• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Dimensions,Standard Part Maps,and p-Adically Closed Fields*

    2020-12-24 02:19:26NingyuanYao
    邏輯學(xué)研究 2020年6期

    Ningyuan Yao

    Abstract. The aim of this paper is to study the dimensions and standard part maps between the field of p-adic numbers Qp and its elementary extension K in the language of rings Lr.We show that for any K-definable set X ?Km,dimK(X) ≥dimQp(X ∩).Let V ?K be convex hull of K over Qp,and st : V →Qp be the standard part map.We show that for any K-definable function f : Km →K,there is definable subset D ?such thatD has no interior,and for all x ∈D,either f(x) ∈V and st(f(st-1(x)))is constant,or f(st-1(x))∩V=?.We also prove that dimK(X)≥dimQp(st(X ∩V m))for every definable X ?Km.

    1 Introduction

    In[5],L.van den Dries consider a pair(R,V),where R is an o-minimal extension of a real closed field,and V is a convex hull of an elementary submodel M of R.Let μ ?R be the set infinitesimals over M and=V/μ be the reside field with residue class mapIf M is Dedekind complete in R,then= M and the residue class map coincide the standard part map st:RM.In this context,van den Dries showed the follows:

    Theorem 1([5]).Let S ?Rnbe R-definable and

    (i) S ∩Mnis definable in M and dimM(S ∩Mn)≤dimR(S)?

    (ii)st(S)is definable in M and dimM(st(S))≤dimR(S).

    Theorem 2([5]).Let f :RmR be an R-definable function.Then here is a finite partition P of Mminto definable sets,where each set in the partition is either open in Mmor lacks of interior.On each open set C ∈P we have:

    (ii) or there is a continuous function g : CM,definable in M,such that f(x)∈V and st(f(x))=g(st(x)),for all x ∈Ch,

    where Chis the hull of C defined by

    Remark 1.1.For any topological space Y,and X ?Y,by Int(X)we mean the set of interiors in X.Namely,x ∈Int(X)iffthere is an open neighborhood B ?Y of x contained in X.

    There are fairly good analogies between the field of reals R and the field of p-adic numbers Qp,in both model-theoretic and field-theoretic view.For example,both of them are complete and locally compact topological fields,are distal and dpminimal structures,have quantifier eliminations with adding the new predicates for n-th power,and have cell decompositions.

    In this paper,we treat the p-adic analogue of above two Theorems,where M is replaced by Qp,and R is replaced by an arbitrary elementary extension K of Qp.In our case,the convex hull V is the set

    and μ,the infinitesimals of K over Qp,is the set

    By [12,Lemma 2.1],for every x ∈V,there is a unique element st(x)in Qpsuch that a-st(a) ∈μ,we call it the standard part of a and st : ast(a)the standard part map.It is easy to see that st:VQpis a surjective ring homomorphism and st-1(0)=μ.So=V/μ is isomorphic to Qpin our context.With the notations as above,we now highlight our main results.

    Theorem 1.2.Let S ?Knbe K-definable.Then

    (ii)st(S ∩Vn)is definable in Qpand dimQp(st(S ∩Vn))≤dimK(S).

    Theorem 1.3.Let f : KmK be a K-definable function.Then here is a finite partition P of Qpinto definable sets,where each set in the partition is either open inor lacks of interior.On each open set C ∈P we have:

    (ii) or there is a continuous function g : CQp,definable in Qp,such that f(x)∈V and st(f(x))=g(st(x)),for all x ∈Ch.

    In the rest of this introduction we give more notations and model-theoretic approach.

    1.1 Notations

    Let p be a fixed prime number,Qpthe field the p-adic field,and v :Qp{0}Z the valuation map.Let K be a fixed elementary extension of Qp.Then valuation v extends to a valuation map from K{0} to ΓK,we also denote it by v,where(ΓK,+,<,0)is the corresponding elementary extension of(Z,+,<,0).

    Fact 1.4.Let v :K{0}ΓKbe as above.Then we have

    · v(xy)=v(x)+v(y)for all x,y ∈K?

    · v(x+y) ≥min{v(x),v(y)},and v(x+y)= min{v(x),v(y)} if v(x)≠v(y)?

    · For x ∈Qp,|x|= p-v(x) if x≠0 and |x|=0 if x=0 defines a non-archimedean metric on Qp.

    · K is a non–archimedean topological field.

    We will assume a basic knowledge of model theory.Good references are[13]and[10].We will be referring a lot to the comprehensive survey[1]for the basic model theory of the p-adics.A key point is Macintyre’s theorem[9]that Th(Qp,+,×,0,1)has quantifier elimination in the language L=Lr∪{Pn|n ∈N+},where Lris the language of rings,and the predicate Pnis interpreted as the n-th powers

    for each n ∈N+.Note that Pnis definable in Lr.Moreover,the valuation is definable in Lras follows.

    Fact 1.5([3]).Let f,g ∈K[x1,...,xm].Thenis definable.

    Remark 1.6.It is easy to see from Fact 1.5 that {a ∈K|v(a)= γ} and {a ∈K|v(a)<γ}are definable for any fixed γ ∈ΓK.

    For A a subset of K,by an LA-formula we mean a formula with parameters from A.Bywe mean arbitrary n-variables and∈Kndenote n-tuples in Knwith n ∈N+.Bywe mean the length of the tupleWe say that X ?Kmis A-definable if there is a LA-formula φ(x1,...,xm)such that

    We also denote X by φ(Km)and say that X is defined byWe say that X is definable in K if X ?Kmis K-definable.If X ∈is defined by some LQpformulaThen by X(K)we mean ψ(Km),namely,the realizations of ψ in K,which is a definable subset of Km.

    For any subset A of K,by acl(A)we mean the algebraic closure of A.Namely,b ∈acl(A)if and only if there is a formula φ(x)with parameters from A such that b ∈φ(K)and φ(K)is finite.Let α=(α1,...,αn) ∈Km,we denote acl(A ∪{α1,...,αn})by acl(A,α).

    By a saturated extension K of K,we mean that|K|is a sufficiently large cardinality,and every type over A ?K is realized in K whenever|A|<|K|.

