朱輝翔,張樹(shù)楠,彭英湘,劉 鋒,肖潤(rùn)林
綠狐尾藻濕地對(duì)養(yǎng)殖廢水中不同污染負(fù)荷氮去除效應(yīng)
朱輝翔1,2,張樹(shù)楠1※,彭英湘3,劉 鋒1,肖潤(rùn)林1
(1. 中國(guó)科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)研究所,亞熱帶農(nóng)業(yè)生態(tài)過(guò)程重點(diǎn)實(shí)驗(yàn),長(zhǎng)沙農(nóng)業(yè)環(huán)境觀測(cè)研究站,長(zhǎng)沙 410125;2. 中國(guó)科學(xué)院大學(xué),北京 100049;3. 湖南省生態(tài)環(huán)境監(jiān)測(cè)中心,國(guó)家環(huán)境保護(hù)重金屬污染監(jiān)測(cè)重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410014)
為研究綠狐尾藻濕地對(duì)不同污染負(fù)荷養(yǎng)殖廢水氮去除效應(yīng)和影響因素,該研究在野外建立了9條表面流綠狐尾藻濕地,以低負(fù)荷(60 L/d廢水+120 L/d清水)、中負(fù)荷(120 L/d廢水+60 L/d清水/d)和高負(fù)荷(180 L/d廢水)養(yǎng)殖廢水為處理對(duì)象,研究了不同污染負(fù)荷下綠狐尾藻濕地水體氮素時(shí)間變化規(guī)律;結(jié)合線性混合模型,進(jìn)一步探究了影響綠狐尾藻濕地氮去除的關(guān)鍵環(huán)境因子。結(jié)果表明,整個(gè)試驗(yàn)期間(2014-07-2015-05),綠狐尾藻濕地對(duì)低、中、高負(fù)荷廢水銨氮(NH4+-N)和總氮(Total Nitrogen,TN)去除率均較高,其中NH4+-N平均去除率為85.0%~98.7%,TN平均去除率為83.6%~97.1%。線性混合模型分析結(jié)果表明,影響綠狐尾藻濕地NH4+-N去除的關(guān)鍵環(huán)境因子是水體溶解氧和硝態(tài)氮以及底泥NH4+-N含量,其中水體溶解氧對(duì)綠狐尾藻濕地NH4+-N去除影響最大。由于綠狐尾藻濕地對(duì)不同污染負(fù)荷廢水NH4+-N和TN去除率均達(dá)到80.0%以上,因此綠狐尾藻可作為耐銨植物處理高負(fù)荷養(yǎng)殖廢水。該研究結(jié)果可為綠狐尾藻濕地在規(guī)模養(yǎng)殖場(chǎng)的實(shí)際應(yīng)用提供參考。
廢水;氮;養(yǎng)殖;綠狐尾藻;人工濕地;污染負(fù)荷;去除效應(yīng)
中國(guó)是世界上生豬主要生產(chǎn)國(guó)之一,隨之而來(lái)的是養(yǎng)殖廢棄物環(huán)境污染問(wèn)題。2020年生態(tài)環(huán)境部發(fā)布的《第二次全國(guó)污染源普查公報(bào)》表明,每年排放的養(yǎng)殖廢水中含總氮(Total Nitrogen,TN)37.00萬(wàn)t,總磷(Total Phosphorus,TP)8.04萬(wàn)t,化學(xué)需氧量(Chemical Oxygen Demand,COD)604.83萬(wàn)t。中國(guó)養(yǎng)殖業(yè)主要分布在廣大農(nóng)村地區(qū),由于成本和技術(shù)問(wèn)題,大多養(yǎng)殖戶選擇將養(yǎng)殖廢水直接排放到自然水體中,導(dǎo)致農(nóng)村污水污染面積大、污染來(lái)源廣、結(jié)構(gòu)成分復(fù)雜,進(jìn)而導(dǎo)致農(nóng)村環(huán)境嚴(yán)重惡化。因此在農(nóng)村地區(qū),亟需發(fā)展一種成本低廉和操作簡(jiǎn)便的養(yǎng)殖廢水處理技術(shù)。人工濕地是一種成本低、易操作、處理效果良好的生物處理技術(shù),它不僅可以促進(jìn)污水中的污染物質(zhì)良性循環(huán)來(lái)改善水質(zhì),同時(shí)還具有良好的生態(tài)環(huán)境效益[1-3]。研究表明,影響人工濕地對(duì)氮、磷等污染物去除效果的因素很多,包括植物種類、種類配置模式、濕地基質(zhì)、污染負(fù)荷、水力停留時(shí)間等[4-7]。其中污染負(fù)荷對(duì)人工濕地處理效果有重大的影響,它會(huì)影響濕地溶解氧(Dissolved Oxygen,DO)水平以及硝化-反硝化微生物種群數(shù)量[8],進(jìn)而影響人工濕地氮去除。
過(guò)去研究中,人工濕地通常被用于處理低氮負(fù)荷(NH4+-N:14.32~26.84 mg/L,TN:28.42~55.14 mg/L)生活污水[9-10]。即使處理養(yǎng)殖廢水,人們僅將稀釋后或經(jīng)前期處理的低負(fù)荷養(yǎng)殖廢水用于人工濕地研究[11-12]。然而養(yǎng)殖場(chǎng)排放的原養(yǎng)殖廢水通常以高銨態(tài)氮(NH4+-N)、高COD和高顆粒懸浮物(Suspended Solids,SS)為特征。高NH4+-N會(huì)抑制植物生長(zhǎng)并導(dǎo)致植物產(chǎn)生中毒癥狀[13]。然而,有關(guān)人工濕地處理高污染負(fù)荷養(yǎng)殖廢水的研究較少。
綠狐尾藻()是一種多年生沉水或浮水草本植物,它的去氮能力受到污水氮濃度的顯著影響,但對(duì)高銨氮具有較強(qiáng)的耐受性,可被用于高氮濃度污水的修復(fù)[14-16]。野外示范工程也表明綠狐尾藻能夠生長(zhǎng)在高NH4+-N的養(yǎng)殖廢水中[8]。然而,關(guān)于綠狐尾藻濕地氮去除的報(bào)道大多屬于短期室內(nèi)模擬試驗(yàn)[17-18],有關(guān)野外綠狐尾藻濕地對(duì)高負(fù)荷養(yǎng)殖廢水原位氮去除的報(bào)道不多。
