProofSuppose thatZm×Znis a cyclic group and gcd(m,n)=d≠1.For any([a],[b])∈Zm×Znand any positive integerk, we have

    ([ka(modm)],[kb(modn)]).

    Conversely, suppose that gcd(m,n)=1 and[a](resp.[b])is the generator ofZm(resp.Zn).Sinceord([a])=m,ord([b])=n,ord(([a],[b]))=lcm(m,n)=mn.This means that([a],[b])is a generator ofZm×Zn, which implies thatZm×Znis a cyclic group.

    Following Theorem 3, we can easily obtain the following corollary.

    Corollary1Zm×Zn?Zmnif and only if gcd(m,n)=1.

    Note that([1],[1])is a generator ofZm×Znif gcd(m,n)=1.

    Theorem4 The groupZm1×Zm2×…×Zmrunder the operation(2)is cyclic if and only ifmiandmjare coprime for alli≠j.

    ProofAssume that the groupZm1×Zm2×…×Zmris cyclic and gcd(mi,mj)=d≠1 for somei,jwithi≠j.DenoteG=Zm1×Zm2×…×Zmr.

    For any([ai],[bj])∈Zmi×Zmjand any positive integerk, we have

    ([kai(modmi)],[kbj(modmj)]).

    ([0],[0]).

    Conversely, let[ai]be a generator of groupsZmiwith ordermifor eachi, ifmiandmjare relative prime for alli≠j.Then the order of([a1],[a2],…,[ar])ism1m2…mrfollowing Theorem 1.This means that([a1],[a2],…,[ar])is a generator ofZm1×Zm2×…×Zmr.ThusZm1×Zm2×…×Zmris a cyclic group.

    Similarly, we have the equivalent withZm1×Zm2×…×Zmrfollowing Corollary 1 and Theorem 4.

    Corollary2Zm1×Zm2×…×Zmr?Zm1m2…mrif and only ifmiandmjare relatively prime for alli≠j.

    ProofSupposeZm1×Zm2×…×Zmr?Zm1m2…mr.ThenZm1×Zm2×…×Zmris a cyclic group and its order islcm(m1,m2,…,mr)=m1m2…mrby Theorem 1.It follows thatmiandmjare relatively prime for alli≠j.

    Conversely, ifmiandmjare relatively prime for alli≠j, thenZm1×Zm2×…×Zmris a cyclic group by Theorem 4, which implies that the order ofZm1×Zm2×…×Zmrism1m2…mr.Therefore,Zm1×Zm2×…×Zmr?Zm1m2…mr.

    2 Quotient group Zm×Zn/N

    LetG1andG2be two groups, and the left coset ofG1×G2is

    G1×G2/H={(a,b)H|(a,b)∈G1×G2}

    with the operation

    ((a1,b1)H)((a2,b2)H)=(a1a2,b1b2)H

    (3)

    whereHis a subgroup ofG1×G2anda1,a2∈G1,b1,b2∈G2.It is well-known that the operation(3)does not hold in general case.However, if(a,b)H=H(a,b)for any(a,b)∈G1×G2, then the operation(3)is well-defined.Furthermore, ifHis a normal subgroup ofG1×G2, thenG1×G2/His a quotient group.It is well-known that one of the main purpose in group theory is to consider the structure of the quotient groupG1×G2/H.Therefore, there is a natural question to ask whenHis a normal subgroup, and what about the structure ofG1×G2/H? We have known that {e1}×{e2},G1×G2,G1×{e2} and {e1}×G2are normal subgroups ofG1×G2, whereeiis the identity ofGifori=1,2.However, for the general case, it is not easy to determine the normal subgroups ofG1×G2.In this section, we mainly study the left coset(similar for the right coset)

    Zm×Zn/N={([a],[b])+N|([a],[b])∈

    Zm×Zn}

    with the operation

    (([a1],[b1])+N)+(([a2],[b2])+N)=

    (([a1+a2],[b1+b2])+N)

    (4)

    whereNis a subgroup ofZm×Znand[a1],[a2]∈Zm,[b1],[b2]∈Zn.SinceZm×Znis Abelian under the operation(1), any subgroups ofZm×Znare normal subgroups.

    2.1 The quotient group of Zm×Zn with gcd(m,n)=1

    It is well-known thatZm={[0],[1],…,[m-1]} is an Abelian group under the operation[k1]+[k2]=[k1+k2]for any[k1],[k2]∈Zm.Thus, for any element[k]∈Zm,([k])is a normal subgroup ofZm.

    Theorem5 For any[k]∈Zm, we haveZm/([k])?Zgcd(m,k).

    ProofSetd=gcd(m,k)and let

    ψ:Zm→Zd,[n]→[n(modd)].

    Assume that[m1]=[m2]for[m1],[m2]∈Zm, thenm|(m1-m2).

    It is clear thatd|(m1-m2), which is equivalent to thatm1≡m2(modd), i.e.,[m1(modd)]=[m2(modd)].This means thatψis well-defined.In addition, for any[a],[b]∈Zm, we have

    ψ([a]+[b])=ψ([a+b])=

    [a+b(modd)]=

    [a(modd)+b(modd)]=

    [a(modd)]+[b(modd)]=

    ψ([a])+ψ([b]).

    It follows thatψis a homomorphism.Further, for any[a]∈Zd, we have[td+a]∈Zmandψ([td+a])=[td+a(modd)]=[a]for somet∈Z.It implies thatψis surjective.Also,([k])is the kernel ofψsinceψ([k])=[0].Therefore, following the group homomorphism theorem, we haveZm/([k])?Zgcd(m,k).

    Example1 Letm=9 andk=3.ThenZ9/([3])?Z3.

    ProofFollowing Theorem 5, we can easily obtain thatZ9/([3])?Z3.In fact, since the subgroup([3])=([0],[3],[6]), all the left cosets for subgroup([3])inZ9are as follows.

    [0]+([3])=[3]+([3])=[6]+([3])=([0],[3],[6]),

    [1]+([3])=[4]+([3])=[7]+([3])=([1],[4],[7]),

    [2]+([3])=[5]+([3])=[8]+([3])=([2],[5],[8]).

