• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CIRCexplorer3:A CLEAR Pipeline for Direct Comparison of Circular and Linear RNA Expression

    2019-03-07 07:27:34XuKaiMaMengRanWangChuXiaoLiuRuiDongGordonCarmichaelLingLingChenLiYang
    Genomics,Proteomics & Bioinformatics 2019年5期

    Xu-Kai Ma ,Meng-Ran Wang ,Chu-Xiao Liu ,Rui Dong ,Gordon G.Carmichael ,Ling-Ling Chen ,Li Yang *

    1 CAS Key Laboratory of Computational Biology,CAS-MPG Partner Institute for Computational Biology,Shanghai Institute of Nutrition and Health,University of Chinese Academy of Sciences,Chinese Academy of Sciences,Shanghai 200031,China

    2 State Key Laboratory of Molecular Biology,CAS Center for Excellence in Molecular Cell Science,Shanghai Institute of Biochemistry and Cell Biology,University of Chinese Academy of Sciences,Chinese Academy of Sciences,Shanghai 200031,China

    3 Department of Genetics and Genome Sciences,University of Connecticut Health Center,Farmington,CT 06030,USA

    4 School of Life Science and Technology,ShanghaiTech University,Shanghai 201210,China

    KEYWORDS Circular RNA;Back-splicing;Linear RNA;Pre-mRNA splicing;Ribo-RNA-seq

    Abstract Sequences of circular RNAs(circRNAs)produced from back-splicing of exon(s)completely overlap with those from cognate linear RNAs transcribed from the same gene loci with the exception of their back-splicing junction(BSJ)sites.Therefore,examination of global circRNA expression from RNA-seq datasets generally relies on the detection of RNA-seq fragments spanning BSJ sites,which is different from the quantification of linear RNA expression by normalized RNA-seq fragments mapped to whole gene bodies.Thus,direct comparison of circular and linear RNA expression from thesamegenelociin a genome-widemanner hasremained challenging.Here,weupdatethepreviously-reported CIRCexplorer pipelineto version 3 for circular and linear RNA expression analysis from ribosomal-RNA depleted RNA-seq(CIRCexplorer3-CLEAR).A new quantitation parameter,fragments per billion mapped bases(FPB),is applied to evaluate circular and linear RNA expression individually by fragments mapped to circRNA-specific BSJsites or to linear RNA-specific splicing junction(SJ)sites.Comparison of circular and linear RNA expression levels isdirectly achieved by dividing FPBcirc by FPBlinear to generate a CIRCscore,which indicates therelativecircRNA expression level using linear RNA expression level asthebackground.Highlyexpressed circRNAs with low cognate linear RNA expression background can be readily identified by CIRCexplorer3-CLEAR for further investigation.CIRCexplorer3-CLEAR is publically available at https://github.com/YangLab/CLEAR.

    Introduction

    Eukaryotic pre-mRNA splicing is catalyzed by spliceosomes to join upstream 5′splice donor sites with downstream 3′splice acceptor sites to produce linear(m)RNAs.Interestingly,downstream 5′splice donor sites can also be linked to upstream 3′splice acceptor sites,referred to as back-splicing,leading to the production of circular RNAs(circRNAs)[1—3].Unlike most mature linear RNAs(including both coding and long non-coding RNAs),circRNAs are covalently closed and lack 3′-end poly(A)tails,resulting in their depletion in poly(A)+RNA-seq datasets.By taking advantage of RNAseq datasets that prof ile non-polyadenylated transcripts and computational approaches that aim to identify fragments mapped to back-splicing junction(BSJ)sites[4,5],a largenumber of circRNAs have been successfully prof iled as being coexpressed with their cognate linear RNAs from the same gene loci[2,3,6—8].Recent studies have shown that the biogenesis of circRNAs is catalyzed by canonical spliceosomal machinery and modulated by bothcis-elements andtrans-factors[1—3,9,10].Importantly,increasing lines of evidence have revealed that somecircRNAsplay important rolesunder physiological and pathological conditions,such as neurogenesis,cancer metastasis,and innateimmune responses,with different modes of action[6,11—14].

    Despite these findings,comprehensive characterization of circRNA biogenesis and function has been impeded because the majority of circRNAs are processed from middle exons of genes and their sequences almost completely overlap with those of their cognate linear RNAs except for the BSJ sites[2].Thus,a direct expression comparison of circular and linear RNAs from the same gene loci in a genome-wide manner has remained challenging.The primary obstacle for direct expression comparison is owing to distinct strategies for circular and linear RNA quantification from mapped RNA-seq fragments.In general,RNA-seq fragments that are solely mapped to BSJsites are used to represent circRNA expression,such as by raw or normalized fragment counts(fragments per million mapped fragments,FPM)as shown in Figure 1A(left).On the other hand,RNA-seq fragments mapped to exon bodies and exon-exon splicing junction(SJ)sites are summed up and normalized for linear RNA quantification,such as by fragments per kilobase of transcript per million mapped fragments(FPKM)[15]as shown in Figure 1A(right).Since FPM is unscaled to FPKM,the relative expression levels of most circRNAs are not comparable to those of their cognate linear RNAs when analyzing RNA-seq datasets.

    To solve this problem,we have further updated our previously-reported CIRCexplorer[7]and CIRCexplorer2[16]pipelines to version 3 for circular and linear RNA expression analysis from ribosomal-RNA depleted RNA-seq(CIRCexplorer3-CLEAR,or CLEAR for simplicity,Figure 1B).With the CLEAR pipeline,RNA-seq fragments mapped to circRNA-specific BSJ sites or linear RNA-specific SJsites are individually normalized to evaluate circular or linear RNA expression,each in fragments per billion mapped bases(FPB).Unlike using the non-comparable FPM and FPKM values,expression levels of circular and linear RNAs are both quantified by FPB values with the CLEAR pipeline,and thus can be directly compared by dividing FPBcircby FPBlinearto generate a CIRCscore.In this scenario,relative circRNA expression can be evaluated by using linear RNA expression as an expression background, and highlyexpressed circRNAs with low cognate linear RNA expression background can be identified for further functional studies.Parallel analyses further suggest that CLEAR is more reliable for circular and linear RNA expression comparison than other related methods,with economic memory usage and comparable time consumption.