本研究開(kāi)展野外定位試驗(yàn),以養(yǎng)殖廢水為處理對(duì)象,通過(guò)測(cè)定不同氮負(fù)荷下綠狐尾藻濕地水體NH4+-N、硝態(tài)氮(NO3--N)和TN隨時(shí)間變化規(guī)律,研究綠狐尾藻濕地對(duì)養(yǎng)殖廢水不同氮負(fù)荷的去除效應(yīng);通過(guò)測(cè)定不同氮負(fù)荷下綠狐尾藻濕地環(huán)境因子、底泥碳氮含量等指標(biāo),結(jié)合多元混合模型,探明影響綠狐尾藻濕地氮去除的關(guān)鍵環(huán)境因子。本研究有助于深入認(rèn)識(shí)綠狐尾藻對(duì)養(yǎng)殖廢水的耐銨范圍及綠狐尾藻濕地氮去除規(guī)律,為后續(xù)機(jī)理研究提供科學(xué)依據(jù)。
試驗(yàn)區(qū)位于湖南省長(zhǎng)沙縣金井河流域。當(dāng)?shù)貙儆趤啛釒駶?rùn)季風(fēng)氣候,年平均氣溫16.6~20.5 ℃,極端最低氣溫?5.2 ℃,極端最高氣溫39.1 ℃。年平均降雨量1 389 mm,降雨多集中在4-6月,占全年降雨的76%。經(jīng)前期調(diào)查,該流域零散分布著大量養(yǎng)殖戶或小型養(yǎng)殖場(chǎng),一般情況下養(yǎng)殖廢水未經(jīng)處理直接排放到自然水體中。為了使當(dāng)?shù)仞B(yǎng)殖廢水得到適宜的處理,本研究通過(guò)構(gòu)建表面流人工濕地,以研究人工濕地對(duì)養(yǎng)殖廢水氮的去除效應(yīng)。
本研究的表面流人工濕地構(gòu)建于中國(guó)科學(xué)院長(zhǎng)沙農(nóng)業(yè)環(huán)境觀測(cè)站內(nèi)。根據(jù)試驗(yàn)需要,養(yǎng)殖廢水人工濕地處理系統(tǒng)由廢水池(100 m3)、清水池(400 m3)、布水池(長(zhǎng)×寬×深:0.5 m×2 m×1 m)和表面流人工濕地(長(zhǎng)×寬×深:15 m×2 m×0.5 m)組成(圖1)。廢水池為人工濕地提供養(yǎng)殖廢水,其中的廢水由長(zhǎng)沙縣白沙鎮(zhèn)大花養(yǎng)殖場(chǎng)提供,廢水理化特征為:NH4+-N 249.3~512.7 mg/L,NO3--N 0.24~1.27 mg/L,TN 315.6~702.1 mg/L,TP 42.6~115.3 mg/L。清水池為低負(fù)荷和中負(fù)荷廢水配置提供水源,其清水由附近水庫(kù)提供,水質(zhì)比較穩(wěn)定,理化特征為:NH4+-N 0.2 mg/L,NO3--N 0.4 mg/L,TN 0.8 mg/L,TP 0.03 mg/L。表面流人工濕地構(gòu)建于水稻田,南北方向平行排列,由不銹鋼板將不同小區(qū)間隔開(kāi)。為了防止?jié)竦亻g相互滲水,不銹鋼板被鑲插到土壤的犁底層。由于表面流人工濕地不存在堵塞問(wèn)題,其填料為微生物豐富的水稻土。人工濕地前端設(shè)置1個(gè)布水池,布水池靠近濕地一側(cè)裝有布水凹槽。人工濕地的出水口處安裝2根L型排水管以控制水位。
注:n代表各處理重復(fù)數(shù)。
2014年5月,在野外溝渠采集綠狐尾藻,選取生長(zhǎng)健壯、大小相當(dāng)?shù)闹仓?,截取前?0 cm,種植在人工濕地小區(qū)中。試驗(yàn)開(kāi)始前,將清水放入人工濕地小區(qū)中,使植物在清水中預(yù)培養(yǎng)7~8周。待植物長(zhǎng)好后,往各小區(qū)中加入不同污染負(fù)荷的養(yǎng)殖廢水,正式開(kāi)始試驗(yàn)。試驗(yàn)共設(shè)3個(gè)處理:低負(fù)荷(60 L廢水+120 L清水)、中負(fù)荷(120 L廢水+60 L清水)和高負(fù)荷(180 L廢水),每個(gè)處理3次重復(fù)。試驗(yàn)期間,低、中、高負(fù)荷進(jìn)水TN容積負(fù)荷范圍分別為2.67~5.46、5.09~12.14和9.45~20.74 mg/(m3·d)。各處理選擇間歇式進(jìn)水,即各處理按上述低、中、高負(fù)荷每天進(jìn)水180 L,其水力停留時(shí)間為33 d,該數(shù)值與Ibekwe等[19]已報(bào)道的處理養(yǎng)殖廢水人工濕地相近。當(dāng)水位低于10 cm時(shí),綠狐尾藻濕地氮去除過(guò)程中溫室氣體排放較高;高于25 cm時(shí),不利于微生物氮去除[20],因此試驗(yàn)水位設(shè)置在20 cm。
1.3.1 濕地水樣
從2014年7月到2015年5月,每月中旬采集一次人工濕地不同處理進(jìn)水口和出水口水樣。由于表層水樣污染物濃度最接近濕地出水,而樣品采集時(shí),并不是所有時(shí)間均能收集到出水口水樣,因此本試驗(yàn)統(tǒng)一采集了濕地出水口0~5 cm表層水樣代表濕地出水。水樣采集時(shí),每個(gè)濕地隨機(jī)選取多個(gè)采集點(diǎn),每個(gè)點(diǎn)位用注射器吸取0~5 cm表層水樣50 mL,然后將多個(gè)點(diǎn)位的水樣混合均勻帶回實(shí)驗(yàn)室,放置于?20℃冰箱保存待測(cè)。水樣NH4+-N和NO3--N測(cè)定前先過(guò)0.45m的濾膜,然后在流動(dòng)注射分析儀上(Fir-star 5000,瑞士)分析其濃度。水樣TN先用堿性過(guò)硫酸鉀在高壓滅菌鍋中消化,然后在流動(dòng)注射分析儀上測(cè)定。水樣COD通過(guò)重鉻酸鹽法(GB11914-89)測(cè)定。另外,用便攜式多參數(shù)測(cè)量?jī)x(Mettler Toledo SG68,瑞士)原位測(cè)定濕地的pH值、DO和氧化還原電位(Eh)。