    Thus, the order ofZ9/([3])is 3 which is equal to the number of all the left cosets.In addition, we know thatZ9/([3])is generated by[1]+([3])with order 3.Therefore,Z9/([3])?Z3.

    Let([a],[b])∈Zm×Zn, from the above, we know that 〈([a],[b])〉is a normal subgroup ofZm×Znand thenZm×Zn/〈([a],[b])〉 is a quotient group.

    Theorem6 Suppose thatm,nare coprime and[k]∈Zmn.Then

    Zm×Zn/〈([k(modm)],[k(modn)])〉?

    Zgcd(mn,k).

    ProofSuppose thatm,nare coprime.ThenZmn?Zm×Znby Corollary 1.Let

    f:Zmn→Zm×Zn,[k]→([k(modm)],[k(modn)]).

    For any[k1],[k2]∈Zmn, if[k1]=[k2], i.e.,mn|(k1-k2), thenm|(k1-k2),n|(k1-k2), it follows thatk1(modm)=k2(modm),k1(modn)=k2(modn), which implies that

    ([k1(modm)],[k1(modn)])=

    ([k2(modm)],[k2(modn)]).

    This means thatfis well-defined.In addition, for any[k1],[k2]∈Zmn, we have

    f([k1]+[k2])=f([k1+k2])=

    ([k1+k2(modm)],[k1+k2(modn)])=

    ([k1(modm)+k2(modm)],

    [k1(modn)+k2(modn)])=

    ([k1(modm)],[k1(modn)])+

    ([k2(modm)],[k2(modn)])=

    f([k1])+f([k2]).

    It follows thatfis a homomorphism.Obviously, we have thatfis surjective.Therefore,fis epimorphism.Sincem,nare coprime, it is clear to know that ker(f)={[0]}.SinceZmn,Zm×Znare Abelian,([k])and 〈([k(modm)],[k(modn)])〉 are normal subgroups ofZmnandZm×Zn, respectively.Furthermore, we have 〈([k(modm)],[k(modn)])〉=f(([k])).Thus, following Lemma 1, we obtain thatZm×Zn/〈([k(modm)],[k(modn)])〉?Zmn/([k]).

    On the other hand, from Theorem 5, we haveZmn/([k])?Zgcd(mn,k).Therefore,

    Zm×Zn/〈([k(modm)],[k(modn)])〉?

    Zgcd(mn,k).

    Example2 Letm= 4,n= 9 andk= 24.Then(m,n)= 1 and[24]∈Z36, and

    Z4×Z9/〈([24(mod 4)],[24(mod 9)])〉?

    Z12.

    ProofIt is clear that[24(mod 4)]=[0],[24(mod 9)]=[6].Thus

    〈([24(mod 4)],[24(mod 9)])〉=

    〈([0],[6])〉=

    {([0],[6]),([0],[3]),([0],[0])}.

    By computation, we obtain that all the left cosets inZ4×Z9/NwhereN=〈([0],[6])〉 are as follows.

    ([0],[0])+N=([0],[3])+N=([0],[6])+N={([0],[0]),([0],[3]),([0],[6])},

    ([0],[1])+N=([0],[4])+N=([0],[7])+N={([0],[1]),([0],[4]),([0],[7])},

    ([0],[2])+N=([0],[5])+N=([0],[8])+N={([0],[2]),([0],[5]),([0],[8])},

    ([1],[0])+N=([1],[3])+N=([1],[6])+N={([1],[0]),([1],[3]),([1],[6])},

    ([1],[1])+N=([1],[4])+N=([1],[7])+N={([1],[1]),([1],[4]),([1],[7])},

    ([1],[2])+N=([1],[5])+N=([1],[8])+N={([1],[2]),([1],[5]),([1],[8])},

    ([2],[0])+N=([2],[3])+N=([2],[6])+N={([2],[0]),([2],[3]),([2],[6])},

    ([2],[1])+N=([2],[4])+N=([2],[7])+N={([2],[1]),([2],[4]),([2],[7])},

    ([2],[2])+N=([2],[5])+N=([2],[8])+N={([2],[2]),([2],[5]),([2],[8])},

    ([3],[0])+N=([3],[3])+N=([3],[6])+N={([3],[0]),([3],[3]),([3],[6])},

    ([3],[1])+N=([3],[4])+N=([3],[7])+N={([3],[1]),([3],[4]),([3],[7])},

    ([3],[2])+N=([3],[5])+N=([3],[8])+N={([3],[2]),([3],[5]),([3],[8])}.

    Thus, the order ofZ4×Z9/〈([0],[6])〉 is 12 which is equal to the number of the left cosets.Furthermore, we know thatZ4×Z9/〈([0],[6])〉 is generated by([1],[2])+Nwith order 12.Therefore, we haveZ4×Z9/〈([24(mod 4)],[24(mod 9)])〉?Z12.In fact, since gcd(4,9)=1, by Theorem 6, we can easily obtain that

    Z4×Z9/〈([24(mod 4)],[24(mod 9)])〉?

    Zgcd(36,24)?Z12.

    Example3 Letm=4,n=6 andk=8.Then(m,n)=2≠1,[8]∈Z24, but

    Z4×Z6/〈([8(mod 4)],[8(mod 6)])〉

    Zgcd(24,8)?Z8.

    ProofIt is clear that

    〈([8(mod 4)],[8(mod 6)])〉=

    〈([0],[2])〉=

    {([0],[2]),([0],[4]),([0],[0])}.

    ([0],[0])+N=([0],[2])+N=([0],[4])+N={([0],[2]),([0],[4]),([0],[0])},

    ([0],[1])+N=([0],[3])+N=([0],[5])+N={([0],[3]),([0],[5]),([0],[1])},

    ([1],[0])+N=([1],[2])+N=([1],[4])+N={([1],[2]),([1],[4]),([1],[0])},

    ([1],[1])+N=([1],[3])+N=([1],[5])+N={([1],[3]),([1],[5]),([1],[1])},

    ([2],[0])+N=([2],[2])+N=([2],[4])+N={([2],[2]),([2],[4]),([2],[0])},

    ([2],[1])+N=([2],[3])+N=([2],[5])+N={([2],[3]),([2],[5]),([2],[1])},

    ([3],[0])+N=([3],[2])+N=([3],[4])+N={([3],[2]),([3],[4]),([3],[0])},

    ([3],[1])+N=([3],[3])+N=([3],[5])+N={([3],[3]),([3],[5]),([3],[1])}.