    Method

    Direct circular and linear RNA expression comparison by the CLEAR pipeline

    CLEAR was developed to achieve direct circular and linear RNA expression comparison.Ribo-RNA-seq datasets that prof ileboth polyadenylated linear and non-polyadenylated circular RNAs in parallel are used for precise circular and linear RNA expression comparison.

    The CLEAR pipeline includes two main steps:alignment and quantification (Figure 1B). For the alignment,ribo-RNA-seq fragments were first mapped by HISAT2[17](version 2.0.5;parameters:hisat2--no-softclip--scoremin L,-16,0--mp 7,7--rfg 0,7--rdg 0,7--dta-k 1--max-seeds 20)against the GRCh38/hg38 human reference genome with known gene annotations(Figure S1)for subsequent linear RNA quantification analysis.HISAT2-unmapped fragments were then mapped to the same GRCh38/hg38 reference genome using TopHat-Fusion (version 2.0.12;parameters:tophat2 -fusion-search --keep-fasta-order--bowtie1 --nocoverage-search)for subsequent circRNA quantification.

    For the quantification,we applied a new FPB value to quantitate linear RNA expression by HISAT2-mapped fragments to SJsitesof the maximally-expressed transcript annotation(Figure S2).The maximally-expressed transcript of a given gene is selected with the highest FPKM value,which is calculated by StringTie(version 1.3.3;parameters:stringtie-e-G)from HISAT2 aligned BAM f ile[18].Fragments mapped to BSJs were retrieved from Top Hat-Fusion as previously reported(version 2.3.6;parameters:CIRCexplorer2 parse-f-t TopHat-Fusion)[16,19]and normalized by totallymapped bases to obtain FPB values for circRNA quantification.

    Figure 1 A computational pipeline for direct circular and linear RNA expression comparison

    Direct comparison of circular and linear RNA expression is achieved using the CIRCscore value that divides FPBcircby FPBlinear,which represents relative circRNA expression using linear RNA expression as the background.

    Flexibility of the CLEAR pipeline

    Other aligners,including TopHat2(version 2.0.12;parameter:tophat2-a 6--microexon-search-m 2-g 1)with known gene annotations(Figure S3)or MapSplice(version 2.1.8 with default parameters)with gene annotations(ensGene_v89.txt updated at 2017/05/08)can also be used in the CLEAR pipeline with similar outputs.

    In the CLEAR pipeline,comparablecircular or linear RNA expression by FPBs and their direct comparison by the CIRCscorecan beobtained directly from raw RNA-seq FASTQ f iles or processed RNA-seq results,such as CIRCexplorer2 output f iles[16].Please see https://github.com/YangLab/CLEAR for details.

    Cell culture

    PA1 cells were purchased from the American Type Culture Collection(ATCC;http://www.atcc.org),and maintained in MEMαsupplemented with 10%FBS,1%glutamine and 0.1%penicillin/streptomycin at 37°C in a 5%CO2cell culture incubator.PA1 cells were routinely tested to exclude mycoplasma contamination.

    Comparison of FPB with qPCR quantification

    Total RNAs from cultured PA1 cells were extracted with Trizol(Thermo Fisher Scientific;Cat No.15596018,Waltham,USA)according to the manufacturer’s protocol.Extracted RNAs were treated with DNase I(DNA-freeTMkit;Thermo Fisher Scientific;Catalog No.AM 1907,Waltham,USA),and reversely transcribed with SuperScript III(Thermo Fisher Scientific;Catalog No.18080044)to produce cDNA and then applied for qPCR analysis.Expression ofACTB,which encodesβ-actin,was examined as an internal control for normalization.Expression of examined linear and circular RNAs was determined from three independent experiments.The primers used in this study are listed in Table S1.

    Mapping efficiencies of circRNAs by different pipelines

    Three different mapping strategies,including CLEARembedded CIRCexplorer2,MapSplice,and circtools with embedded tool(detect circRNAs from chimeric reads,DCC)[20,21],were applied to fetch fragments mapped to BSJ and/or SJsites in PA1 ribo-RNA-seq dataset[16,22].efficiencies of BSJ-mapped fragments were compared by all three pipelines.Normalized circRNA expression was compared between CLEAR with CIRCscores and circtools with circular over linear ratios(CLRs).

    Specifically,for the CLEAR pipeline,fragments mapped to BSJor SJsites and CIRCscores were directly obtained by one single command line:-g hg38.fa-i hisat2_index-j bowtie1_index-G gene.gtf-o out_dir-p 10.For Map Splice pipeline,fragments mapped to BSJsites were obtained by:-p 10--fusion--min-fusion-distance 200--gene-gtf gene.gtf-o out_dir-c chromosomes-x bowtie1_index-1 PA1.For circtools,PA1 ribo-RNA-seq dataset[16,22]were mapped by circtools pipeline with tool(spliced transcripts alignment to a reference,STAR)as suggested at https://docs.circ.tools/en/latest/Detect.html.After a series of reformatting steps,fragments mapped to BSJ or SJ sites were obtained by circtools with parameters:detect@samplesheet-T 10-N-D-an gene.gtf-F-Nr 1 1-fg-G-A hg38.fa-B@bam_f iles.txt.CLRs of circRNAs were finally calculated by dividing BSJ fragments with the mean of SJ-mapped fragments with customized scripts according to circtools.