1.3.2 濕地底泥
從2014年7月到2015年5月,每月中旬采集一次人工濕地不同處理的底泥樣品。底泥樣品采集時(shí),每個(gè)取樣點(diǎn)附近隨機(jī)選擇多個(gè)點(diǎn)位,每個(gè)點(diǎn)位用圓柱形采樣器采集0~10 cm底泥樣,自封袋封裝后放入4 ℃冰箱保存待測(cè)。樣品測(cè)定前先將根系、石子等雜質(zhì)去除,然后混勻。其中一部分用于測(cè)定底泥NH4+-N、NO3—N和可溶性有機(jī)碳(Dissolved Organic Carbon,DOC);另一部分底泥經(jīng)風(fēng)干、磨碎、過(guò)篩(0.25 mm),用于測(cè)定TN含量。底泥NH4+-N、NO3--N和DOC用0.5 mol/LK2SO4提取法:取80 mL 0.5 mol/L K2SO4溶液加到30 g底泥中,振蕩1 h,通過(guò)定性濾紙過(guò)濾懸濁液,濾液通過(guò)流動(dòng)注射分析儀測(cè)定NH4+-N和NO3--N含量,通過(guò)有機(jī)碳分析儀(TOC-VWP,日本)測(cè)定DOC含量;TN測(cè)定方法是半微量凱式定氮法。
由于本研究考慮了污染負(fù)荷和采樣時(shí)間等影響因子,另外綠狐尾藻濕地水體溶解氧和硝態(tài)氮存在顯著相關(guān)性,因此線性混合模型更適合用于探明綠狐尾藻濕地NH4+-N去除的關(guān)鍵影響因子。線性混合效應(yīng)模型具體如下:
式中為污染負(fù)荷水平(=3);為采樣次數(shù)(=11);
Y為綠狐尾藻濕地第個(gè)污染負(fù)荷在第次采樣時(shí)出水NH4+-N濃度;為回歸模型的截距,即回歸直線與軸的交叉點(diǎn);1~8為回歸系數(shù);ε為隨機(jī)誤差;1i代表第個(gè)污染負(fù)荷具體數(shù)值;2j代表第次采樣具體天數(shù);3ij代表第個(gè)污染負(fù)荷在第次采樣時(shí)水體pH值;4ij代表第個(gè)污染負(fù)荷在第次采樣時(shí)水體DO濃度,mg/L;5ij代表第個(gè)污染負(fù)荷在第次采樣時(shí)水體Eh值(氧化還原電位),mV;6ij代表第個(gè)污染負(fù)荷在第次采樣時(shí)水體COD濃度,mg/L;7ij代表第個(gè)污染負(fù)荷在第次采樣時(shí)水體NO3--N濃度,mg/L;8ij代表第個(gè)污染負(fù)荷在第次采樣時(shí)底泥NH4+-N含量,mg/L。
為了避免潛在過(guò)度擬合現(xiàn)象,采用十折交叉驗(yàn)證方法對(duì)模型進(jìn)行驗(yàn)證,具體步驟參考孫成等[21]文章。本研究變量的正態(tài)分布檢驗(yàn)和方差分析采用SPSS 11.5軟件(SPSS Inc.,芝加哥,美國(guó))。所有變量的正態(tài)分布檢驗(yàn)采用One-way Kolmogorov-Smirnov法。所有變量的差異顯著性檢驗(yàn)采用One-way ANOVA法,統(tǒng)計(jì)檢驗(yàn)的顯著性水平為0.05(<0.05)。
水體中pH值、DO、Eh和COD的時(shí)間變化特征見(jiàn)圖2。整個(gè)試驗(yàn)期間,綠狐尾藻濕地低、中、高氮污染負(fù)荷水體pH值變化范圍為5.95~7.87,隨時(shí)間變化不大。不同氮污染負(fù)荷的平均pH值大小依次為:高負(fù)荷(7.45)、中負(fù)荷(7.14)、低負(fù)荷(6.77)。各污染負(fù)荷的DO濃度隨時(shí)間呈峰型變化,高峰值分別出現(xiàn)在2014年12月和2015年2月。整個(gè)試驗(yàn)期間,低、中、高負(fù)荷DO濃度范圍為0.81~5.33 mg/L,這一范圍能夠?yàn)镹H4+-N氧化提供足夠的氧,因?yàn)閰⑴c硝化過(guò)程的氨氧化菌和亞硝酸鹽氧化菌的氧飽和常數(shù)分別為0.2~0.4和1.5 mg/L[22]。該現(xiàn)象說(shuō)明綠狐尾藻濕地NH4+-N氧化不受污染負(fù)荷影響,這可能和綠狐尾藻根系強(qiáng)泌氧有關(guān)[23]。各污染負(fù)荷Eh值的變化范圍為?200.40~144.90 mV。在試驗(yàn)初始階段,各濕地Eh值逐漸降低;在2014年9月份后,Eh值呈峰型變化,顯著的低峰值和高峰值分別出現(xiàn)在2015年1月份和3月份。各污染負(fù)荷平均Eh值大小為:低負(fù)荷(18.51 mV)、中負(fù)荷(?41.49 mV)、高負(fù)荷(?114.34 mV)。一般情況下,水體氧化還原電位與DO濃度有一定關(guān)系[24],低負(fù)荷高Eh值與其高DO濃度有關(guān)。整個(gè)試驗(yàn)期間低負(fù)荷COD濃度變化范圍為56.01~279.01 mg/L,各污染負(fù)荷平均COD濃度大小為:高負(fù)荷(410.10 mg/L)、中負(fù)荷(239.83 mg/L)、低負(fù)荷(125.96 mg/L)。
注:圖中數(shù)據(jù)代表平均值±標(biāo)準(zhǔn)差,下同。