    It follows that the order ofZ4×Z6/〈([0],[2])〉 is 8.However, there is no generator inZ4×Z6/〈([0],[2])〉.From the above, we haveZ4×Z6/〈([0],[2])〉?Z4×Z2.

    SinceZ4×Z2is not cyclic, we haveZ4×Z2Z8.Therefore,

    Z4×Z6/〈([8(mod 4)],[8(mod 6)])〉

    Zgcd(24,8).

    Similar as the proof of Theorem 6, we can obtain the following corollary easily.

    Corollary3 Suppose thatmiandmjare relative prime for alli≠j,i,j=1,2,…,r, and[k]∈Zm1m2…mr.Then

    Zm1×Zm2×…×Zmr/N?Zgcd(m1m2…mr,k),

    whereN=〈([k(modm1)],[k(modm2)],…,[k(modmr)])〉.

    2.2 The quotient group of Zm×Zn with gcd(m,n)≠1 and prime m

    From Theorem 6, we know whenm,nare coprime, then the quotient group ofZm×Znis isomorphic to a cyclic groupZr, whereris the order of this quotient group.However, whenm,nare not coprime, do we still have the similar result for the quotient group ofZm×Zn? For example, whenm=n=pis prime, thenZp×Zpis not cyclic.In fact, the orderZp×Zpisp2, and each[a]∈Zpis a generator ofZpfor[a]≠[0].However, for any([a],[b])∈Zp×Zpwith([a],[b])≠([0],[0]), the order of 〈([a],[b])〉 isp(≠p2).This means thatZp×Zpis not cyclic.Hence, we should ask what is the equivalent of the quotient group ofZm×Znwith prime numbermand gcd(m,n)≠1?

    It is well-known that every subgroup of a cyclic group is still cyclic, and is also a normal subgroup.Thus, ifG=〈a〉 is a finite cyclic group andHa subgroup ofG.ThenaHgeneratesG/Hwith the operation(xH)(yH)=(xyH)for anyx,y∈G.Indeed, note that any element ofG/His of the formgH={gh|h∈H} forg∈G.SinceG=〈a〉 is a finite cyclic group, we haveg=akfor some positive integerkfor anyg∈G.Thus,gH=(ak)H=(aH)k.This shows thataHgeneratesG/H.

    Lemma2[15]LetGbe a group, if |G| is prime, thenGis a cyclic group.

    Theorem7 Suppose thatG=〈a〉 is a finite cyclic group with prime orderp>1.ThenG×G/〈(as,at)〉 for 1≤s,t

    ProofSuppose thatG=〈a〉 is a finite cyclic group with prime orderp>1, then for any non-identity elementak∈G, the order ofakispby Theorem 2.It follows from Theorem 1 that the order of 〈(as,at)〉 is alsopfor 1≤s,t

    Theorem8 Suppose thatG1=〈a〉 andG2=〈b〉 are finite cyclic groups with orderspandkp, respectively, wherep>1 is prime andkis a positive integer.ThenG1×G2/〈(as,at)〉 is cyclic for 1≤s≤pandt=kpif the order of 〈(as,at)〉 iskp.

    ProofSuppose the order of 〈(as,at)〉 iskp, from Theorem 1 and Theorem 2, we know that 1≤s≤pandt=kp.According to Lagrange Theorem, the order ofG1×G2/〈(as,at)〉 is a primep.Therefore,G1×G2/〈(as,at)〉 is a cyclic group by the Lemma 2.

    Theorem9 Suppose thatp>1 is prime.ThenZp×Zp/〈([a],[b])〉?Zpfor any[a],[b]∈Zpsatisfying([a],[b])≠([0],[0]).

    ProofSuppose thatpis prime, then each[a]∈Zpis a generator ofZpfor[a]≠[0].Thus, for any([a],[b])∈Zp×Zpwith([a],[b])≠([0],[0]), the order of 〈([a],[b])〉 ispand 〈([a],[b])〉 is a normal subgroup ofZp×ZpsinceZp×Zpis Abelian.However,Zp×Zpis not cyclic since the order ofZp×Zpisp2.

    Case1 If[a]=[0]and[b]≠[0](similar for the case[a]≠[0]and[b]=[0]), then

    〈([0],[b])〉=

    {([0],[k])|k=0,1,2,…,p-1}

    and the left cosets of 〈([0],[b])〉 are

    ([s],[0])+〈([0],[b])〉=

    ([s],[1])+〈([0],[b])〉=…=

    ([s],[p-1])+〈([0],[b])〉=

    {([s],[k])|k=0,1,2,…,p-1},

    wheres=0, 1, 2,…,p-1.It means that the number of the left cosets of 〈([0],[b])〉 isp.Further,Zp×Zp/〈([0],[b])〉 is generated by([1],[0])+〈([0],[b])〉 with orderp, which means thatZp×Zp/〈([0],[b])〉 is cyclic.Thus,Zp×Zp/〈([0],[b])〉?Zp.

    Case2 If[a]≠[0]and[b]≠[0], then

    〈([a],[b])〉={([0],[0]),([1],[t1]),

    ([p-1],[p-t1]),

    ([2],[t2]),([p-2],[p-t2]),…,

    ([k],[tk]),([p-k],[p-tk]),…,

    ([p-1],[tp-1]),([1],[p-tp-1])},

    wherek∈{1,2,…,p-1} andt1,t2,…,tp-1∈{1,2,…,p-1} andti≠tjfori≠j, and the left cosets of 〈([a],[b])〉 are

    ([0],[0])+〈([a],[b])〉=

    ([1],[t1])+〈([a],[b])〉=

    ([p-1],[p-t1])+〈([a],[b])〉=

    ([2],[t2])+〈([a],[b])〉=

    ([p-2],[p-t2])+〈([a],[b])〉=…=

    ([p-1],[tp-1])+〈([a],[b])〉=

    ([1],[p-tp-1])+〈([a],[b])〉,

    ([0],[1])+〈([a],[b])〉=

    ([1],[t1+1])+〈([a],[b])〉=

    ([p-1],[p-t1+1])+〈([a],[b])〉=

    ([2],[t2+1])+〈([a],[b])〉=

    ([p-2],[p-t2+1])+〈([a],[b])〉=…=

    ([p-1],[tp-1+1])+〈([a],[b])〉=

    ([1],[p-tp-1+1])+〈([a],[b])〉,

    ?