    For the comparison of consumed memories and elapsed time by CLEAR or circtools,ribo-RNA-seq datasets in PA1[16,22]or cortex[23]were used for the analysis with parameters described above.Consumed memories were recorded by linux commandpsevery 20 s.

    RNA-seq datasets used in this study

    Datasets used for this study include publicly available ribo-,poly(A)+,poly(A)-/ribo-,and RNase R RNA-seq datasets from PA1 cell line[16,22],ribo-RNA-seq datasets of 12 tissues from ENCODE[23](Table S2),as well as ribo-RNAseq datasets of 20 human hepatocellular carcinoma(HCC)samples and their paired normal samples from Gene Expression Omnibus(GEO:GSE77509)[24].

    Results

    Development of the CLEAR pipeline

    The CLEAR pipeline was set up for direct circular and linear RNA expression comparison on a genome-wide scale(Figure 1B).Two characteristic features for circular and linear RNA quantification are applied in the CLEAR pipeline.Similar to circRNA quantification by RNA-seq fragments solely mapped to BSJ sites,fragments that only map to canonical SJ sites by HISAT2 are used for linear RNA quantification(Figure 1B,right).Different from commonly-used FPKM that countsfragmentsmapped to both exon bodiesand SJsites,linear RNA quantification by fragments only mapped to canonical SJ sites is comparable to circRNA quantification by those mapped to BSJ sites(Figure 1B).In addition,fragments mapped to SJ or BSJ sites are normalized by totally mapped bases,rather than by totally mapped fragments,to get FPB for linear or circular RNA quantification(Figure1B,left,Quantification).Direct circular and linear RNA expression comparison can then be achieved with the CIRCscore that divides FPBcircby FPBlinear(Figure 1B,left).

    Comparison of FPB with FPKM for linear RNA quantification

    To evaluate the accuracy of FPB for RNA quantification,commonly-used FPKM values are obtained from the same HISAT2-mapped results.Basically,HISAT2-mapped results are first converted to BAM format by SAMtools[25].String-Tie[18]is then used to calculate transcript expression by FPKM.Since multiple linear RNAs can be produced from a given gene locus,the average FPB value of fragments mapped to all SJ sites in the maximally-expressed linear transcript is used to represent the expression of this gene in the current study(Figure 1B and Figure S2A,S2B).

    With the requirement of FPBlinear>0 and FPKMlinear>0,linear RNA expression,when quantitated by FPBlinear,is highly correlated with that quantitated by FPKMlinearin the PA1 cell line[22](Figure 2A).Indeed,thevalue of FPBlinearis theoretically equivalent to that of FPKMlinear(Figure S2C).Furthermore,FPBlinearis highly correlated with the relative expression of 13 linear RNAs as measured by RT-qPCR in PA1 cells(Figure2B,Table S3).Weobserve a high correlation between FPBlinearand FPKMlinearwhen using different aligners,such as Top Hat2[26]and Map Splice[27],to analyze the ribo-RNA-seq dataset of PA1(Figure S3).Finally,FPBlinearis also highly correlated with FPKMlinearin ENCODE RNAseq datasets from the 12 human tissues examined(Figure S4 and Table S2).Collectively,these findings reveal that FPBlinearis applicable for linear RNA quantification.

    Comparison of FPB with FPM for circRNA quantification

    As expected,circRNA expression,when quantitated by FPBcirc,is highly correlated with that by FPMcirc(Figure 2C).Experimentally,FPBcircis also highly correlated with the relative expression of 13 examined circRNAs as measured by RTqPCR in PA1 cells(Figure 2D,Table S3).The expression of these 13 circRNAs ranges from~1 to 10 FPB(Figure2D),and their cognate linear RNAs are evaluated above(Figure 2B).

    Importantly,compared to commonly-used FPM,FPB is resistant to differences in sequencing lengths and strategies,such as 1×50vs.1×100 or single-endvs.paired-end RNAseq datasets(Figure2E).These resultsare in reasonableagreement with the def initions of FPB and FPM.For example,1 FPB is equivalent to 0.1 FPM for 1×100 bp single-end RNA-seq datasets(Figure S5A)and to 0.2 FPM for 2×100 bp paired-end RNA-seq datasets(Figure S5B).Importantly,in this scenario,FPB can be used directly for crosssample comparison regardless of different sequencing lengths and strategies employed.

    Figure 2 Comparison of FPB with other quantification statistics

    Evaluation of relative circRNA expression by CIRCscore

    Different from unscaled and non-comparable values of FPKMlinear(for linear RNA expression)and FPMcirc(for circRNA expression),FPBlinearfor linear RNA measurement is comparable to FPBcircfor circRNA measurement.We divide FPBcircby FPBlinearto obtain CIRCscore values,by which expression levels of circular and linear RNAs are directly compared in a genome-wide manner.Importantly,the CIRCscore washighly correlated with theexperimental comparison of circularvs.linear RNA relative expression as measured by RTqPCR in 13 gene loci from PA1 cells examined in this study(Figure2F and Table S3),conf irming that CIRCscoreprovides an additional parameter to evaluate circRNA expression normalized by their cognate linear RNA expression background.