由圖3a可知,綠狐尾藻濕地低負(fù)荷進(jìn)水NH4+-N濃度為67.15~173.65 mg/L,出水濃度為0.04~16.01 mg/L,整個(gè)試驗(yàn)期間NH4+-N去除率變化不大,均在90%以上。2014年7-12月,濕地中負(fù)荷NH4+-N進(jìn)水濃度大約為200 mg/L,2015年1月份以后,NH4+-N進(jìn)水濃度上升到250 mg/L左右(圖3a)。隨進(jìn)水濃度增加,NH4+-N去除率隨時(shí)間呈小幅度下降趨勢(shì),變化范圍為82.4%~99.9%。與低、中負(fù)荷相比,綠狐尾藻濕地對(duì)高負(fù)荷處理的NH4+-N去除率略有降低,這可能和高負(fù)荷DO和Eh值更低有關(guān)[25]。綠狐尾藻濕地對(duì)TN的去除率和NH4+-N有相似趨勢(shì)(圖3b),即低負(fù)荷的TN去除率在整個(gè)試驗(yàn)期間變化不大,中、高負(fù)荷TN去除率隨時(shí)間呈小幅度下降趨勢(shì)。不同污染負(fù)荷的TN平均去除率大小依次為:低負(fù)荷(97.1%)、中負(fù)荷(88.8%)、高負(fù)荷(83.6%)。整個(gè)試驗(yàn)期間,低、中、高污染負(fù)荷的NO3--N進(jìn)水濃度均較低,變化范圍為0.05~1.33 mg/L(圖3c)。與低負(fù)荷相比,綠狐尾藻濕地中、高負(fù)荷出水中有更高的NO3--N濃度,這可能和中、高負(fù)荷為硝化反應(yīng)提供更多NH4+-N底物有關(guān);另外,在濕地系統(tǒng)中,微生物去除NH4+-N優(yōu)先于NO3--N,NH4+-N的存在可抑制微生物去除NO3--N[26]。綠狐尾藻濕地中、高負(fù)荷有更高濃度的NH4+-N,對(duì)微生物去除NO3--N不利,因此中、高負(fù)荷出水出現(xiàn)了更高NO3--N濃度。
圖3 綠狐尾藻濕地對(duì)不同污染負(fù)荷養(yǎng)殖廢水氮去除效應(yīng)
不同污染負(fù)荷處理的底泥碳、氮含量見(jiàn)圖4。低、中、高負(fù)荷底泥NH4+-N含量均隨時(shí)間逐漸上升,變化范圍為14.52~316.75 mg/kg。各污染負(fù)荷底泥NH4+-N含量在最初6個(gè)月(2015年7-12月)上升幅度較小,在2016年1月后上升幅度較大,這是因?yàn)?016年1月以后,廢水NH4+-N濃度明顯升高。與低負(fù)荷相比,中、高負(fù)荷底泥NH4+-N含量隨時(shí)間上升的幅度更大,這可能是因?yàn)榈啄鄮ж?fù)電荷[27],而中、高負(fù)荷廢水NH4+-N濃度遠(yuǎn)高于低負(fù)荷,因此由于靜電引力吸附到中、高負(fù)荷底泥中的NH4+-N含量更高。整個(gè)試驗(yàn)期間不同污染負(fù)荷NO3--N含量變化范圍為0.28~1.18 mg/kg,各污染負(fù)荷的底泥NO3--N平均含量大小依次為:高負(fù)荷(0.64 mg/kg)、中負(fù)荷(0.45 mg/kg)、低負(fù)荷(0.38 mg/kg),這是因?yàn)楦哓?fù)荷底泥含有更高NH4+-N含量,可為硝化過(guò)程提供更多底物[8]。整個(gè)試驗(yàn)期間,各污染負(fù)荷底泥TN含量變化范圍為1.08~2.13 g/kg,而高負(fù)荷底泥TN平均含量比中、低負(fù)荷分別高20.38%和22.30%,而中負(fù)荷和低負(fù)荷的底泥TN含量相差不大,該現(xiàn)象與底泥NH4+-N和NO3--N含量變化趨勢(shì)相似。各污染負(fù)荷底泥DOC含量隨時(shí)間大體呈上升趨勢(shì),變化范圍為42.22~141.40 mg/kg。與低負(fù)荷相比,中、高負(fù)荷底泥DOC含量隨時(shí)間上升的幅度更大。各污染負(fù)荷的底泥DOC平均含量大小依次為:高負(fù)荷(94.83 mg/kg)、中負(fù)荷(87.13 mg/kg)、低負(fù)荷(62.91 mg/kg)。中、高負(fù)荷有機(jī)碳含量較高,可為NH4+-N提供更多吸附點(diǎn)[28-30],這是中高負(fù)荷底泥吸附更多NH4+-N的另一重要原因。
綠狐尾藻濕地NH4+-N出水濃度與影響因素的回歸分析結(jié)果見(jiàn)表1。以高負(fù)荷為參照水平比較低負(fù)荷和中負(fù)荷NH4+-N出水濃度,結(jié)果表明低負(fù)荷和中負(fù)荷NH4+-N出水濃度顯著低于高負(fù)荷(<0.05),其中低負(fù)荷NH4+-N出水濃度比高負(fù)荷低11.99%,中負(fù)荷比高負(fù)荷低4.06%,該現(xiàn)象和上述NH4+-N在不同污染負(fù)荷去除情況一致。隨著濕地運(yùn)行時(shí)間的延長(zhǎng),各負(fù)荷NH4+-N出水濃度隨之增加,但增加不顯著(>0.05)。水體pH值、COD均與出水NH4+-N濃度呈正相關(guān)性,但差異不顯著(>0.05)。水體NO3--N濃度增加時(shí),綠狐尾藻濕地NH4+-N出水濃度會(huì)顯著降低(?0.62%,<0.05),這是因?yàn)镹H4+-N被硝化微生物氧化為NO3--N[31]。與其他環(huán)境因子相比,水體DO濃度對(duì)NH4+-N去除影響最大:水體DO濃度每增加一個(gè)單位,NH4+-N出水濃度平均降低1.33%(<0.05),這可能與DO濃度是濕地中NH4+-N氧化的限制性因素有關(guān)[32]。水體Eh值對(duì)NH4+-N去除也有影響,但影響不顯著(>0.05)。然而,隨著濕地中底泥NH4+-N積累,出水NH4+-N濃度顯著增加(0.35%,<0.001),這可能和底泥理化特性有關(guān),當(dāng)?shù)啄鄬?duì)NH4+-N吸附達(dá)到飽和時(shí),其吸附量會(huì)逐漸減少[33]。
圖4 綠狐尾藻濕地不同污染負(fù)荷底泥碳、氮含量動(dòng)態(tài)變化
表1 綠狐尾藻濕地出水NH4+-N濃度和影響因素的混合效應(yīng)回歸分析