    ([0],[p-1])+〈([a],[b])〉=

    ([1],[t1+p-1])+〈([a],[b])〉=

    ([p-1],[p-t1+p-1])+〈([a],[b])〉=

    ([2],[t2+p-1])+〈([a],[b])〉=

    ([p-2],[p-t2+p-1])+〈([a],[b])〉=…=

    ([p-1],[tp-1+p-1])+〈([a],[b])〉=

    ([1],[p-tp-1+p-1])+〈([a],[b])〉,

    wheret1,t2,…,tp-1∈{1,2,…,p-1} andti≠tjfori≠j.It follows that the number of left cosets ofZp×Zpmodulo 〈([a],[b])〉 isp.From Theorem 7, we know thatZp×Zp/〈([a],[b])〉 is cyclic and finite.Therefore,Zp×Zp/〈([a],[b])〉?Zp.

    Example4Z5×Z5/〈([1],[1])〉?Z5.

    ProofLetN=〈([1],[1])〉.The left cosets ofZ5×Z5modulo〈([1],[1])〉 are

    ([0],[0])+N=([1],[1])+N=([2],[2])+N=([3],[3])+N=([4],[4])+N={([1],[1]),([2],[2]),([3],[3]),([4],[4]),([0],[0])},

    ([0],[1])+N=([1],[2])+N=([2],[3])+N=([3],[4])+N=([4],[0])+N={([1],[2]),([2],[3]),([3],[4]),([4],[0]),([0],[1])},

    ([0],[2])+N=([1],[3])+N=([2],[4])+N=([3],[0])+N=([4],[1])+N={([1],[3]),([2],[4]),([3],[0]),([4],[1]),([0],[2])},

    ([0],[3])+N=([1],[4])+N=([2],[0])+N=([3],[1])+N=([4],[2])+N={([1],[4]),([2],[0]),([3],[1]),([4],[2]),([0],[3])},

    ([0],[4])+N=([1],[0])+N=([2],[1])+N=([3],[2])+N=([4],[3])+N={([1],[0]),([2],[1]),([3],[2]),([4],[3]),([0],[4])}.

    It follows that the number of left cosets ofZ5×Z5modulo 〈([1],[1])〉 is 5.By Theorem 7, we obtain thatZ5×Z5/〈([1],[1])〉 is cyclic and finite.In fact,Z5×Z5/〈([1],[1])〉 is generated by([0],[1])+N.Therefore,Z5×Z5/〈([1],[1])〉?Z5.

    In Theorem 9, we consider the case whenm=n=pis prime and obtain an equivalent withZp×Zp/〈([a],[b])〉.In generalization, what is the case whenmis prime,m≠nand gcd(m,n)≠1? That is whenm=pis prime andn=kpfor some positive integerk≥2, whether we still have some similar result for the quotient group ofZp×Zkp? We know that the orderZp×Zkpiskp2, however, the order of 〈([a],[b])〉∈Zp×Zkpfor[a]∈Zp,[b]∈Zkpis less thankp2obviously.That means thatZp×Zkpis not cyclic.For this question, we obtain the following theorem.

    Theorem10 Suppose thatpis prime andk≥2 is a positive integer.For any[a]∈Zp,[b]∈Zkpwith([a],[b])≠([0],[0]), if the order of 〈([a],[b])〉 iskp, then

    Zp×Zkp/〈([a],[b])〉?Zp.

    ProofSuppose that the order of 〈([a],[b])〉 iskp, then the order of[b]inZkpiskpby Theorem 1.It means that[b]≠[0].

    Case3 If[a]=[0], then

    〈([0],[b])〉=

    {([0],[t])|t=0,1,2,…,kp-1}

    and the left cosets of 〈([0],[b])〉 are

    ([s],[0])+〈([0],[b])〉=([s],[1])+〈([0],[b])〉=…=([s],[kp-1])+〈([0],[b])〉={([s],[t])|t=0,1,2,…,kp-1},

    wheres= 0, 1, 2,…,p-1.It shows that the number of the left cosets of 〈([0],[b])〉 isp.Furthermore, we know thatZp×Zkp/〈([0],[b])〉 is generated by([1],[0])+〈([0],[b])〉 with orderp,which implies thatZp×Zkp/〈([0],[b])〉 is cyclic.Thus,Zp×Zkp/〈([0],[b])〉?Zp.

    Case4 If[a]≠[0], then

    〈([a],[b])〉={([0],[0]),([0],[p]),…,([0],[(k-1)p]),

    ([1],[t1]),([1],[t1+p]),…,([1],[t1+(k-1)p]),

    ([p-1],[tp-1]),([p-1],[tp-1+p]),…,([p-1],[tp-1+(k-1)p])},

    wheret1,t2,…,tp-1∈{1,2,…,kp-1}andti≠tjfori≠j, and the left cosets of 〈([a],[b])〉 are

    ([0],[0])+〈([a],[b])〉=

    ([0],[p])+〈([a],[b])〉=…=

    ([0],[(k-1)p])+〈([a],[b])〉=

    ([1],[t1])+〈([a],[b])〉=

    ([1],[t1+p])+〈([a],[b])〉=…=

    ([1],[t1+(k-1)p])+〈([a],[b])〉=…=

    ([p-1],[tp-1+p])+〈([a],[b])〉=…=

    ([p-1],[tp-1+(k-1)p])+〈([a],[b])〉;

    ([0],[1])+〈([a],[b])〉=

    ([0],[p+1])+〈([a],[b])〉=…=

    ([0],[(k-1)p+1])+〈([a],[b])〉=

    ([1],[t1+1])+〈([a],[b])〉=

    ([1],[t1+p+1])+〈([a],[b])〉=…=

    ([1],[t1+(k-1)p+1])+〈([a],[b])〉=…=

    ([p-1],[tp-1+p+1])+〈([a],[b])〉=…=

    ([p-1],[tp-1+(k-1)p+1])+〈([a],[b])〉;

    ?