    Wefurther compared CIRCscoreby CLEAR with CLR by another previously reported circRNA quantification toolkit,circtools[20].Different from CIRCscore that can be achieved by the CLEAR pipeline directly with a simple command,multiple steps are required to obtain CLR with circtools[20].Importantly,CIRCscore by CLEAR is more accurate than CLR by circtools.For example,CIRCscore of a highlyexpressed circRNA,circCAMSAP-1,is shown as~3.65(Figure3A,blue),which issimilar to RT-qPCR validation with relative expression(circRNA/linear RNA)of~3.82(Figure 3A,gray).However,CLR calculated by circtools with a customized script isabout~0.80(Figure3A,light blue),which is very different from the value derived from RT-qPCR validation.To find out what causes the difference,we performed mapping analysis.It shows that about 126 fragments at the BSJ site ofcircCAMSAP-1 can be identified by the CLEARembedded CIRCexplorer2 pipeline,while only 36 fragments are identified by the circtools-embedded DCC pipeline(Figure 3A),suggesting that DCC could be less efficient for BSJ-mapped fragment calling.The comparison of CIRCexplorer2,Map Splice,and DCC conf irms that DCC is less efficient for circRNA identification(Figure 3).In the ribo-RNA-seq dataset from PA1 cells,356 overlapping circRNAs(with fragments mapped to BSJ≥3)identified by both CIRCexplorer2 and Map Splice failed to be detected by DCC,while only 107 or 99 overlapping circRNAs identified by both CIRCexplorer2 and DCC or MapSplice and DCC were undetected by MapSplice or CIRCexplorer2(Figure 3B),respectively.Among 787 overlapping circRNAs identified by all three pipelines,DCC was also shown to inefficiently call fragments mapped to BSJs in general(Figure 3C).Of note,CIRCexplorer2 and Map Splice are two reliable pipelines for circRNA prof iling[4,28].Taken together,CIRCscore from the CLEAR pipeline is reliable for circRNA normalization using cognate linear RNA expression as background.

    Comparison of FPB and CIRCscore in circRNA analysis

    circRNAs are generally co-expressed with their cognate linear RNAs and that sequences of circRNAs largely overlap with those of linear RNAs.Therefore,the advantage of using CIRCscoreto quantitate circRNA expression isthat it normalizes circRNA expression to the linear RNA expression background.As shown in the PA1 cell line,among those with FPBcirc≥1,some circRNAs with high FPB values have low CIRCscore values(Figure 4A,blue),possibly due to the high expression of their cognate linear RNAs(Figure 4B).However,other circRNAs with comparable FPB values have relatively high CIRCscores(Figure 4A,red),as their cognate linear RNAs are expressed at low levels(Figure 4C).This observation suggests variable expression patterns of circular and their cognate linear RNAs from different genomic loci.

    We further applied CLEAR to evaluate circRNAs in 12 additional human tissues with both FPB and CIRCscore values(Figure 5A and Table S4).Consistent with previous findings[29],circRNAs are more abundant in brain samples than in non-brain tissues.Among all six brain samples examined,circRNAs are more enriched in the cortex,occipital,and diencephalon,but less in the cerebellum,when evaluated by both FPB(Figure 5A,left)and CIRCscore(Figure 5A,right)values.In the six non-brain tissues,circRNAs are enriched in the heart and thyroid at a comparable level to that in the cerebellum.About 10%—20%of circRNAs with FPBcirc≥1 areexpressed at a comparable or even higher level than their cognate linear RNAs,as indicated by CIRCscore≥1(Figure 5A,right),such as in gene loci forcircTPTE2P5andcircPHF7(Figure 5B).Taken together,the identification of highly-expressed circRNAs with high FPBcircand CIRCscore values reveals that some gene loci are particularly favorable for circRNA production(Table S4),and such circRNAs warrant subsequent functional studies.

    CIRCscore reduces individual differences

    Different from FPB,using CIRCscore to evaluate circRNA expression can reduce individual differences that are caused by RNA-seq samples themselves.For example,compared to paired normal samples,circRNA expression evaluated by the FPBcircvalueisinconsistent in a batch of 20 human HCC samples(GEO:GSE77509)[24].Some HCC samples appear to have generally low circRNA expression;while others,such as samples#11 and#16,appear to have significantly high circRNA expression(Figure S6A).Consequently,it is hard to distinguish circRNA expression differences between HCC and their paired normal samples using FPBcircin these 20 HCC samples(Figure 6A,P=0.99).Strikingly,however,circRNAs are generally lowly expressed in almost all HCC samples when CIRCscore isused to normalizecircRNA expression with cognate linear RNA background (Figure 6B,P=3.59×10-5and Figure S6B).These results suggest that it is important to take cognate linear RNA expression into consideration for circRNA quantification,which can be achieved by the CLEAR pipeline in a genome-wide manner.Taken together,quantification of circRNA expression by CIRCscore helps to eliminate individual differences among paired comparisons,and can therefore be used to decipher the trend of circRNA expression changes under different conditions and for different diseases across RNA-seq datasets.

    Discussion

    Recently,circRNAs have been widely detected in cell lines and tissues examined by deep sequencing of non-polyadenylated RNAs and using specific computational pipelines for detecting RNA-seq reads/fragments mapped to BSJsites[16,29,30].Due to distinct strategies for circular or linear RNA quantification(Figure 1A),computational pipelines for direct circular and linear RNA expression comparison from RNA-seq datasets have remained challenging.In this study,we have developed CLEAR by applying normalized RNA-seq fragments solely mapped to BSJ or canonical SJ sites individually for circular(FPBcirc)or cognate linear(FPBlinear)RNA quantification(Figure 1B).