養(yǎng)殖廢水以高銨氮為特征。由于高NH4+-N濃度對(duì)水生植物生長(zhǎng)有抑制作用[34],因此在處理不同NH4+-N濃度養(yǎng)殖廢水時(shí),合適的濕地植物選擇是極其重要的。不同水生植物耐銨水平有差異,例如慈姑、燈心草、香蒲和水蔥耐銨上限低于200 mg/L[35-38];傘草耐銨范圍為147~236 mg/L[38-39]。本研究綠狐尾藻濕地在高負(fù)荷養(yǎng)殖廢水(NH4+-N:229.3~499.2 mg/L)中可正常生長(zhǎng),說(shuō)明綠狐尾藻比慈姑、燈心草、香蒲、水蔥和傘草有更高耐銨能力。盡管綠狐尾藻濕地可耐受高銨氮濃度,但是其NH4+-N去除能力受污染負(fù)荷影響。在本研究中,綠狐尾藻濕地對(duì)低負(fù)荷的NH4+-N去除率顯著高于中、高負(fù)荷(<0.05),具體順序大小為:低負(fù)荷(98.7%)、中負(fù)荷(94.2%)、高負(fù)荷(85.0%)。該研究結(jié)果與Morgan等[40]的報(bào)道相似,他們通過(guò)生態(tài)處理組合系統(tǒng)處理養(yǎng)牛場(chǎng)廢水,發(fā)現(xiàn)廢水中NH4+-N去除率隨著污染負(fù)荷增加而降低。
多元線性混合模型表明,在所有環(huán)境因子中,水體DO濃度對(duì)NH4+-N去除影響最大。水體DO濃度每增加一個(gè)單位,NH4+-N出水濃度平均降低1.33%(<0.05)。另外,綠狐尾藻濕地平均DO濃度大小依次為:低負(fù)荷(3.18 mg/L)、中負(fù)荷(2.43 mg/L)、高負(fù)荷(1.61 mg/L),而各負(fù)荷NH4+-N去除率順序與DO濃度相同,即低負(fù)荷(98.7%)、中負(fù)荷(94.2%)、高負(fù)荷(85.0%),該結(jié)果進(jìn)一步說(shuō)明氧氣對(duì)綠狐尾藻濕地系統(tǒng)NH4+-N去除的重要性。Kouki等[32]的研究也表明DO是濕地系統(tǒng)NH4+-N去除的關(guān)鍵因素。另外,水體NO3--N濃度增加時(shí),綠狐尾藻濕地NH4+-N出水濃度會(huì)顯著降低(-0.62%,<0.05)。Zhang等[31]同樣研究表明,人工濕地水體NO3--N濃度與NH4+-N濃度呈顯著負(fù)相關(guān)性(<0.05)。由于NO3--N是硝化反應(yīng)的產(chǎn)物,因此微生物硝化是綠狐尾藻濕地NH4+-N去除的重要途徑。盡管NO3--N是硝化反應(yīng)的產(chǎn)物,但同時(shí)是反硝化反應(yīng)的初始底物,因此濕地系統(tǒng)NO3--N濃度由硝化和反硝化反應(yīng)共同決定[33]。在本研究中,低、中和高負(fù)荷出水NO3--N濃度在1月、2月和3月份遠(yuǎn)高于進(jìn)水濃度。Zhang等[20]和Luo等[8]同樣發(fā)現(xiàn),在種植綠狐尾藻的濕地中,冬季低溫季節(jié)出水NO3--N出現(xiàn)累積現(xiàn)象。另外,Zhang等[41]其他研究表明綠狐尾藻濕地冬季氧化亞氮排放量遠(yuǎn)高于其他時(shí)期。這些結(jié)果均表明即使在冬季低溫環(huán)境下綠狐尾藻濕地也發(fā)生了強(qiáng)烈的硝化反應(yīng)。冬季NO3--N出現(xiàn)累積與濕地系統(tǒng)高DO濃度有關(guān),高DO濃度促進(jìn)硝化反應(yīng),卻抑制反硝化反應(yīng)的進(jìn)行。基于綠狐尾藻濕地NO3--N在冬季出現(xiàn)累積現(xiàn)象,若將NH4+-N從濕地系統(tǒng)中徹底去除,濕地末端需連接反硝化生物反應(yīng)器,綠狐尾藻濕地-反硝化生物反應(yīng)器組合系統(tǒng)將是本研究下一步研究重點(diǎn)。
1)綠狐尾藻濕地對(duì)不同污染負(fù)荷養(yǎng)殖廢水NH4+-N和TN去除率均較高,其中NH4+-N平均去除率為85.0%~98.7%,TN平均去除率為83.6%~97.1%。
2)廢水pH值和COD濃度隨著污染負(fù)荷的增加而增加,廢水DO和Eh隨著污染負(fù)荷的增加而降低;不同污染負(fù)荷底泥NH4+-N和DOC含量隨著污染負(fù)荷增加而增加。
3)多元混合回歸模型表明,影響綠狐尾藻濕地NH4+-N去除的因素包括水體DO、水體NO3--N濃度和底泥NH4+-N含量。與其他因素相比,水體DO濃度對(duì)綠狐尾藻濕地NH4+-N去除影響最大;水體溶解氧濃度每增加一個(gè)單位,NH4+-N出水濃度平均降低1.33%。
4)綠狐尾藻濕地在高負(fù)荷養(yǎng)殖廢水(NH4+-N:229.3~499.2 mg/L)中可正常生長(zhǎng),其NH4+-N和TN平均去除率分別高達(dá)85.0%和83.6%,因此綠狐尾藻可作為耐銨植物處理高負(fù)荷養(yǎng)殖廢水。
[1] Conley L M, Dick R I, Lion L W. An assessment of the root zone method of wastewater treatment[J]. Research Journal of the Water Pollution Control Federation, 1991, 63: 239-274.
[2] Green B M, Upton J. Constructed reed beds: A cost-effective way to polish wastewater effluents for small communities[J]. Water Environmental Research, 1994, 66(3): 188-192.
[3] 成水平,王月圓,吳娟. 人工濕地研究現(xiàn)狀與展望[J]. 湖泊科學(xué),2019,31(6):1489-1498.
Cheng Shuiping, Wang Yueyuan, Wu Juan. Advances and prospect in the studies on constructed wetlands[J]. Journal of Lake Sciences, 2019, 31(6): 1489-1498. (in Chinese with English abstract)