    ([0],[p-1])+〈([a],[b])〉=

    ([0],[p+p-1])+〈([a],[b])〉=…=

    ([0],[(k-1)p+p-1])+〈([a],[b])〉=

    ([1],[t1+p-1])+〈([a],[b])〉=

    ([1],[t1+p+p-1])+〈([a],[b])〉=…=

    ([1],[t1+(k-1)p+p-1])+

    〈([a],[b])〉=…=

    ([p-1],[tp-1+p-1])+〈([a],[b])〉=

    ([p-1],[tp-1+p+p-1])+

    〈([a],[b])〉=…=

    ([p-1],[tp-1+(k-1)p+p-1])+

    〈([a],[b])〉,

    wheret1,t2,…,tp-1∈{1,2,…,kp-1} andti≠tjfori≠j.It follows that the left cosets ofZp×Zkpmodulo 〈([a],[b])〉 isp.From Theorem 8, we know thatZp×Zkp/〈([a],[b])〉 is cyclic and finite.Therefore,Zp×Zkp/〈([a],[b])〉?Zp.Thus, we obtain the assertion.

    Example5 Letm=p=3,n=3p=9, and([a],[b])=([1],[4]).Then

    Z3×Z9/〈([1],[4])〉?Z3.

    ProofIt is easy to obtain that

    〈([1],[4])〉= {([1],[4]),([2],[8]),([0],[3]),([1],[7]),

    ([2],[2]),([0],[6]),([1],[1]),([2],[5]),([0],[0])},

    and the order of 〈([1],[4])〉 is 9.LetN=〈([1],[4])〉.Then the left cosets ofZ3×Z9modulo 〈([1],[4])〉 are as follows.

    ([0],[0])+N=([1],[4])+N=([2],[8])+N=([0],[3])+N=([1],[7])+N=([2],[2])+N=([0],[6])+N=([1],[1])+N=([2],[5])+N={([1],[4]),([2],[8]),([0],[3]),([1],[7]),([2],[2]),([0],[6]),([1],[1]),([2],[5]),([0],[0])},

    ([0],[1])+N=([1],[5])+N=([2],[0])+N=([0],[4])+N=([1],[8])+N=([2],[3])+N=([0],[7])+N=([1],[2])+N=([2],[6])+N={([1],[5]),([2],[0]),([0],[4]),([1],[8]),([2],[3]),([0],[7]),([1],[2]),([2],[6]),([0],[1])},

    ([0],[2])+N=([1],[6])+N=([2],[1])+N=([0],[5])+N=([1],[0])+N=([2],[4])+N=([0],[8])+N=([1],[3])+N=([2],[7])+N={([1],[6]),([2],[1]),([0],[5]),([1],[0]),([2],[4]),([0],[8]),([1],[3]),([2],[7]),([0],[2])}.

    It follows that the number of the left cosets ofZ3×Z9modulo 〈([1],[4])〉 is 3.By Theorem 8, we obtain thatZ3×Z9/〈([1],[4])〉 is cyclic and finite.In fact,Z3×Z9/〈([1],[4])〉 is generated by([0],[1])+Nwith order 3.Therefore,

    Z3×Z9/〈([1],[4])〉?Z3.