    Figure 3 Comparison of circRNA quantification by CIRCexplorer3-CLEAR and other tools

    Figure 4 Difference of circRNA quantification by FPB and CIRCscore

    Figure 5 Application of CIRCexplorer3-CLEAR among 12 human tissue samples

    Figure 6 Removal of possible errors/f luctuations and individual differences using CIRCscore quantification

    The CLEAR pipeline has at least two advantages in circRNA studies.First,the FPB values are highly correlated with canonical FPKMs for linear RNAs and FPMs for circRNAs(Figure 2),which are unlikely affected by RNA-seq strategies,making cross-sample comparisons feasible.Second,direct comparison of circular and cognate linear RNAs with the CIRCscore not only precisely quantitates circRNA expression relative to normalized linear RNA expression background(Figures 4 and 5),but also eliminates possible errors/f luctuations caused by sample preparation/sequencing differences(Figure 6).This reduces inaccuracies for circRNA quantification and subsequent cross-sample comparison.Compared to other multi-step methods for circular and linear RNA comparison,such as DCC/circtools,the CLEAR pipeline is efficient(Figure 3),memory-economical(Figure S7),easily performed with a single command(Figure S7),and user-friendly due to the application of reliable CIRCexplorer2[4,28].By using cognatelinear RNAsasbackground,CLEAR hasthe potential to allow users to identify highly expressed circRNAs in different biological settings for subsequent functional studies.This is important,because so far it has often been diff icult to identify the circRNAs with the highest expression levels in contexts of interest,or those more highly expressed than their cognate linear RNAs,for functional studies.

    It is worth noting that different RNA sequencing strategies have been applied to prof ile circRNAs,including ribo-,poly(A)-/ribo-,and RNase R-treated RNA-seq datasets(Figure 4).Different from poly(A)+RNA-seq datasets that are used to detect polyadenylated cognate linear RNAs,all three types of non-polyadenylated RNA-seq can be used to determine circRNA expression by FPB.However,only ribo-RNA-seq datasets that prof ile both polyadenylated linear and non-polyadenylated circular RNAs in parallel are suitable for direct circular and linear RNA expression comparison by CIRCscore(Figure 4).In contrast,in poly(A)-/ribo-,and RNase R-treated RNA-seq datasets,polyadenylated linear RNAs are largely depleted,which is unsuitable for accurate linear RNA quantification and subsequent CIRCscore evaluation.

    Taken together,the CLEAR pipeline provides a comprehensive way to quantitatively evaluate circRNA expression acrosssamplesand to identify highly expressed circRNAswith low linear RNA expression background.

    Availability

    The CIRCexplorer3-CLEAR pipeline and its application can be downloaded from https://github.com/YangLab/CLEAR.

    Authors’contributions

    LY conceived and designed theproject.XKM,MRW,and RD performed computational analyses under the supervision by LY.CXL performed experiments under the supervision by LLC.LY,LLC,and GGC wrote the paper with input from XKM and MRW.All authors read and approved the final manuscript.

    Competing interests

    The authors have declared no competing interests.

    Acknowledgments

    This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences,China(Grant No.XDB19020104),the National Natural Science Foundation of China(Grant Nos.31730111,31925011,and 91940306),and the Howard Hughes Medical Institute International Program,the United States(Grant No.55008728).

    Supplementary material

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.gpb.2019.11.004.