[4] 馬震,崔遠(yuǎn)來(lái),郭長(zhǎng)強(qiáng),等. 基于水力性能和凈化效果的表面流人工濕地設(shè)計(jì)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(12):157-164.
Ma Zhen, Cui Yuanlai, Guo Changqiang, et al. Optimization of design parameters of surface flow constructed wetland based on hydraulic performance and pollutant purification effect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 157-164. (in Chinese with English abstract)
[5] 張彩瑩,王巖,王妍艷. 潛流人工濕地對(duì)畜禽養(yǎng)殖廢水的凈化效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(17):160-168.
Zhang Caiying, Wang Yan, Wang Yanyan. Purification effect of subsurface flow constructed wetland on livestock wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(17): 160-168. (in Chinese with English abstract)
[6] 謝小龍,賀鋒,徐棟,等. 垂直流人工濕地配水均勻性的研究[J]. 中國(guó)環(huán)境科學(xué),2009,29(8):828-832.
Xie Xiaolong, He Feng, Xu Dong, et al. Uniformity of water distribution system in vertical constructed wetland[J]. China Environmental Science, 2009, 29(8): 828-832. (in Chinese with English abstract)
[7] 郝明旭,霍莉莉,吳珊珊. 人工濕地植物水體凈化效能研究進(jìn)展[J]. 環(huán)境工程,2017,35(8):5-10,24.
Hao Mingxu, Huo Lili, Wu Shanshan. Research progress on water purification of plants in constructed wetland[J]. Environmental Engineering, 2017, 35(8): 5-10, 24. (in Chinese with English abstract)
[8] Luo P, Liu F, Zhang S N, et al. Nitrogen removal and recovery from lagoon-pretreated swine wastewater by constructed wetlands under sustainable plant harvesting management[J]. Bioresource Technology, 2018, 258: 247-254.
[9] 王勇,張寶莉,湯燦,等. 寒冷地區(qū)多級(jí)垂直流人工濕地系統(tǒng)設(shè)計(jì)及氮磷去除效率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(23):218-225.
Wang Yong, Zhang Baoli, Tang Can, et al. Multistage vertical-flow constructed wetlands and removal efficiency of nitrogen and phosphorus in cold area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 218-225. (in Chinese with English abstract)
[10] Liu X, Huang S L, Tang T F Z, et al. Growth characteristics and nutrient removal capability of plants in subsurface vertical flow constructed wetlands[J]. Ecological Engineering, 2012, 44: 189-198.
[11] Forbes D A, Reddy G B, Hunt P G, et al. Comparison of aerated march-pond-marsh and continuous marsh constructed wetlands for treating swine wastewater[J]. Journal of Environmental Science and Health Part A, 2010, 45: 803-809.
[12] Dong X L, Reddy G B. Nutrient removal and bacterial communities in swine wastewater lagoon and constructed wetlands[J]. Journal of Environmental Science and Health Part A, 2010, 45: 1526-1535.