    1.2 Preliminaries

    The p-adic field Qpis a complete,locally compact topological field,with basis given by the sets

    for a ∈Qpand n ∈Z.The elementary extension K ?Qpis also a topological field but not need to be complete or locally compact.Let X ?Km,we say that∈X is an interior if there is γ ∈Γksuch that

    Let V={x ∈K |x=0 ∨?n ∈Z(v(x)>n)}.We call V the convex hull of Qp.It is easy to see that for any a,b ∈K,if b ∈V and v(a)>v(b),then a ∈V.As we said before,for every a ∈V,there is a unique a0∈Qpsuch that v(a-a0)>n for all n ∈Z.This gives a map aa0from V onto Qp.We call this map the standard part map,denoted by st : VQp.For any=(a1,...,am) ∈Vm,by st()we mean(st(a1),...,st(am)).Let f()∈Kbe a polynomial with every coefficient contained in V.Then by st(f),we mean the polynomial over Qpobtained by replace each coefficient of f by its standard part.Let

    which is the collection of all infinitesimals of K over Qp.It is easy to see that for any a ∈K{0},aViffa-1∈μ.

    Any definable subset X ?Knhas a topological dimension which is defined as follows:

    Definition 1.7.Let X ?Kn.By dimK(X),we mean the maximal k ≤n such that the image of the projection

    has interiors,for suitable 1 ≤r1<...<rk≤n.We call dimK(X)the topological dimension of X.

    Recall that Qpis a geometry structure(see[8,Def.2.1,Prop.2.11]),so any K |=Th(Qp)is a geometry structure.The fields has geometric structure are certain fields in which model-theoretic algebraic closure equals field-theoretic algebraic closure.

    Every geometry structure is a pregeometry structure,which means that for any=(a1,...,an) ∈Knand A ?K,dim(/A)makes sense,which by definition is the maximal k such that ar1acl(A)and ari+1acl(A,ar1,...,ari)for some subtuple(ar1,...,ark)of.We call dim(/A)the algebraic dimension ofover A.

    Fact 1.8([8]).Let A be a subset of K and X an A-definable subset of Km.

    (ii) Let K ?K be a saturated model.Then dimK(X)=X(K)}.

    (iii) Let φ(x1,...,xm,y1,...,yn)be any LA-formula and r ∈N.Then the set

    is A-definable.

    (iv) If X ?K is K-definable.Then X is infinite iff dimK(X)≥1.

    (v) Let A0be a countable subset of Qp,and let Y be an A0-definable subset of

    It is easy to see from Fact 1.8 that for any LK-formula φ(x1,...,xn)and K′?K,we have

    We will write dimK(X)by dim(X)if there is no ambiguity.If the function f :XK is definable in K,and Y ?X ×K is the graph of f.Then we conclude directly that dim(X)=dim(Y)by Fact 1.8(ii).

    For later use,we recall some well-known facts and terminology.

    Hensel’s Lemma.Let Zp= {x ∈Qp|x=0 ∨v(x) ≥0}be the valuation ring of Qp.Let f(x)be a polynomial over Zpin one variable x,and let a ∈Zpsuch that v(f(a)) >2n+1 and v(f′(a)) ≤n,where f′denotes the derivative of f.Then there exists a uniquea ∈Zpsuch that

    We say a field E is a Henselian field if Hensel’s Lemma holds in E.Note that to be a henselian field is a first-order property of a field in the language of rings.Namely,there is a Lr-sentence σ such that E |= σiffE is a henselian field.So any K ?Qpis henselian.

    2 Main Results

    2.1 Some properties of Henselian fields

    Since Qpis complete and local compact,it is easy to see that:

    Fact 2.1.Suppose that E is a finite(or algebraic)field extension of Qp.Then for any α ∈EQp,there is n ∈Z such that v(α-a) <n(|α-a| >p-n)for all a ∈Qp.Namely,Qpis closed in E.

    We now show that Fact 2.1 holds for any K |=Th(Qp).

    Lemma 2.2.Let K be a henselian field,R= {x ∈K | x=0 ∨v(x) ≥0}be the valuation ring of K,and f(x) ∈R[x]a polynomial,D ?ΓKa cofinal subset,and X={xd|d ∈D}?R.If

    Then there exist a cofinal subset I ?D and a ∈K such that

    ProofInduction on deg(f).Suppose that f has degree 1,say,f(x)=αx+β.Then for any γ ∈ΓK,there is d0∈D such that v(f(xd)) >γ for all d0<d ∈D.Now v(αxd+β)>γ implies that>γ-v(α).So

    and hence

    as required.

    Now suppose that deg(f)=n+1 >1.We see that the derivative f′has degree n.

    If there are γ0∈ΓKand ε0∈D such that v(f′(xε)) ≤γ0for all ε0<ε ∈D.Take ε0sufficiently large such that

    for all ε0<ε ∈D.Then,by Hensel’s Lemma,we see that for all ε >ε0,there issuch that

    As f has at most finitely many roots,there is a cofinal subset I ?D and some∈K such that

    for all i ∈I.Since v(f(xi))+∞,we see that+∞.Thus we have

    as required.

    Otherwise,if for every γ ∈ΓK,there is γ <dγ∈D such that v(f′(xdγ))>γ.Then there is a cofinal subset I={dγ|γ ∈ΓK}?D such that

    Then,by induction hypothesis,there exist a cofinal subset J ?I and b ∈K such that

    Since f is continuous,limj∈J,j→+∞f(xj)= f(b).Now J is cofinal in I,and I is cofinal in D,we conclude that J is cofinal in D.This complete the proof. □

    Proposition 2.3.If K is a henselian field,and E is a finite extension of K.Then for any α ∈EK,there is γ0∈ΓKsuch that v(α-a)<γ0for all a ∈K.Namely,K is closed in E.

    ProofBy[6,Lem.4.1.1],the valuation of K extends uniquely to E.For each β ∈E,Let g(x)= xn+an-1xn-1+...+a1x+a0be the minimal polynomial of β over K,then the valuation of β is exactly(See[7,Prop.5.3.4]).