    色老头精品视频在线观看| 十八禁网站免费在线| 一夜夜www| 免费在线观看黄色视频的| 久久ye,这里只有精品| 美国免费a级毛片| 美女视频免费永久观看网站| 男女床上黄色一级片免费看| 午夜精品在线福利| 国产高清国产精品国产三级| 777久久人妻少妇嫩草av网站| 亚洲国产精品sss在线观看 | 一夜夜www| 99热网站在线观看| 色播在线永久视频| 欧美日韩亚洲高清精品| 五月开心婷婷网| 成人手机av| 高清在线国产一区| 中文亚洲av片在线观看爽 | 一级毛片女人18水好多| 精品国产亚洲在线| 捣出白浆h1v1| 久久香蕉激情| 啦啦啦视频在线资源免费观看| 丰满饥渴人妻一区二区三| 丰满的人妻完整版| 男人的好看免费观看在线视频 | 女同久久另类99精品国产91| 国产91精品成人一区二区三区| 啪啪无遮挡十八禁网站| 欧美另类亚洲清纯唯美| 欧美日韩精品网址| 18禁国产床啪视频网站| 国产色视频综合| 国产高清videossex| 老熟妇乱子伦视频在线观看| av视频免费观看在线观看| 久久久久久久精品吃奶| 高清av免费在线| 色婷婷久久久亚洲欧美| 日韩欧美一区视频在线观看| 三级毛片av免费| 成熟少妇高潮喷水视频| 国产乱人伦免费视频| 精品一区二区三卡| 中文字幕人妻丝袜制服| 成人三级做爰电影| 久久精品亚洲熟妇少妇任你| 在线观看免费视频网站a站| 一夜夜www| 精品久久蜜臀av无| 水蜜桃什么品种好| 亚洲,欧美精品.| 丝袜人妻中文字幕| 一级毛片女人18水好多| 老熟女久久久| 国内毛片毛片毛片毛片毛片| 大片电影免费在线观看免费| 亚洲欧美日韩另类电影网站| 亚洲久久久国产精品| 大香蕉久久成人网| 国精品久久久久久国模美| 老司机靠b影院| 老汉色av国产亚洲站长工具| 精品久久久久久电影网| 超碰成人久久| 午夜福利乱码中文字幕| 国产精品偷伦视频观看了| 久久影院123| 国产亚洲精品久久久久久毛片 | 在线国产一区二区在线| tube8黄色片| 免费女性裸体啪啪无遮挡网站| 久久久国产成人精品二区 | 美女午夜性视频免费| 日本a在线网址| 国产成人欧美在线观看 | 青草久久国产| 在线观看免费高清a一片| 伊人久久大香线蕉亚洲五| 久久久国产精品麻豆| av福利片在线| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品国产区一区二| 欧美av亚洲av综合av国产av| 99国产综合亚洲精品| 一级,二级,三级黄色视频| 校园春色视频在线观看| 亚洲五月色婷婷综合| 久久天堂一区二区三区四区| 别揉我奶头~嗯~啊~动态视频| 亚洲精品av麻豆狂野| 精品电影一区二区在线| 久久中文字幕人妻熟女| 校园春色视频在线观看| 一级黄色大片毛片| 国产欧美日韩精品亚洲av| 69精品国产乱码久久久| 国产亚洲精品一区二区www | 啦啦啦视频在线资源免费观看| 欧美+亚洲+日韩+国产| 国产精品自产拍在线观看55亚洲 | 国产91精品成人一区二区三区| 亚洲五月婷婷丁香| 看黄色毛片网站| videos熟女内射| 黄频高清免费视频| 亚洲精品国产色婷婷电影| 中文亚洲av片在线观看爽 | 欧美性长视频在线观看| 1024香蕉在线观看| 一区在线观看完整版| av国产精品久久久久影院| 三上悠亚av全集在线观看| 国产一区二区三区在线臀色熟女 | 热99国产精品久久久久久7| 一a级毛片在线观看| 国产精品久久视频播放| 啦啦啦在线免费观看视频4| 成人国产一区最新在线观看| 日本a在线网址| 男女高潮啪啪啪动态图| 成人国产一区最新在线观看| 一级片免费观看大全| 最近最新中文字幕大全电影3 | 久久精品成人免费网站| 黄色a级毛片大全视频| 精品电影一区二区在线| 亚洲一码二码三码区别大吗| av国产精品久久久久影院| 午夜免费成人在线视频| 51午夜福利影视在线观看| 精品久久蜜臀av无| 国产成人欧美| 51午夜福利影视在线观看| av一本久久久久| 不卡一级毛片| 51午夜福利影视在线观看| 高清在线国产一区| 国产在线一区二区三区精| 久久人妻熟女aⅴ| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩黄片免| 日韩熟女老妇一区二区性免费视频| 热99re8久久精品国产| 美国免费a级毛片| 精品人妻在线不人妻| 国产精品成人在线| 国产亚洲精品一区二区www | 又黄又粗又硬又大视频| 欧美黄色片欧美黄色片| 亚洲第一欧美日韩一区二区三区| 丝袜在线中文字幕| 夜夜爽天天搞| 看黄色毛片网站| 午夜福利欧美成人| 99热国产这里只有精品6| 一本大道久久a久久精品| 亚洲精品久久成人aⅴ小说| 久久性视频一级片| 免费在线观看视频国产中文字幕亚洲| 捣出白浆h1v1| 夫妻午夜视频| 国产在线一区二区三区精| 免费人成视频x8x8入口观看| 久久 成人 亚洲| 国产日韩欧美亚洲二区| 一边摸一边抽搐一进一小说 | 久久人妻熟女aⅴ| 国产人伦9x9x在线观看| 涩涩av久久男人的天堂| 成人手机av| 天天躁日日躁夜夜躁夜夜| 日韩欧美一区视频在线观看| 亚洲成a人片在线一区二区| 午夜激情av网站| 夜夜夜夜夜久久久久| 色老头精品视频在线观看| 男女床上黄色一级片免费看| 免费久久久久久久精品成人欧美视频| 纯流量卡能插随身wifi吗| 亚洲国产精品一区二区三区在线| 日日夜夜操网爽| 国产在线观看jvid| 香蕉国产在线看| 一本大道久久a久久精品| 欧美老熟妇乱子伦牲交| 久久这里只有精品19| 国产精品一区二区精品视频观看| 国产一区二区三区在线臀色熟女 | 国产视频一区二区在线看| 国产亚洲欧美在线一区二区| 伦理电影免费视频| 91成人精品电影| a在线观看视频网站| 精品卡一卡二卡四卡免费| 丰满的人妻完整版| 91麻豆av在线| www.