[13] Mehrer I, Mohr H. Ammonium toxicity: Description of the syndrome and the search for its causation[J]. Physiology Plant, 1989, 77: 545-554.
[14] 李紅芳,劉鋒,黎慧娟,等. 生物濾池/人工濕地/穩(wěn)定塘工藝處理農(nóng)村分散污水[J]. 中國(guó)給水排水,2015,31(2):84-87.
Li Hongfang, Liu Feng, Li Huijuan, et al. Combined process of biofilter, constructed wetland and stabilization pond for treatment of rural decentralized sewage[J]. China Water & Wastewater, 2015, 31(2): 84-87. (in Chinese with English abstract)
[15] 馬永飛,楊小珍,趙小虎,等. 污水氮濃度對(duì)粉綠狐尾藻去氮能力的影響[J]. 環(huán)境科學(xué),2017,38(3):1093-1101.
Ma Yongfei, Yang Xiaozhen, Zhao Xiaohu, et al. Effect of wastewater nitrogen concentrations on nitrogen removal ability of[J]. Environmental Science, 2017, 38(3): 1093-1101. (in Chinese with English abstract)
[16] 馬永飛,楊小珍,趙小虎,等. 污水氮濃度和NH4+/NO3-比對(duì)粉綠狐尾藻去氮能力和植物體氮組分的影響[J]. 環(huán)境科學(xué),2018,39(3):1167-1179.
Ma Yongfei, Yang Xiaozhen, Zhao Xiaohu, et al. Effects of wastewater nitrogen concentrations and NH4+/NO3-on nitrogen removal ability and the nitrogen component of(Vell.) Verdc[J]. Environmental Science, 2018, 39(3): 1167-1179. (in Chinese with English abstract)
[17] Saunkaew P, Wangpakattanawong P, Jampeetong A. Growth, morphology, ammonium uptake and nutrient allocation ofCambess. under high NH4+concentrations[J]. Ecotoxicology, 2011, 20: 2011-2018.
[18] Zhang S N, Liu F, Xiao R L, et al. Emissions of NO and N2O in wetland microcosms for swine wastewater treatment[J]. Environmental Science and Pollution Research, 2015, 22(24): 19933-19939.
[19] Ibekwe A M, Ma J, Murinda S, et al. Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste[J]. Science of The Total Environment, 2016, 544: 68-76.
[20] Zhang S N, Liu F, Huang Z R, et al. Are vegetated drainage ditches effective for nitrogen removal under cold temperatures?[J]. Bioresource Technology, 2020, 301: 122744.
[21] 孫成,王衛(wèi),劉方田,等. 基于線性混合效應(yīng)模型的河北省PM_(2.5)濃度時(shí)空變化模型研究[J]. 環(huán)境科學(xué)研究,2019,32(9):1500-1509.
Sun Cheng, Wang Wei, Liu Fangtian, et al. Spatial-temporal simulation of PM2.5 concentration in Hebei province based on linear mixed effects model[J]. Research of Environmental Science, 2019, 32(9): 1500-1509. (in Chinese with English abstract)
[22] Park K Y, Lee J W, Inamori Y, et al. Effects of fill modes on N2O emission from the SBR treating domestic wastewater[J]. Water Science and Technology, 2001, 43: 147-150.
[23] Maltais-Landry G, Maranger R, Brisson J, et al. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands[J]. Water Research, 2009, 43: 535-545.
[24] 唐曉,王佳. 海水ORP的影響因素[J]. 裝備環(huán)境工程,2004,1(4):37-39.
Tang Xiao, Wang Jia. Factors affecting the ORP in seawater[J]. Equipment Environmental Engineering, 2004, 1(4): 37-39. (in Chinese with English abstract)
[25] 陳昢圳,鄭向群,華進(jìn)城. 不同污染負(fù)荷對(duì)廢磚垂直流人工濕地處理農(nóng)村生活污水的影響[J].生態(tài)環(huán)境學(xué)報(bào),2019,28(8):1683-1690.
Chen Peizhen, Zheng Xiangqun, Hua Jincheng. Effects of different pollution loads on vertical flow constructed wetland with crushed bricks for the treatment of rural domestic sewage[J]. Ecology and Environmental Sciences, 2019, 28(8): 1683-1690. (in Chinese with English abstract)
[26] Metcalf L, Eddy H P, Tchobanoglous G. Wastewater Engineering: Treatment, Disposal and Reuse[M]. New Delhi: McGraw-Hill Companied. Inc, 2003: 940-982.
[27] Pincam T, Jampeetong A. Treatment of anaerobic digester effluent using Typha angustifolia L. growth responses and treatment efficiency[J]. Journal of Water and Environment Technology, 2020, 18(2): 105-116.
[28] Boatman C D, Murray J W. Modeling exchangeable NH4+adsorption in marine sediments: process and controls of adsorption[J]. Limnology and Oceanography, 1982, 27: 99-110.
[29] de Lange G J. Distribution of exchangeable, fixed, organic and total nitrogen in interbedded turbiditic/pelagic sediments of the Madeira Abyssal-Plain, eastern North-Atlantic[J]. Marine Geology, 1992, 109: 95-114.
[30] Van Raaphorst W, Malschaert J F P. Ammonium adsorption in superficial North Sea sediments[J]. Continental Shelf Research, 1996, 16: 1415-1435.
[31] Zhang S N, Xiao R L, Liu F, et al. Effect of vegetation on nitrogen removal and ammonia volatilization from wetland microcosms[J]. Ecological Engineering, 2016, 97: 363-369.
[32] Kouki S, M’hiri F, Saidi N, et al. Performances of a constructed wetland treating domestic wastewaters during a macrophytes life cycle[J]. Desalination, 2009, 246: 452-467.