    Let α ∈EK,and d(x)be the minimal polynomial of α over K with degree k.Then d(x+a)is the minimal polynomial of(α-a)over K for any a ∈K.Since d(x+a)=xf(x)+d(a)for some f(x)∈K[x],we see that v(α-a)=We claim that there is γ0∈ΓKsuch that v(d(a))<γ0for all a ∈K.Otherwise,we will find a sequence{aγ|γ ∈ΓK}such that v(d(aγ))>γ.Replace d(x)by ?d(x)with some ? sufficiently close to 0,we may assume that d ∈R[x].Moreover,fix γ0∈Γ,if v(α-a)>γ0,and v(α-b)>2γ0,then v(a-b)≥γ0.So

    for some δ0∈K,and hence

    Let δ=kδ0.If δ ∈R,then,by Lemma 2.2,there is b ∈K such that d(b)=0.However d is minimal polynomial of degree >1,so has no roots in K.A contradiction.

    Let

    We see that h(x)∈R[x]and

    Now we have

    For γ >γ0,we have aγ∈δR.Therefore δ-1aγ∈R for all γ >γ0.Applying Lemma 2.2 to h(x),we can find c ∈K such that

    So d(δc)=0.A contradiction. □

    Now we assume that K is an elementary extension of Qpin the language of rings Lr.This follow result was proven by[14]in the case of K=Qp.

    Lemma 2.4.LetThen there is a partition of

    into finitely many definable subsets S,over each of which f has some fixed number k ≥1 of distinct roots in K with fixed multiplicities m1,...,mk.For any fixed∈S,let the roots of f(,y)be r1,...,rk,and e=max{v(ri-rj)|1 ≤i <j ≤k}.Thenhas a neighborhood N ?Km,γ ∈ΓK,and continuous,definable functions F1,...,Fk: S ∩NK such that for each∈S ∩N,are roots of f(,y)of multiplicities m1,...,mkand

    ProofThe proof of[14,Lem 1.1]applies almost word for word to the present context.The only problem is that the authors used Fact 2.1 in their proof.But the Proposition 2.3 saying that we could replace Qpby arbitrary K |=Th(Qp)in our argument.□

    Remark 2.5.Lemma 1.1 of[14]saying that definable functions F1,...,Fkare not only continuous but analytic.However we can’t prove it in arbitrary K |=Th(Qp)as K might not be complete as a topological field.

    Similarly,Lem.1.3 in [14]could be generalized to arbitrary K |=Th(Qp)as follows:

    Lemma 2.6.If A ?Kmand f :AK is definable.Then there is a definable set B ?A,open in Kmsuch that AB has no interior and f is continuous on B.

    ProofThe proof of Lem.1.3 in [14]applies almost word for word to the present context. □

    2.2 Dimensions

    We now assume that K is an elementary extension of Qp.

    Lemma 2.7.Suppose that A ?K,X,Y are A-definable in K,f : XY is an A-definable function.If f is a finite-to-one map,dim(X)=dim(f(X)).

    ProofLet K be a saturated elementary extension of K.By Fact 1.8 (iii),there is r ∈N such that|f-1(y)|≤r for all y ∈Y(K).For any a ∈X(K),since

    we see that a ∈acl(A,f(a)).So dim(a/A,f(a))=0.By Fact 1.8(i)we have

    dim(a/A)=dim(a,f(a)/A)=dim(a/A,f(a))+dim(f(a)/A)=0+dim(f(a)/A).

    So dim(a/A)=dim(f(a)/A).By Fact1.8(ii),we conclude that dim(X)=dim(Y).□

    Lemma 2.8.Suppose that A ?K,f : XY is an A-definable function in K.Then

    ProofGenerally,we have

    dim(a/A)=dim(a,f(a)/A)=dim(a/A,f(a))+dim(f(a)/A)≥dim(f(a)/A).

    By Fact1.8(ii),we conclude that dim(X)≥dim(Y). □

    Corollary 2.9.Suppose that A ?K,f : XY is an A-definable bijection function in K.Then

    Prooff-1is a definable function as f is bijection.So we conclude that

    Lemma 2.10.Suppose that X,Y are A-definable in K.Then

    ProofBy Fact1.8(ii). □

    Lemma 2.11.Let X ?Kn.Then dim(X)is the minimal k ≤n such that there is definable Y ?X with dim(Y)=dim(X)and projection

    is a finite-to-one map on Y,for suitable 1 ≤r1<...<rk≤n.

    ProofLet k be as above and π : XKkbe a projection with π(x1,...,xn)=(xr1,...,xrk).If Y ?X such that the restriction π ?Y : YKkis a finite-toone map.Then by Lemma 2.7 we have dim(Y)=dim(π(Y))and hence

    Now suppose that dim(X)= l ≤k.Without loss of generality,we assume that f : XKl?(x1,...,xn)(x1,...,xl)is a projection such that f(X)has nonempty interior.Then we prove a claim:

    Claim.Let Z0={b ∈Kl|f-1(b)is finite}and Z1=Kl0.Then dim(Z1)<l.Clearly,

    is definable in K.If dim(Z1)=l.Then,there is β ∈Z1(K)such that dim(β/A)=l,where is K ?K is saturated.Since dim(f-1(β)) ≥1,by Fact 1.8 (ii),there is α ∈dim(f-1(β))such that dim(α/A,β)≥1.By Fact 1.8(i),we conclude that

    dim(α/A)=dim(α,f(α)/A)=dim(a/A,f(α))+dim(f(α)/A)≥l+1.But dim(α/A)≤dim(X)=l.A contradiction.

    Since dim(Z1) <l,by Lemma 2.10,dim(Z0)= l.The restriction of f on f-1(Z0)is a finite-to-one map,we conclude that

    by Lemma 2.7.Now dim(f-1(Z0))=dim(X)and the restriction of f on f-1(Z0)is a finite-to-one map.So k ≤l as k is minimal.We conclude that k=l=dim(X)as required. □

    Corollary 2.12.Let X ?Knbe definable with dim(X)= k.Then there exists a partition of X into finitely many K-definable subsets S such that whenever dim(S)=dim(X),there is a projection πS:SKkon k suitable coordinate axes which is finite-to-one.

    ProofLet X0= X and[n]kbe the set of all subset of{1,...,n}of cardinality k.By Lemma 2.11,there exist D0= {r1,...,rk} ∈[n]k, S0?X with dim(S0)=dim(X0),such that the projection

    is finite-to-one on S0and infinite-to-one on X0S0.If dim(X0S0)<dim(X0),then the partition{X0S0,S0}meets our requirements.