自偷自拍.com| 夜夜爽天天搞| 热re99久久国产66热| 一区二区日韩欧美中文字幕| 操美女的视频在线观看| 999精品在线视频| 91av网站免费观看| 丁香六月欧美| 美女午夜性视频免费| 免费观看a级毛片全部| 欧美 亚洲 国产 日韩一| 欧美老熟妇乱子伦牲交| av片东京热男人的天堂| 一区二区三区激情视频| 交换朋友夫妻互换小说| 王馨瑶露胸无遮挡在线观看| 国产精品免费一区二区三区在线 | 一进一出抽搐gif免费好疼 | 色尼玛亚洲综合影院| 成人国产一区最新在线观看| 亚洲精品自拍成人| 两性午夜刺激爽爽歪歪视频在线观看 | 男女午夜视频在线观看| 在线观看日韩欧美| 国产精品亚洲一级av第二区| 久久久久久久精品吃奶| 一本综合久久免费| 国产三级黄色录像| 久久人妻av系列| av中文乱码字幕在线| 一区二区三区精品91| 天天躁日日躁夜夜躁夜夜| 高清视频免费观看一区二区| 国产激情久久老熟女| 日韩免费av在线播放| 国产精品 国内视频| 丝袜美足系列| 亚洲精品美女久久久久99蜜臀| 久久草成人影院| 老熟妇仑乱视频hdxx| 中亚洲国语对白在线视频| 男男h啪啪无遮挡| 少妇被粗大的猛进出69影院| e午夜精品久久久久久久| 久久久久久免费高清国产稀缺| 91av网站免费观看| 看黄色毛片网站| 国产精品免费一区二区三区在线 | 老熟女久久久| 欧美日韩一级在线毛片| 亚洲熟女毛片儿| 欧美激情高清一区二区三区| 亚洲色图综合在线观看| 久久精品aⅴ一区二区三区四区| 视频区图区小说| 亚洲中文字幕日韩| 麻豆av在线久日| 美国免费a级毛片| 亚洲精品美女久久av网站| 少妇的丰满在线观看| 丝袜在线中文字幕| 国产精华一区二区三区| 色婷婷久久久亚洲欧美| 免费女性裸体啪啪无遮挡网站| 国产激情欧美一区二区| 欧美黄色片欧美黄色片| 国产男女内射视频| 国产成人系列免费观看| 99热国产这里只有精品6| 麻豆乱淫一区二区| 亚洲五月天丁香| 9191精品国产免费久久| 国产亚洲欧美在线一区二区| 国产精品电影一区二区三区 | 久久国产亚洲av麻豆专区| 久久精品国产清高在天天线| 国产精品 欧美亚洲| tube8黄色片| 人人妻人人澡人人看| 亚洲欧美激情在线| 午夜福利在线观看吧| 免费在线观看视频国产中文字幕亚洲| 久久中文字幕人妻熟女| 丝袜美足系列| 国产免费现黄频在线看| 日日爽夜夜爽网站| 黄色视频不卡| 精品国产乱子伦一区二区三区| 午夜福利乱码中文字幕| 熟女少妇亚洲综合色aaa.| av中文乱码字幕在线| 别揉我奶头~嗯~啊~动态视频| 国产精品亚洲一级av第二区| 国产黄色免费在线视频| 成年版毛片免费区| 最近最新中文字幕大全免费视频| 高清欧美精品videossex| 国产一区二区三区综合在线观看| 久久久久久久久免费视频了| 人妻一区二区av| 国产成人啪精品午夜网站| 日韩成人在线观看一区二区三区| 日本wwww免费看| 999久久久精品免费观看国产| av超薄肉色丝袜交足视频| 不卡av一区二区三区| 日韩视频一区二区在线观看| 美女福利国产在线| 90打野战视频偷拍视频| 在线国产一区二区在线| 精品久久久久久久毛片微露脸| 午夜免费鲁丝| 国产欧美日韩精品亚洲av| 久久午夜综合久久蜜桃| 亚洲第一青青草原| 久久午夜综合久久蜜桃| 黄片小视频在线播放| 欧美国产精品一级二级三级| 国产蜜桃级精品一区二区三区 | 国产一区二区三区综合在线观看| 精品少妇久久久久久888优播| 1024香蕉在线观看| 久久国产精品人妻蜜桃| 一本一本久久a久久精品综合妖精| 国产精品欧美亚洲77777| 亚洲国产精品sss在线观看 | 人人妻人人添人人爽欧美一区卜| 亚洲av美国av| 久久人人爽av亚洲精品天堂| 天堂动漫精品| 日日夜夜操网爽| 一二三四社区在线视频社区8| 国产片内射在线| 一级a爱片免费观看的视频| 最新在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 中文字幕色久视频| 日韩 欧美 亚洲 中文字幕| 狂野欧美激情性xxxx| 91成人精品电影| 日本撒尿小便嘘嘘汇集6| 韩国精品一区二区三区| 日本wwww免费看| 自线自在国产av| 一进一出抽搐动态| 亚洲伊人色综图| 午夜福利,免费看| 久久久久精品国产欧美久久久| 一a级毛片在线观看| 欧美一级毛片孕妇| 午夜福利乱码中文字幕| 伦理电影免费视频| 人妻一区二区av| 欧美久久黑人一区二区| 亚洲久久久国产精品| 黄片播放在线免费| 91精品三级在线观看| www.熟女人妻精品国产| 久久亚洲精品不卡| 国产精品欧美亚洲77777| 欧美黑人精品巨大| av天堂久久9| 亚洲成人国产一区在线观看| 夜夜躁狠狠躁天天躁| 欧美老熟妇乱子伦牲交| 精品国产乱子伦一区二区三区| 亚洲久久久国产精品| 人人妻人人添人人爽欧美一区卜| 啦啦啦 在线观看视频| av国产精品久久久久影院| 欧美日本中文国产一区发布| 看片在线看免费视频| 女人久久www免费人成看片| 久久 成人 亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品一区二区在线观看99| 一级毛片精品| 大陆偷拍与自拍| 在线国产一区二区在线| 欧美日韩乱码在线| 美女国产高潮福利片在线看| 1024视频免费在线观看| 黄网站色视频无遮挡免费观看| 亚洲五月婷婷丁香| 女人被躁到高潮嗷嗷叫费观| 人人妻人人澡人人看| 国产精品影院久久| 成年女人毛片免费观看观看9 | 热99re8久久精品国产| 国产深夜福利视频在线观看| 首页视频小说图片口味搜索| 日韩精品免费视频一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 国产不卡av网站在线观看| 制服人妻中文乱码| 日韩三级视频一区二区三区| 黑人操中国人逼视频| 久久人妻福利社区极品人妻图片| 亚洲午夜精品一区,二区,三区| 免费人成视频x8x8入口观看| 亚洲三区欧美一区| 麻豆国产av国片精品| 一进一出抽搐gif免费好疼 | 老司机深夜福利视频在线观看| 亚洲精品中文字幕一二三四区| a级毛片黄视频| 电影成人av| 又紧又爽又黄一区二区| 黄片大片在线免费观看| 日韩免费av在线播放| 欧美日韩成人在线一区二区| av不卡在线播放| 日韩视频一区二区在线观看| 亚洲一区二区三区不卡视频| 黄色视频不卡| 