[33] Zhang S N, Liu F, Xiao R L, et al. Effects of vegetation on ammonium removal and nitrous oxide emissions from pilot-scale drainage ditches[J]. Aquatic Botany, 2016, 130: 37-44.
[34] Cronk J K. Constructed wetlands to treat wastewater from dairy and swine operations: A review[J]. Agriculture Ecosystems & Environment, 1996, 58: 97-114.
[35] Boyd C E. The dynamics of dry matter and chemical substances in apopulation[J]. American Midland Naturalist, 1971, 86: 28-45.
[36] DeBusk T A, Peterson J E, Reddy K R. Use of aquatic and terrestrial plants for removing phosphorus from dairy wastewaters[J]. Ecological Engineering, 1995, 5: 371-390.
[37] Clarke E, Baldwin A H. Responses of wetland plants to ammonia and water level[J]. Ecological Engineering, 2002, 18: 257-264.
[38] Leto C, Tuttolomondo T, Bella S L, et al. Effects of plant species in a horizontal subsurface flow constructed wetland–phytoremediation of treated urban wastewater withL. andL. in the West of Sicily (Italy)[J]. Ecological Engineering, 2013, 61: 282-291.
[39] Tao W D, Han J Q, Li H Y. Investigation into ammonia stress onand its impact on nutrient removal in microcosm experiments[J]. Journal of Environmental Management, 2015, 163: 254-261.
[40] Morgan J A, Martin J R. Performance of an ecological treatment system at three strengths of dairy wastewater loading[J]. Ecological Engineering, 2008, 33: 195-209.
[41] Zhang S N, Liu F, Luo P, et al. Does rice straw application reduce N2O emissions from surface flow constructed wetlands for swine wastewater treatment?[J]. Chemosphere, 2019, 226: 273-281.
Effect ofwetland on nitrogen removal from swine wastewater under different pollution loads
Zhu Huixiang1,2, Zhang Shunan1※, Peng Yingxiang3, Liu Feng1, Xiao Runlin1
(1.,,,,410125,; 2.,100049,; 3.,,410014,)
Pollutions caused by livestock industry have posed substantial concerns on ecological environment. The random discharge of swine wastewater has resulted in excessive nutrients transport to rivers and lakes, in turn inducing eutrophication of surface water. Given that China is one of the largest pork producers in world, the treatment of swine wastewater is becoming a very urgent issue. In this study, 9 pilot-scale surface flow constructed wetlands vegetated withwere constructed to treat swine wastewater, in order to investigate nitrogen removal effect and influence factors ofwetlands. The pilot-scalewetlands were exposed to swine wastewater under three strengths: low loading rates (swine wastewater diluted with fresh water at a 1:2 ratio), medium (swine wastewater diluted with fresh water at a 2:1 ratio), and high (pristine swine wastewater without dilution). Thewetlands were operated using an intermittent flow regime with a total volume of 180 L/d, and the theoretical hydraulic retention time was 33 d in the surface flow constructed wetlands. Water samples (inflow and outflow) were collected once a month from July 2014 to May 2015 for measuring ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N), total nitrogen (TN), and chemical oxygen demand, and concurrently the water temperature, pH, and dissolved oxygen were determined in the field. Monthly sediment samples were collected to determine NH4+-N, NO3--N, TN, and dissolved organic carbon. The linear mixed-effect model was used to explore the key factors affecting NH4+-N removal in thewetlands. The results showed that during the whole test period (July 2014 -May 2015), the removal rates of NH4+-N and TN in low, medium, and high load wastewater were relatively high, where the removal rates of NH4+-N and TN were 85.0%-98.7% and 83.6%-97.1%, respectively. Nitrogen removal was different under different pollution loads, whereas, the removal rates of NH4+-N and TN decreased with the increase of pollution loads. The results of linear mixed model analysis showed that the key environmental factors affecting NH4+-N removal in the wetland were the dissolved oxygen and NO3--N in wastewater, and the content of NH4+-N in sediment, where the dissolved oxygen in wastewater presented the greatest impact on NH4+-N removal in the wetland. In every unit increased in the concentration of dissolved oxygen, the effluent concentration of NH4+-N decreased by 1.33% on average. With the accumulation of NH4+-N in sediment, the effluent NH4+-N concentrations increased significantly (<0.001). As the dissolved oxygen in wastewater decreased as the pollution loads increased, the sediment NH4+-N increased as well, indicating that the variation in nitrogen removal of different pollution loads in thewetlands. The removal rates of NH4+-N and TN in wetlands under different pollution loads were above 80.0%, although gradually decreased with the increase of pollution loads. Therefore, thecan be used as an ammonia-tolerant plant to treat high-load swine wastewater. The finding can provide a promising potential application ofwetlands in large-scale farms.
wastewater; nitrogen; aquaculture;; constructed wetland; pollution load; removal effect
朱輝翔,張樹(shù)楠,彭英湘,等. 綠狐尾藻濕地對(duì)養(yǎng)殖廢水中不同污染負(fù)荷氮去除效應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(19):217-224.doi:10.11975/j.issn.1002-6819.2020.19.025 http://www.tcsae.org
Zhu Huixiang, Zhang Shunan, Peng Yingxiang, et al. Effect ofwetland on nitrogen removal from swine wastewater under different pollution loads[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 217-224. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.19.025 http://www.tcsae.org
2020-06-17
2020-08-18
中國(guó)科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(XDA23020402;XDA23020502);國(guó)家自然科學(xué)基金(41771302);中國(guó)科學(xué)院重點(diǎn)部署項(xiàng)目(KZZD-EW-11)
朱輝翔,主要從事面源污染生態(tài)控制研究。Email:1300616513@qq.com
張樹(shù)楠,助理研究員,博士,主要從事農(nóng)業(yè)面源污染研究。Email:zhang-shu-nan@163.com
10.11975/j.issn.1002-6819.2020.19.025
X703
A
1002-6819(2020)-19-0217-08