    Otherwise,let X1=X0S0,we could find D1∈[n]k{D0}and S1∈X1such that the projection on coordinate axes from D1is finite-to-one over S1.Repeating the above steps,we obtained sequences Xiand Sisuch that Xi+1=XiSi.As[n]kis finite,there is a minimal t ∈N such that dim(Xt)<dim(X0)and dim(Si)=dim(X0)for all i <t.It is easy to see that{S0,...,St-1,Xt}meets our requirements. □

    Recall that by[4],Th(Qp)admits definable Skolem functions.Namely,we have

    Fact 2.13(([4])).Let A ?K andbe a LA-formula such that

    Then there A-definable function f :KmK such that

    With the above Fact,we could refine Corollary 2.12 as follows:

    Corollary 2.14.Let X ?Knbe definable with dim(X)= k.Then there exists a partition of X into finitely many K-definable subsets S such that whenever dim(S)=dim(X),there is a projection πS:SKkon k suitable coordinate axes which is injective.

    ProofLet X0= X.By Corollary 2.12,we may assume that the projection π :X0Kkgiven by(x1,...,xn)(x1,...,xk)is finite-to-one.By compactness,there is r ∈N such that

    By our induction hypothesis,there is a partition of X1into finitely may definable subsets meets our requirements.This completes the proof. □

    Theorem 2.15.Let B ?Kmbe definable in K.Then dimK(B)≥

    ProofSuppose that dimK(B)= k.By Lemma 2.10 and Corollary 2.14,we may assume that π :BKkis injective.The restriction of π tois a injective projection fromBy Lemma 2.11,≤k. □

    Note that Pn(K)= {a ∈K | a0 ∧?b ∈K(a= bn)} is an open subset of K whenever K is a hensilian field.For any polynomial f(x1,...,xm) ∈K[x1,...,xm],

    is an open subset of Kmsince f is continuous.

    2.3 Standard part map and definable functions

    The following Facts will be used later.

    Fact 2.16(([2])).Every complete n-type over Qpis definable.Equivalently,for any K ?Qp,any Lr-formula φ(x1,...,xn,y1,...,ym),and any∈Km,the set

    is definable in Qp.

    Fact 2.17(([11])).Let X ?Kmbe a Qp-definable open set,let Y ?X be a K-definable subset of X.Then either Y or XY contains a Qp-definable open set.

    Fact 2.18(([11])).Let X ?Kmbe a K-definable set.Then st(X)∩st(KmX)has no interior.

    Recall that μ is the collection of all infinitesimals of K over Qp,which induces a equivalence relation ∽μon K,which is defined by

    Definition 2.19.be polynomials.By f ∽μg we mean that

    Lemma 2.20.be polynomials over K with f ∽μg.=(b1,...,bn)are tuples from K with ai∽μbifor each i ≤n.

    ProofWe see that α ∈μiffv(α) >Z.Since v(α+β) ≥min{v(α),v(β)}and v(αβ)=v(α)+v(β),we see that μ is closed under addition and multiplication.As polynomials are functions obtained by compositions of addition and multiplication,we conclude that□

    Since V ?K is also closed under addition and multiplication.We conclude directly that:

    Corollary 2.21.Let=(x1,...,xn),andbe a polynomial with every coefficient contained in V.If a=(a1,...,an)∈Vn,then st(f)(st(a))=st(f(a)).

    Corollary 2.22.Let f(x)= anxn+...+a1x1+a0be a polynomial over K with every coefficient contained in V and anμ.If b ∈K such that f(b)=0.Then b ∈V.

    ProofSuppose for a contradiction that bV.Then st(b-1)=0.Clearly,we have

    Let

    Then g(b-1)=0.By Corollary 2.21,we have st(g)(st(b-1))=0.As st(b-1)=0,we see that st(an)=0,which contradicts to anμ. □

    Fact 2.23([11]).Let S ?Kmbe definable in K.Then st(S ∩Vm) ?is definable in Qp.

    Lemma 2.24.Let f :KkK be definable in K.Then

    (i) X∞=is definable in Qp.

    ProofBy Fact 2.16,there is asuch that for all a ∈and b ∈Qp,we have

    Hence

    which shows that X∞is definable in Qp.Again by Fact 2.16,there isψ(x,y1,y2)such that for all a ∈

    Therefore

    Lemma 2.25.Let X ?be a clopen subset ofX,thenX(K).

    ProofAs X is clopen andX,there is N ∈Z such that

    Lemma 2.26.If X ?Kmand f : XK are definable in K,then there is a polynomial q(x1,...,xm,y)such that the graph of f is contained in the variety

    ProofLet Y be the graph of f.Since Th(Qp)has quantifier elimination,Y is defined by a disjunctionwhere eachis a conjunction

    where g’s and h’s belong to KNow eachdefines an open subset of Km+1.Since dim(Y)≤m,we see that for each i ≤s,there is f(i)≤lisuch thatThen

    as required. □

    Proposition 2.27.If f :KmK is definable in K.Let X=V}.Then

    has no interiors.

    ProofBy Lemma 2.26,there is a polynomial

    such that the graph of f is contained in the variety of g.Without loss of generality,we may assume that each coefficient of g is in V,otherwise,we could replace g by g/c,where c is a coefficient of g with minimal valuation.Moreover,we could assume that at least one coefficient of g is not in μ.