    人妻少妇偷人精品九色| 亚洲自拍偷在线| h日本视频在线播放| 亚洲中文字幕日韩| 国产精品98久久久久久宅男小说| 亚洲在线观看片| 国产久久久一区二区三区| 亚洲精品影视一区二区三区av| 午夜福利视频1000在线观看| 精品欧美国产一区二区三| 最近在线观看免费完整版| 在线免费观看不下载黄p国产 | 久久久久久久久久成人| 人妻制服诱惑在线中文字幕| 免费看a级黄色片| 长腿黑丝高跟| 国产亚洲av嫩草精品影院| 亚洲国产精品久久男人天堂| 日本成人三级电影网站| 99久久精品热视频| 国产成人影院久久av| 欧洲精品卡2卡3卡4卡5卡区| av福利片在线观看| 久久精品国产亚洲av香蕉五月| 国产高清有码在线观看视频| 女的被弄到高潮叫床怎么办 | 中亚洲国语对白在线视频| 特大巨黑吊av在线直播| 成年版毛片免费区| 久久精品国产清高在天天线| 男人和女人高潮做爰伦理| 精品人妻一区二区三区麻豆 | 99久久久亚洲精品蜜臀av| 99热只有精品国产| 久久久国产成人免费| 精品久久久久久久久久免费视频| 12—13女人毛片做爰片一| 日本精品一区二区三区蜜桃| 熟女人妻精品中文字幕| 国产精品人妻久久久久久| 午夜福利高清视频| 国产一区二区激情短视频| 午夜精品久久久久久毛片777| 精品一区二区三区av网在线观看| 99久久久亚洲精品蜜臀av| 免费高清视频大片| 在现免费观看毛片| a级一级毛片免费在线观看| 两个人的视频大全免费| 久久精品综合一区二区三区| 桃色一区二区三区在线观看| 色综合色国产| 国产精品av视频在线免费观看| 精品免费久久久久久久清纯| 久久草成人影院| 老司机深夜福利视频在线观看| 欧美日本亚洲视频在线播放| 69av精品久久久久久| 午夜福利成人在线免费观看| 在线a可以看的网站| 国产精品av视频在线免费观看| 性插视频无遮挡在线免费观看| 亚洲国产精品久久男人天堂| 色哟哟哟哟哟哟| 国产亚洲91精品色在线| 中文字幕精品亚洲无线码一区| 日日摸夜夜添夜夜添小说| 此物有八面人人有两片| 一夜夜www| 国产v大片淫在线免费观看| 人妻制服诱惑在线中文字幕| 色吧在线观看| 国产精品美女特级片免费视频播放器| 国产伦在线观看视频一区| 国产午夜精品久久久久久一区二区三区 | 国产午夜精品论理片| 人人妻人人澡欧美一区二区| 一个人看视频在线观看www免费| 久久热精品热| 国产精品爽爽va在线观看网站| 在线看三级毛片| 亚洲性久久影院| 日韩欧美精品v在线| 少妇裸体淫交视频免费看高清| 亚洲一区高清亚洲精品| 老司机深夜福利视频在线观看| 一级a爱片免费观看的视频| 亚洲av第一区精品v没综合| 校园春色视频在线观看| 免费观看在线日韩| 国国产精品蜜臀av免费| 男人狂女人下面高潮的视频| av天堂中文字幕网| 男女边吃奶边做爰视频| 91精品国产九色| 少妇高潮的动态图| 日本精品一区二区三区蜜桃| 桃色一区二区三区在线观看| 伦理电影大哥的女人| 国产精品av视频在线免费观看| 日韩欧美精品免费久久| 国产激情偷乱视频一区二区| 99国产极品粉嫩在线观看| 亚洲av一区综合| 精品日产1卡2卡| 成年版毛片免费区| 国产精品国产三级国产av玫瑰| 亚洲最大成人手机在线| 午夜日韩欧美国产| 久久精品夜夜夜夜夜久久蜜豆| videossex国产| 又黄又爽又刺激的免费视频.| 国产极品精品免费视频能看的| 国产av不卡久久| 日韩 亚洲 欧美在线| 在线观看舔阴道视频| 国产真实伦视频高清在线观看 | 久久精品91蜜桃| 香蕉av资源在线| 国产伦人伦偷精品视频| 亚洲美女视频黄频| 亚洲国产日韩欧美精品在线观看| 久久久久久久亚洲中文字幕| 日韩,欧美,国产一区二区三区 | 99精品在免费线老司机午夜| 又黄又爽又刺激的免费视频.| 黄色配什么色好看| 日韩精品青青久久久久久| 国产精品国产三级国产av玫瑰| av视频在线观看入口| 两人在一起打扑克的视频| 精品久久久噜噜| 黄色日韩在线| 国产真实伦视频高清在线观看 | 波多野结衣巨乳人妻| 女同久久另类99精品国产91| 美女免费视频网站| 嫩草影院精品99| 国产真实乱freesex| 淫妇啪啪啪对白视频| 在线a可以看的网站| 免费电影在线观看免费观看| 一级毛片久久久久久久久女| 国产精品久久电影中文字幕| 国产女主播在线喷水免费视频网站 | 淫秽高清视频在线观看| 国产av一区在线观看免费| 精品一区二区三区人妻视频| а√天堂www在线а√下载| 99久久成人亚洲精品观看| 悠悠久久av| 18禁在线播放成人免费| 最近最新中文字幕大全电影3| 久久久久久九九精品二区国产| 听说在线观看完整版免费高清| 91精品国产九色| 中文亚洲av片在线观看爽| 麻豆国产97在线/欧美| 很黄的视频免费| 日日摸夜夜添夜夜添小说| 欧美xxxx黑人xx丫x性爽| 亚洲精品久久国产高清桃花| 亚洲人与动物交配视频| 麻豆av噜噜一区二区三区| 午夜精品一区二区三区免费看| 久久久久久久久久黄片| 国产精品一及| 国产黄a三级三级三级人| 嫩草影院新地址| 99热6这里只有精品| 日日夜夜操网爽| 亚洲中文字幕一区二区三区有码在线看| 国产伦精品一区二区三区视频9| 一夜夜www| 欧美丝袜亚洲另类 | 国产精品久久久久久亚洲av鲁大| 九色成人免费人妻av| 精品欧美国产一区二区三| 久久人妻av系列| 欧美日韩综合久久久久久 | 18禁裸乳无遮挡免费网站照片| 亚洲图色成人| 亚洲色图av天堂| 免费av毛片视频| 简卡轻食公司| 国产高清不卡午夜福利| 搡女人真爽免费视频火全软件 | 国产美女午夜福利| 在线a可以看的网站| 成人特级av手机在线观看| 成熟少妇高潮喷水视频| 日日啪夜夜撸| 成人无遮挡网站| 国产在线男女| 