夜夜躁狠狠躁天天躁| 亚洲精品美女久久av网站| 啦啦啦在线免费观看视频4| 人人妻人人澡人人爽人人夜夜| 一级毛片高清免费大全| 国产有黄有色有爽视频| 一边摸一边抽搐一进一出视频| 最近最新免费中文字幕在线| 一边摸一边做爽爽视频免费| 如日韩欧美国产精品一区二区三区| 超碰97精品在线观看| 在线观看日韩欧美| 人人妻,人人澡人人爽秒播| 免费不卡黄色视频| 亚洲精品久久成人aⅴ小说| 久久精品国产99精品国产亚洲性色 | 成人18禁在线播放| 亚洲av成人av| 好看av亚洲va欧美ⅴa在| 亚洲欧美一区二区三区黑人| 侵犯人妻中文字幕一二三四区| 十八禁人妻一区二区| 每晚都被弄得嗷嗷叫到高潮| x7x7x7水蜜桃| avwww免费| 伦理电影免费视频| 岛国毛片在线播放| 国产精品久久久久成人av| 国产成人精品无人区| 国产亚洲av高清不卡| 一区二区三区激情视频| 日韩有码中文字幕| 欧美精品高潮呻吟av久久| 午夜成年电影在线免费观看| 天堂动漫精品| 在线观看舔阴道视频| 男女下面插进去视频免费观看| 国产精品亚洲一级av第二区| bbb黄色大片| 亚洲成人免费av在线播放| 老司机福利观看| 91麻豆精品激情在线观看国产 | 欧美+亚洲+日韩+国产| 国产成人欧美在线观看 | 99国产精品99久久久久| 亚洲国产精品一区二区三区在线| 天堂俺去俺来也www色官网| 女警被强在线播放| 午夜福利欧美成人| 50天的宝宝边吃奶边哭怎么回事| 国产精品自产拍在线观看55亚洲 | 久久久国产成人免费| 国产精品影院久久| 欧洲精品卡2卡3卡4卡5卡区| 成年人免费黄色播放视频| 国产在视频线精品| 久久天躁狠狠躁夜夜2o2o| 婷婷成人精品国产| 操美女的视频在线观看| 国产免费av片在线观看野外av| 精品国内亚洲2022精品成人 | 少妇猛男粗大的猛烈进出视频| 99国产综合亚洲精品| 国产精品一区二区精品视频观看| 99精品久久久久人妻精品| 色在线成人网| 最新美女视频免费是黄的| 久久久国产精品麻豆| 欧美激情久久久久久爽电影 | 最近最新免费中文字幕在线| ponron亚洲| 中出人妻视频一区二区| 高清视频免费观看一区二区| 好看av亚洲va欧美ⅴa在| 国产精品久久视频播放| 亚洲中文字幕日韩| 99热网站在线观看| 国产91精品成人一区二区三区| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品一区二区三区在线| 不卡一级毛片| 国产成人欧美在线观看 | 91在线观看av| av超薄肉色丝袜交足视频| 一进一出抽搐gif免费好疼 | 一级a爱视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 久久国产乱子伦精品免费另类| 国内久久婷婷六月综合欲色啪| 国产一区二区激情短视频| 又黄又爽又免费观看的视频| 成人黄色视频免费在线看| 国产亚洲精品第一综合不卡| 久久久久精品国产欧美久久久| 日韩熟女老妇一区二区性免费视频| 色老头精品视频在线观看| 国产欧美日韩一区二区精品| 国产又爽黄色视频| 脱女人内裤的视频| 久久久久久久精品吃奶| 午夜视频精品福利| 自拍欧美九色日韩亚洲蝌蚪91| 黄片小视频在线播放| 天天躁日日躁夜夜躁夜夜| 18在线观看网站| 99国产极品粉嫩在线观看| 国内久久婷婷六月综合欲色啪| 女人久久www免费人成看片| 成年版毛片免费区| 女警被强在线播放| 黄色女人牲交| 亚洲欧美一区二区三区久久| 高清毛片免费观看视频网站 | 国产91精品成人一区二区三区| 精品卡一卡二卡四卡免费| 亚洲精品自拍成人| 日本五十路高清| 搡老乐熟女国产| 午夜福利免费观看在线| 侵犯人妻中文字幕一二三四区| 日本wwww免费看| av视频免费观看在线观看| 精品久久久久久久久久免费视频 | 成人手机av| 欧美av亚洲av综合av国产av| 精品国产乱子伦一区二区三区| а√天堂www在线а√下载 | 欧美在线一区亚洲| 国产欧美日韩一区二区三区在线| 国产亚洲欧美精品永久| 国产一区二区激情短视频| 精品福利观看| 午夜老司机福利片| 国产蜜桃级精品一区二区三区 | 国产精品 国内视频| 欧美+亚洲+日韩+国产| 国产片内射在线| 极品教师在线免费播放| 精品一区二区三区视频在线观看免费 | 制服诱惑二区| 午夜福利欧美成人| 人人妻人人添人人爽欧美一区卜| 久久99一区二区三区| 久久久久久久国产电影| av一本久久久久| 99国产综合亚洲精品| 妹子高潮喷水视频| 亚洲第一欧美日韩一区二区三区| 日本黄色日本黄色录像| 欧美日韩精品网址| 老司机午夜十八禁免费视频| 久久中文看片网| 成人永久免费在线观看视频| 国产色视频综合| 99re在线观看精品视频| 精品少妇久久久久久888优播| 69av精品久久久久久| 日韩制服丝袜自拍偷拍| 久久人妻av系列| 亚洲七黄色美女视频| 精品电影一区二区在线| 欧美精品av麻豆av| 欧美日韩亚洲综合一区二区三区_| 国产无遮挡羞羞视频在线观看| 人妻久久中文字幕网| 亚洲av日韩精品久久久久久密| 亚洲欧美日韩另类电影网站| 久久久国产成人精品二区 | 后天国语完整版免费观看| 99re在线观看精品视频| 亚洲中文日韩欧美视频| 欧美亚洲 丝袜 人妻 在线| 免费少妇av软件| 99国产精品99久久久久| 男人的好看免费观看在线视频 | 最近最新免费中文字幕在线| 极品少妇高潮喷水抽搐| 怎么达到女性高潮| 亚洲精华国产精华精| 精品人妻1区二区| 久久久久久久久免费视频了| 男女免费视频国产| 男人舔女人的私密视频| 久久ye,这里只有精品| 欧美激情高清一区二区三区| 久久婷婷成人综合色麻豆| 黑人猛操日本美女一级片| 色94色欧美一区二区| 亚洲三区欧美一区| 久久久久国产一级毛片高清牌| 19禁男女啪啪无遮挡网站| 欧美不卡视频在线免费观看 | 韩国av一区二区三区四区| 成人手机av| 日韩 欧美 亚洲 中文字幕| 成人精品一区二区免费| a在线观看视频网站| 国产精品久久久av美女十八| 啦啦啦在线免费观看视频4| 亚洲一区二区三区欧美精品| 免费黄频网站在线观看国产|