    Suppose for a contradiction that DXcontains a open subset ofShrink DXif necessary,we may assume that DX?X is a Qp-definable open set inBy Lemma 2.4,there is a partition P of DX(K) ?Kminto finitely many definable subsets S,over each of which g has some fixed number k ≥1 of distinct roots in K with fixed multiplicities m1,...,mk.For any fixed∈S,let the roots ofbe r1,...,rk,and e=max{v(ri-rj)|1 ≤i <j ≤k}.Thenhas a neighborhood N ?Km,γ ∈ΓK,and continuous,definable functions F1,...,Fk:S ∩NK such that for each ˉx ∈S ∩N,are roots ofof multiplicities m1,...,mkand

    Since DX(K)is a Qp-definable open subset of X(K).By Fact 2.17,some S ∈P contains a Qp-definable open subset ψ(Km)of X(K).Where ψ is an LQpformula.Let A0=Then A0?A is an open subset ofand over A0(K)we have

    Since the family of clopen subsets forms a base for topology onwe may assume that A0is clopen.We now claim that

    Claim 1.For every

    ProofOtherwise,by Corollary 2.21,we have st(gn)(st())=st(gn())=0.SoBy Lemma 2.25,we see thatA0(K).A contradiction. □

    By Claim 1 and Corollary 2.22,we see that for every∈A0(K)and b ∈K,if=0,then b ∈V.By Corollary 2.21,we conclude the following claim

    Claim 2.For every∈A0(K)and b ∈K,if=0,then b ∈V and

    Now st(g)is a polynomial over Qp.Applying Lemma 2.4 to st(g)and Fact 2.17,and shrink A0if necessary,we may assume that

    By Fact 2.18,each st(Di)∩st(Dj)has no interior.By Fact 2.17,A0has no interiors.A contradiction. □

    ProofOtherwise,suppose that U ?Kmis open.Applying Proposition 2.27 to g(x)=(f(x))-1,we see that g(U) ?V,and for all∈U there are∈st-1(a)such that=0.A contradiction. □ProofLet X0=As we showed in Lemma 2.24,both X0and X1are Qp-definable sets.Let

    be the K-definable function given by

    Let Y ?Kk+1be the graph of f and Z ?Kk+1be the graph of g.For eachlet

    Theorem 2.30.Let f : KmK be an K-definable function.Then here is a finite partition P of Qpinto definable sets,where each set in the partition is either open inor lacks of interior.On each open set C ∈P we have:

    (ii) or there is a continuous function g : CQp,definable in Qp,such that f(x)∈V and st(f(x))=g(st(x)),for all x ∈Ch.

    ProofLet X,X∞be as in Lemma 2.24, DXas in Proposition 2.27,and U as in Corollary 2.28,then DXand U have no interior,and by Lemma 2.29,they are definable.Now {DX,XDX,U,X∞U} is a partition ofClearly, {Int(X∞U),(X∞U) Int(X∞U)} is a partition of X∞U where Int(X∞U)is open and(X∞U)Int(X∞U)lacks of interior.

    Let h : XDXQpbe a definable function defined by xst(f(x)).By Theorem 1.1 of [14],there is a finite partition P*of XDXinto definable sets,on each of which h is analytic.Each set in the partition is either open inor lacks of interior.

    Clearly,the partition

    satisfies our condition. □

    We now prove our last result.

    Lemma 2.31.Let Z ?Knbe definable in K of dimension k <n,and the projection

    is injective on Z.Then dimQp(st(Z ∩Vn))≤k.

    ProofAs π is injective on X,there is a definable function

    such that

    By Lemma 2.26,for each i ≤n,there is a polynomialsuch that the graph of fiis contained in the variety

    of Fi.We assume that each coefficient belongs to V.It is easy to see that for each

    we have fi(π(a1,...,an))=ai.So Fi(a1,...,ak,ai)=0.By Corollary 2.21,

    So st(Z ∩Vn)is contained in the variety

    Let A ?Qpbe the collection of all coefficients from st(Fi)’s.Then for each

    we see that aiis a root of Fi(a1,...,ak,u),and hence ai∈acl(A,a1,...,ak),where i ≤n.This implies that

    for all(a1,...,an)∈V(st(F1),...,st(Fn)).By Fact 1.8(v),we see that

    So st(Z ∩Vn)≤k as required. □

    Theorem 2.32.Let Z ? Knbe definable in K.Then dimQp(st(Z ∩Vn)) ≤dimK(Z).

    ProofSince st(X∪Y)=st(X)∪st(Y)and dim(X∪Y)=max{dim(X),dim(Y)}hold for all definable X,Y ?Kn.Applying Corollary 2.14,we many assume that dim(Z)=k and π :(x1,...xn)(x1,...,xk)is injective on Z.If k=n,then