国产91精品成人一区二区三区| 非洲黑人性xxxx精品又粗又长| 精品福利观看| 18禁在线播放成人免费| 成人一区二区视频在线观看| 亚洲综合色惰| 99久国产av精品| 身体一侧抽搐| 一区二区三区免费毛片| 色综合婷婷激情| 久久99热这里只有精品18| 午夜激情欧美在线| av天堂中文字幕网| 亚洲av第一区精品v没综合| 人妻丰满熟妇av一区二区三区| 亚洲精品日韩av片在线观看| 午夜精品久久久久久毛片777| 国内精品一区二区在线观看| 乱人视频在线观看| 国产色婷婷99| 亚洲综合色惰| 老司机福利观看| 国产精品综合久久久久久久免费| 99久久无色码亚洲精品果冻| 欧美+日韩+精品| 亚州av有码| 久久草成人影院| 免费在线观看影片大全网站| 久久久久久久精品吃奶| 91狼人影院| 欧美黑人欧美精品刺激| 国产久久久一区二区三区| 亚洲av中文av极速乱 | 欧美+亚洲+日韩+国产| 色播亚洲综合网| 国产高清三级在线| 黄色女人牲交| 中出人妻视频一区二区| 久久久午夜欧美精品| 最后的刺客免费高清国语| 在线观看舔阴道视频| 日韩欧美三级三区| 日韩欧美在线二视频| 日日啪夜夜撸| 美女cb高潮喷水在线观看| 欧美+日韩+精品| 免费高清视频大片| 免费黄网站久久成人精品| 日韩一本色道免费dvd| 嫩草影院入口| 天天一区二区日本电影三级| 亚洲无线在线观看| 国产色爽女视频免费观看| 97人妻精品一区二区三区麻豆| av女优亚洲男人天堂| 亚洲欧美日韩东京热| 国产主播在线观看一区二区| 亚洲最大成人av| 搡老岳熟女国产| 深爱激情五月婷婷| 狂野欧美白嫩少妇大欣赏| 淫妇啪啪啪对白视频| 22中文网久久字幕| 听说在线观看完整版免费高清| 久久精品国产99精品国产亚洲性色| 一个人看视频在线观看www免费| 黄片wwwwww| 亚洲精品久久国产高清桃花| 久久久久久久亚洲中文字幕| 日本免费一区二区三区高清不卡| 亚洲国产欧美人成| 最新在线观看一区二区三区| 亚洲色图av天堂| 久久中文看片网| 久久久国产成人免费| 亚洲成av人片在线播放无| 18禁黄网站禁片免费观看直播| 免费搜索国产男女视频| 在线播放国产精品三级| 97人妻精品一区二区三区麻豆| 男人和女人高潮做爰伦理| 看十八女毛片水多多多| 一区二区三区四区激情视频 | 国产欧美日韩精品亚洲av| 99在线视频只有这里精品首页| 国产精品人妻久久久久久| 国产成年人精品一区二区| 精品99又大又爽又粗少妇毛片 | 高清在线国产一区| 国产主播在线观看一区二区| 欧美日韩亚洲国产一区二区在线观看| 国产精品福利在线免费观看| 韩国av在线不卡| 永久网站在线| 国产精华一区二区三区| 亚洲人成网站在线播放欧美日韩| 久久天躁狠狠躁夜夜2o2o| 色5月婷婷丁香| 国产国拍精品亚洲av在线观看| 精品久久久久久久久久久久久| 成人三级黄色视频| 欧美3d第一页| 无遮挡黄片免费观看| 人妻少妇偷人精品九色| 国产高清视频在线播放一区| 在现免费观看毛片| 亚洲第一区二区三区不卡| 亚洲精华国产精华精| 亚洲va日本ⅴa欧美va伊人久久| 综合色av麻豆| 波多野结衣巨乳人妻| 国产男人的电影天堂91| 黄色欧美视频在线观看| 国产欧美日韩精品亚洲av| 乱码一卡2卡4卡精品| 久久精品夜夜夜夜夜久久蜜豆| 欧美中文日本在线观看视频| 2021天堂中文幕一二区在线观| 能在线免费观看的黄片| 午夜福利高清视频| 日韩 亚洲 欧美在线| 精品一区二区三区人妻视频| 亚洲欧美日韩高清专用| 麻豆久久精品国产亚洲av| 性色avwww在线观看| 婷婷亚洲欧美| 一个人观看的视频www高清免费观看| 搞女人的毛片| 制服丝袜大香蕉在线| 国产精品不卡视频一区二区| 亚洲狠狠婷婷综合久久图片| netflix在线观看网站| 久久久久久国产a免费观看| 天堂网av新在线| 亚洲综合色惰| 老女人水多毛片| 午夜a级毛片| 国产v大片淫在线免费观看| 国产三级在线视频| 欧美中文日本在线观看视频| 深夜a级毛片| 国产69精品久久久久777片| 波多野结衣高清无吗| 国产欧美日韩一区二区精品| 一进一出抽搐gif免费好疼| 亚洲av免费高清在线观看| 麻豆成人av在线观看| 日本 欧美在线| 成年版毛片免费区| 久久午夜福利片| 日韩精品中文字幕看吧| 亚洲黑人精品在线| av天堂中文字幕网| 俺也久久电影网| 女同久久另类99精品国产91| 午夜福利视频1000在线观看| 国内精品美女久久久久久| 午夜福利视频1000在线观看| 成人国产麻豆网| 99久国产av精品| 91av网一区二区| 亚洲精品456在线播放app | 国产精品永久免费网站| 国产精品一及| 欧美一级a爱片免费观看看| 日韩欧美三级三区| 成人综合一区亚洲| 麻豆国产97在线/欧美| 联通29元200g的流量卡| 男女边吃奶边做爰视频| 国产亚洲精品综合一区在线观看| 我要搜黄色片| 少妇熟女aⅴ在线视频| 制服丝袜大香蕉在线| 国产成人一区二区在线| 岛国在线免费视频观看| 波野结衣二区三区在线| 日本 欧美在线| 国产精品1区2区在线观看.| 啪啪无遮挡十八禁网站| .