    as st(Z ∩Vn)If k <n,then by Lemma 2.31,

    as required. □

    少妇精品久久久久久久| 91老司机精品| 国产福利在线免费观看视频| 欧美xxⅹ黑人| 国产精品久久久久成人av| 51午夜福利影视在线观看| 亚洲五月婷婷丁香| 91麻豆精品激情在线观看国产 | 大片免费播放器 马上看| 亚洲欧洲精品一区二区精品久久久| 女警被强在线播放| 国产成人精品久久二区二区91| 亚洲国产日韩一区二区| 久久国产精品男人的天堂亚洲| 12—13女人毛片做爰片一| 日韩 亚洲 欧美在线| 午夜福利影视在线免费观看| 国产高清videossex| 欧美黄色淫秽网站| 国产精品成人在线| 午夜福利在线观看吧| 免费观看人在逋| 精品久久久久久久毛片微露脸 | 大陆偷拍与自拍| 日本精品一区二区三区蜜桃| 青春草视频在线免费观看| 久久久久久久国产电影| 丝袜脚勾引网站| 丝袜美足系列| 国产99久久九九免费精品| 高潮久久久久久久久久久不卡| 男女国产视频网站| 色综合欧美亚洲国产小说| 亚洲天堂av无毛| 麻豆av在线久日| 亚洲一码二码三码区别大吗| 日本黄色日本黄色录像| 亚洲,欧美精品.| 巨乳人妻的诱惑在线观看| 18禁观看日本| 亚洲精品在线美女| av不卡在线播放| 日日爽夜夜爽网站| www.熟女人妻精品国产| 久9热在线精品视频| 丝袜人妻中文字幕| 狠狠狠狠99中文字幕| 99精品欧美一区二区三区四区| 午夜福利视频在线观看免费| 欧美日韩亚洲高清精品| av不卡在线播放| 热re99久久国产66热| 国产精品一区二区免费欧美 | 在线 av 中文字幕| 免费一级毛片在线播放高清视频 | 999精品在线视频| 老司机在亚洲福利影院| 91精品国产国语对白视频| 中文字幕最新亚洲高清| 十分钟在线观看高清视频www| 在线看a的网站| 五月开心婷婷网| 午夜福利乱码中文字幕| 国产在线一区二区三区精| 午夜视频精品福利| 欧美精品亚洲一区二区| 欧美精品啪啪一区二区三区 | 国产精品熟女久久久久浪| 人妻人人澡人人爽人人| 一级毛片女人18水好多| 免费av中文字幕在线| 国产精品亚洲av一区麻豆| 两人在一起打扑克的视频| 精品国产乱码久久久久久小说| 欧美人与性动交α欧美精品济南到| 亚洲精品日韩在线中文字幕| 69av精品久久久久久 | 人人妻人人爽人人添夜夜欢视频| 日韩电影二区| 午夜福利乱码中文字幕| 久热这里只有精品99| 在线永久观看黄色视频| 天天影视国产精品| 午夜影院在线不卡| 丰满少妇做爰视频| 免费不卡黄色视频| 免费观看a级毛片全部| 桃红色精品国产亚洲av| 国产色视频综合| a级毛片在线看网站| 黑丝袜美女国产一区| av有码第一页| 国产精品一区二区精品视频观看| 国产成+人综合+亚洲专区| 中文字幕av电影在线播放| 黄色a级毛片大全视频| 99久久99久久久精品蜜桃| 一本久久精品| 不卡av一区二区三区| 国产精品99久久99久久久不卡| 国产精品1区2区在线观看. | 蜜桃国产av成人99| 亚洲欧美激情在线| 亚洲精品国产区一区二| 国产精品一二三区在线看| 免费在线观看影片大全网站| 精品人妻1区二区| 国产在线观看jvid| 99国产精品免费福利视频| 大陆偷拍与自拍| 免费观看人在逋| 69av精品久久久久久 | 又大又爽又粗| 操出白浆在线播放| 91麻豆av在线| 中国国产av一级| 久久午夜综合久久蜜桃| 大片免费播放器 马上看| 男人爽女人下面视频在线观看| 一级黄色大片毛片| av线在线观看网站| 男女无遮挡免费网站观看| 人人妻人人爽人人添夜夜欢视频| 岛国毛片在线播放| 黄色视频,在线免费观看| 精品免费久久久久久久清纯 | 桃花免费在线播放| 91av网站免费观看| 男女下面插进去视频免费观看| tocl精华| 两人在一起打扑克的视频| 午夜成年电影在线免费观看| 啦啦啦中文免费视频观看日本| 无限看片的www在线观看| 曰老女人黄片| 丰满饥渴人妻一区二区三| 国产欧美日韩一区二区三区在线| 国产日韩欧美在线精品| 一区二区日韩欧美中文字幕| 亚洲国产精品999| 久久久国产精品麻豆| 叶爱在线成人免费视频播放| 高清黄色对白视频在线免费看| 中国美女看黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区av电影网| 大码成人一级视频| 黑人猛操日本美女一级片| 精品一区二区三区av网在线观看 | 日韩人妻精品一区2区三区| a在线观看视频网站| 久久天躁狠狠躁夜夜2o2o| 日本一区二区免费在线视频| 各种免费的搞黄视频| 午夜免费鲁丝| 9热在线视频观看99| 性色av一级| 丁香六月天网| 亚洲av美国av| 免费女性裸体啪啪无遮挡网站| 久久精品亚洲av国产电影网| 成人国语在线视频| 两个人看的免费小视频| 精品国产国语对白av| 国产精品99久久99久久久不卡| 久久久久久久大尺度免费视频| 国产又爽黄色视频| 99国产精品免费福利视频| cao死你这个sao货| 一进一出抽搐动态| 国产亚洲午夜精品一区二区久久| 国产日韩一区二区三区精品不卡| 亚洲av片天天在线观看| 精品福利观看| 久久人人97超碰香蕉20202| 欧美av亚洲av综合av国产av| 亚洲第一青青草原| 国产有黄有色有爽视频| 91国产中文字幕| 少妇的丰满在线观看| 久久久久久久精品精品| 五月天丁香电影| 日韩免费高清中文字幕av| 亚洲中文日韩欧美视频| xxxhd国产人妻xxx| 国产免费一区二区三区四区乱码| 又紧又爽又黄一区二区| 亚洲国产毛片av蜜桃av| 19禁男女啪啪无遮挡网站| 啪啪无遮挡十八禁网站| 操出白浆在线播放| 国产精品一区二区在线不卡| 丰满少妇做爰视频| 国产视频一区二区在线看| 丁香六月天网| 亚洲精品美女久久av网站| 亚洲精品中文字幕一二三四区 | 亚洲精华国产精华精| 热99re8久久精品国产| av天堂久久9| 欧美人与性动交α欧美软件| 国产高清视频在线播放一区 | 国产麻豆69| 正在播放国产对白刺激| 色播在线永久视频| 侵犯人妻中文字幕一二三四区| 久久人人97超碰香蕉20202| 国产一卡二卡三卡精品| av超薄肉色丝袜交足视频| 精品一区二区三区四区五区乱码| 男女国产视频网站| av电影中文网址| 欧美日韩黄片免| 99国产极品粉嫩在线观看| av视频免费观看在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲av电影在线进入| 满18在线观看网站| 午夜老司机福利片| 欧美中文综合在线视频| 丰满少妇做爰视频| 精品少妇一区二区三区视频日本电影| 黄色 视频免费看| 国产在线观看jvid| 91精品三级在线观看| 亚洲性夜色夜夜综合| 青草久久国产| 欧美黄色淫秽网站| 亚洲色图综合在线观看| 五月天丁香电影| 欧美亚洲日本最大视频资源| 男人添女人高潮全过程视频| videosex国产| 免费人妻精品一区二区三区视频| 国产精品一区二区精品视频观看| 婷婷成人精品国产| 久久毛片免费看一区二区三区| 中文字幕人妻丝袜制服| 99香蕉大伊视频| 男女高潮啪啪啪动态图| 美国免费a级毛片| 乱人伦中国视频| 亚洲,欧美精品.| 美女大奶头黄色视频| 性少妇av在线| 中文字幕高清在线视频| 中文字幕制服av| 国产欧美日韩一区二区三 | 国产熟女午夜一区二区三区| 18禁裸乳无遮挡动漫免费视频| 久久久久久久久免费视频了| 一本综合久久免费| 免费在线观看影片大全网站| 久久狼人影院| 国产免费现黄频在线看| 欧美日韩视频精品一区| 黑人猛操日本美女一级片| 午夜激情av网站| 日韩视频在线欧美| 丝袜美腿诱惑在线| 制服诱惑二区| 9色porny在线观看| a 毛片基地| 国产精品久久久av美女十八| 大陆偷拍与自拍| 国产极品粉嫩免费观看在线| 9色porny在线观看| 欧美精品亚洲一区二区| 波多野结衣av一区二区av| 成人亚洲精品一区在线观看| 久久精品亚洲av国产电影网| 国产精品欧美亚洲77777| 热99国产精品久久久久久7| videos熟女内射| 国产成人精品在线电影| 久9热在线精品视频| 国产高清国产精品国产三级| 国产在视频线精品| 老司机靠b影院| 另类亚洲欧美激情| 免费高清在线观看日韩| 午夜精品久久久久久毛片777| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美一区二区三区久久| 丝袜喷水一区| 国产有黄有色有爽视频| 18禁黄网站禁片午夜丰满| www.熟女人妻精品国产| 狂野欧美激情性bbbbbb| 欧美97在线视频| 一个人免费在线观看的高清视频 | 欧美国产精品一级二级三级| 曰老女人黄片| 日韩电影二区| 岛国毛片在线播放| 午夜精品久久久久久毛片777| 国产99久久九九免费精品| 亚洲国产欧美日韩在线播放| 欧美日本中文国产一区发布| 亚洲一卡2卡3卡4卡5卡精品中文| 9色porny在线观看| 激情视频va一区二区三区| 久久亚洲国产成人精品v| 亚洲精品自拍成人| 久久久久精品国产欧美久久久 | 国产真人三级小视频在线观看| 日韩视频一区二区在线观看| 亚洲av男天堂| 午夜91福利影院| 成年av动漫网址| 少妇裸体淫交视频免费看高清 | 50天的宝宝边吃奶边哭怎么回事| 免费高清在线观看视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 日本猛色少妇xxxxx猛交久久| 国产一区二区三区在线臀色熟女 | 免费高清在线观看日韩| 久久性视频一级片| 中国国产av一级| 亚洲精品一卡2卡三卡4卡5卡 | www.av在线官网国产| 亚洲精品自拍成人| 亚洲精品国产色婷婷电影| 我要看黄色一级片免费的| 国产一区有黄有色的免费视频| 美女脱内裤让男人舔精品视频| 热99re8久久精品国产| 精品高清国产在线一区| 欧美日韩亚洲高清精品| 蜜桃在线观看..| 免费高清在线观看视频在线观看| 亚洲欧洲精品一区二区精品久久久| 欧美精品啪啪一区二区三区 | 免费高清在线观看日韩| 欧美日韩视频精品一区| 亚洲 欧美一区二区三区| 老司机在亚洲福利影院| 国产真人三级小视频在线观看| 亚洲九九香蕉| 亚洲国产av影院在线观看| 夜夜骑夜夜射夜夜干| 免费黄频网站在线观看国产| 成在线人永久免费视频| 狂野欧美激情性xxxx| 亚洲国产精品成人久久小说| 欧美成人午夜精品| 精品一区二区三卡| 在线看a的网站| 高清av免费在线| 狂野欧美激情性bbbbbb| 一区二区日韩欧美中文字幕| 视频在线观看一区二区三区| 正在播放国产对白刺激| 成人av一区二区三区在线看 | 中文字幕最新亚洲高清| 不卡一级毛片| 性高湖久久久久久久久免费观看| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品一区二区www | 99热网站在线观看| 亚洲欧美一区二区三区久久| 91成人精品电影| 中文字幕另类日韩欧美亚洲嫩草| 精品国产乱码久久久久久小说| 男男h啪啪无遮挡| 男人添女人高潮全过程视频| 久久精品亚洲av国产电影网| 精品一区二区三区av网在线观看 | 色播在线永久视频| 日韩电影二区| 90打野战视频偷拍视频| 午夜激情久久久久久久| 欧美成人午夜精品| 国产免费现黄频在线看| 久久久国产一区二区| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久男人| 伦理电影免费视频| 黑人巨大精品欧美一区二区mp4| 欧美激情 高清一区二区三区| 久久久精品国产亚洲av高清涩受| 五月天丁香电影| 久久av网站| 老司机午夜十八禁免费视频| 亚洲国产精品成人久久小说| h视频一区二区三区| 日本av免费视频播放| 国产在视频线精品| 欧美变态另类bdsm刘玥| 后天国语完整版免费观看| 国产成人精品久久二区二区免费| 亚洲国产看品久久| 中文欧美无线码| 少妇猛男粗大的猛烈进出视频| 国产一区有黄有色的免费视频| 国产成人影院久久av| 国产成人a∨麻豆精品| 巨乳人妻的诱惑在线观看| 亚洲av欧美aⅴ国产| 久久国产亚洲av麻豆专区| 极品少妇高潮喷水抽搐| 高清黄色对白视频在线免费看| 中文字幕最新亚洲高清| 欧美成人午夜精品| 日韩熟女老妇一区二区性免费视频| 操美女的视频在线观看| 亚洲成人免费电影在线观看| 成在线人永久免费视频| www.精华液| 好男人电影高清在线观看| 美女大奶头黄色视频| 在线观看免费高清a一片| 国产真人三级小视频在线观看| 如日韩欧美国产精品一区二区三区| 老司机深夜福利视频在线观看 | 一级片'在线观看视频| 亚洲精品在线美女| 最近中文字幕2019免费版| 免费av中文字幕在线| 亚洲av成人不卡在线观看播放网 | 9191精品国产免费久久| 日韩精品免费视频一区二区三区| 欧美日韩一级在线毛片| 欧美国产精品va在线观看不卡| 一二三四社区在线视频社区8| 日本撒尿小便嘘嘘汇集6| 狂野欧美激情性bbbbbb| 成在线人永久免费视频| av一本久久久久| 99久久人妻综合| 久久久久久久久久久久大奶| 91老司机精品| 免费黄频网站在线观看国产| 亚洲激情五月婷婷啪啪| 午夜日韩欧美国产| 国产精品国产av在线观看| 欧美人与性动交α欧美精品济南到| 热99国产精品久久久久久7| 午夜福利,免费看| 国产97色在线日韩免费| 国产精品免费视频内射| 国产免费现黄频在线看| 黑人欧美特级aaaaaa片| 精品亚洲成国产av| 中国美女看黄片| 99久久99久久久精品蜜桃| 亚洲,欧美精品.| 成人三级做爰电影| 嫩草影视91久久| 黄片大片在线免费观看| 又黄又粗又硬又大视频| 91精品三级在线观看| 一本—道久久a久久精品蜜桃钙片| 人妻久久中文字幕网| 国产欧美日韩一区二区三区在线| av网站免费在线观看视频| 大片免费播放器 马上看| 热99久久久久精品小说推荐| 老司机午夜十八禁免费视频| 妹子高潮喷水视频| 狠狠婷婷综合久久久久久88av| 国产片内射在线| 亚洲av成人不卡在线观看播放网 | 下体分泌物呈黄色| 国产精品.久久久| 国产片内射在线| 国产一区有黄有色的免费视频| 久久久国产成人免费| 亚洲欧美精品综合一区二区三区| 亚洲九九香蕉| 一区二区三区四区激情视频| 人妻 亚洲 视频| 亚洲免费av在线视频| 亚洲精品久久久久久婷婷小说| 欧美国产精品va在线观看不卡| 成人免费观看视频高清| 欧美少妇被猛烈插入视频| 精品人妻一区二区三区麻豆| 波多野结衣一区麻豆| 欧美激情久久久久久爽电影 | 欧美精品亚洲一区二区| 99国产精品免费福利视频| 国产亚洲午夜精品一区二区久久| av天堂在线播放| 精品熟女少妇八av免费久了| 亚洲欧美日韩另类电影网站| 国产有黄有色有爽视频| 天天操日日干夜夜撸| 女人爽到高潮嗷嗷叫在线视频| 一本一本久久a久久精品综合妖精| 高清av免费在线| 乱人伦中国视频| 成人黄色视频免费在线看| 下体分泌物呈黄色| 黑丝袜美女国产一区| 9色porny在线观看| 天天影视国产精品| 久久香蕉激情| 婷婷色av中文字幕| 午夜福利在线观看吧| 国产亚洲精品一区二区www | 黑人操中国人逼视频| 在线精品无人区一区二区三| 久久久国产一区二区| 十八禁高潮呻吟视频| 三级毛片av免费| 动漫黄色视频在线观看| 久久免费观看电影| 99香蕉大伊视频| 精品少妇一区二区三区视频日本电影| 日本a在线网址| 中文字幕高清在线视频| 国产一区二区三区综合在线观看| 欧美久久黑人一区二区| 两个人免费观看高清视频| 在线av久久热| 国产日韩欧美亚洲二区| 国产成人一区二区三区免费视频网站| 免费在线观看影片大全网站| 中亚洲国语对白在线视频| av电影中文网址| 美女高潮到喷水免费观看| 丁香六月欧美| 午夜福利,免费看| 国产亚洲午夜精品一区二区久久| tube8黄色片| 国产精品亚洲av一区麻豆| 久久人人97超碰香蕉20202| 亚洲美女黄色视频免费看| 亚洲熟女毛片儿| 麻豆av在线久日| 欧美日韩av久久| 男女下面插进去视频免费观看| 99国产精品一区二区三区| 国产男女超爽视频在线观看| 窝窝影院91人妻| 在线精品无人区一区二区三| 久久人人爽av亚洲精品天堂| 久久精品国产亚洲av香蕉五月 | 黄片小视频在线播放| 多毛熟女@视频| 午夜免费观看性视频| 国产男女内射视频| 巨乳人妻的诱惑在线观看| 精品欧美一区二区三区在线| 人人妻,人人澡人人爽秒播| 国产成人av教育| 成人av一区二区三区在线看 | 动漫黄色视频在线观看| 免费看十八禁软件| 黑人巨大精品欧美一区二区mp4| 老鸭窝网址在线观看| 老熟妇乱子伦视频在线观看 | 老司机午夜福利在线观看视频 | 一二三四在线观看免费中文在| 欧美精品一区二区大全| 欧美乱码精品一区二区三区| 欧美日本中文国产一区发布| 黄色怎么调成土黄色| 人妻一区二区av| 两个人看的免费小视频| 深夜精品福利| 亚洲欧洲精品一区二区精品久久久| 日韩 欧美 亚洲 中文字幕| 大片电影免费在线观看免费| 精品亚洲成国产av| 国产成人欧美在线观看 | 777米奇影视久久| 国产精品麻豆人妻色哟哟久久| 国产精品亚洲av一区麻豆| 巨乳人妻的诱惑在线观看| 国产亚洲欧美精品永久| 国产在线观看jvid| av网站在线播放免费| 午夜免费观看性视频| 久久久精品94久久精品| 人妻 亚洲 视频| 黑人猛操日本美女一级片| 国产免费av片在线观看野外av| 国产男女内射视频| av视频免费观看在线观看| 国产高清videossex| 亚洲av美国av| 日日夜夜操网爽| 国产三级黄色录像| 午夜福利视频精品| 女人久久www免费人成看片| 在线观看免费高清a一片| 国产av精品麻豆| 两性午夜刺激爽爽歪歪视频在线观看 | 精品国产乱码久久久久久小说| 欧美 日韩 精品 国产| 三级毛片av免费| tube8黄色片| 人妻久久中文字幕网| 考比视频在线观看| √禁漫天堂资源中文www| 国产精品久久久人人做人人爽| 亚洲精品国产色婷婷电影| 国产精品二区激情视频| 久久国产亚洲av麻豆专区| 天天添夜夜摸| 女性被躁到高潮视频| 老鸭窝网址在线观看| 久久久久久免费高清国产稀缺| 如日韩欧美国产精品一区二区三区| 亚洲国产成人一精品久久久| 日本wwww免费看| 丁香六月天网| 欧美另类亚洲清纯唯美| 久久天堂一区二区三区四区| 精品一区二区三区av网在线观看 | 三上悠亚av全集在线观看| 女人精品久久久久毛片| 美女午夜性视频免费|