国产精品久久| 一区二区三区免费毛片| 成年女人看的毛片在线观看| 男人的好看免费观看在线视频| 免费av不卡在线播放| 一区二区三区免费毛片| 欧美区成人在线视频| 亚洲va在线va天堂va国产| 亚洲精品一卡2卡三卡4卡5卡| 最近最新免费中文字幕在线| 亚洲成人免费电影在线观看| 麻豆国产av国片精品| 三级国产精品欧美在线观看| 国产成人aa在线观看| 久久热精品热| 国产精品美女特级片免费视频播放器| 国产av在哪里看| 国产视频内射| 18禁黄网站禁片免费观看直播| 老司机福利观看| 亚洲av中文av极速乱 | 全区人妻精品视频| 成人特级av手机在线观看| 99久久成人亚洲精品观看| 国产三级在线视频| 可以在线观看的亚洲视频| 国产精品一区二区三区四区免费观看 | 在线观看免费视频日本深夜| 美女xxoo啪啪120秒动态图| 亚洲欧美日韩高清在线视频| avwww免费| 国产亚洲欧美98| 日本黄大片高清| 观看美女的网站| 欧美最黄视频在线播放免费| 国产精品久久久久久精品电影| 成人二区视频| 成人毛片a级毛片在线播放| 亚洲精品影视一区二区三区av| 伦精品一区二区三区| 国国产精品蜜臀av免费| 国产大屁股一区二区在线视频| 国产精品无大码| 国产精品一区www在线观看 | 美女cb高潮喷水在线观看| 国语自产精品视频在线第100页| 国产精品久久视频播放| 成人特级黄色片久久久久久久| 夜夜爽天天搞| 真人做人爱边吃奶动态| 色噜噜av男人的天堂激情| 别揉我奶头~嗯~啊~动态视频| 亚洲av二区三区四区| 黄色视频,在线免费观看| 日韩大尺度精品在线看网址| 国产伦精品一区二区三区视频9| 欧美3d第一页| 此物有八面人人有两片| 在线 av 中文字幕| av福利片在线观看| 国产伦精品一区二区三区视频9| 在线亚洲精品国产二区图片欧美 | 亚洲国产成人一精品久久久| 国产精品偷伦视频观看了| 丝袜脚勾引网站| 日本-黄色视频高清免费观看| 精品久久久久久久末码| 九草在线视频观看| 丰满人妻一区二区三区视频av| 国产亚洲一区二区精品| 亚洲精品久久久久久婷婷小说| 亚洲精品国产av成人精品| 欧美高清成人免费视频www| 免费人成在线观看视频色| 在线观看一区二区三区| 国产视频内射| 国产永久视频网站| av国产久精品久网站免费入址| 十八禁网站网址无遮挡 | 亚洲色图综合在线观看| 国产成人一区二区在线| 激情五月婷婷亚洲| 亚洲丝袜综合中文字幕| 黑人高潮一二区| 中文字幕人妻熟人妻熟丝袜美| 日韩精品有码人妻一区| 亚洲av不卡在线观看| 国产精品无大码| 久久99热6这里只有精品| 欧美精品人与动牲交sv欧美| 色婷婷久久久亚洲欧美| 一级毛片黄色毛片免费观看视频| 91精品伊人久久大香线蕉| 亚洲国产高清在线一区二区三| 最近2019中文字幕mv第一页| 日韩中字成人| 国产成人精品一,二区| 一区二区三区四区激情视频| 欧美日韩综合久久久久久| av女优亚洲男人天堂| av播播在线观看一区| av线在线观看网站| 日本猛色少妇xxxxx猛交久久| 欧美+日韩+精品| 国产免费一区二区三区四区乱码| 欧美xxⅹ黑人| 性色av一级| 久久久成人免费电影| 一级毛片aaaaaa免费看小| 视频中文字幕在线观看| 国产男女超爽视频在线观看| 简卡轻食公司| 婷婷色综合大香蕉| 黄色欧美视频在线观看| 观看美女的网站| 国产av码专区亚洲av| 国产精品99久久99久久久不卡 | 这个男人来自地球电影免费观看 | 麻豆精品久久久久久蜜桃| 少妇人妻 视频| 中文字幕久久专区| 色视频在线一区二区三区| 九九在线视频观看精品| 97精品久久久久久久久久精品| 精品久久久久久久久亚洲| 99热这里只有是精品50| 超碰av人人做人人爽久久| 精品国产一区二区三区久久久樱花 | 黄色怎么调成土黄色| 国产男女超爽视频在线观看| 久久久久国产精品人妻一区二区| 成人国产麻豆网| 成人一区二区视频在线观看| 亚洲色图综合在线观看| 熟女电影av网| 国产视频内射| 色吧在线观看| 久久av网站| 成人无遮挡网站| 亚洲精品亚洲一区二区| 久久精品国产亚洲av天美| 国产精品免费大片| 黄色一级大片看看| a 毛片基地| 精品国产乱码久久久久久小说| 国产成人精品一,二区| 一级毛片久久久久久久久女| 欧美日韩一区二区视频在线观看视频在线| 国产精品久久久久久精品电影小说 | av女优亚洲男人天堂| 精华霜和精华液先用哪个| 国产色爽女视频免费观看| 美女xxoo啪啪120秒动态图| 美女脱内裤让男人舔精品视频| 狂野欧美激情性bbbbbb| 九九久久精品国产亚洲av麻豆| 亚洲丝袜综合中文字幕| 91精品国产国语对白视频| 国产爱豆传媒在线观看| 18禁动态无遮挡网站| av又黄又爽大尺度在线免费看| 在线精品无人区一区二区三 | 亚洲精品,欧美精品| 亚洲国产精品国产精品| 国产高清国产精品国产三级 | 狂野欧美白嫩少妇大欣赏| 亚洲av成人精品一二三区| 80岁老熟妇乱子伦牲交| 国产成人a∨麻豆精品| 日韩一本色道免费dvd| 久久精品国产亚洲av天美| av一本久久久久| 成人亚洲欧美一区二区av| 少妇人妻精品综合一区二区| 少妇人妻久久综合中文| 国产成人午夜福利电影在线观看| 能在线免费看毛片的网站| av在线观看视频网站免费| 国产 一区 欧美 日韩| 超碰av人人做人人爽久久| 午夜福利在线观看免费完整高清在| 亚洲精品中文字幕在线视频 | 色视频在线一区二区三区| 日本黄大片高清| 中文字幕亚洲精品专区| 97在线视频观看| 国产精品一区二区在线观看99| 一级黄片播放器| 日本vs欧美在线观看视频 | 街头女战士在线观看网站| 丝袜喷水一区| 免费观看性生交大片5| 男的添女的下面高潮视频| 亚洲精品乱码久久久v下载方式| 亚洲精品国产成人久久av| 精品国产一区二区三区久久久樱花 | 中国美白少妇内射xxxbb| 久久国内精品自在自线图片| 精品久久久久久久久亚洲| 人妻 亚洲 视频| 亚洲国产最新在线播放| 国产精品无大码| 国产淫语在线视频| 嫩草影院入口| 自拍偷自拍亚洲精品老妇| 日本欧美视频一区| 在线观看免费高清a一片| 2022亚洲国产成人精品| 最近最新中文字幕大全电影3| 嫩草影院新地址| 精品人妻偷拍中文字幕| 国产在线一区二区三区精| 欧美一区二区亚洲| 大话2 男鬼变身卡| 九九爱精品视频在线观看| 日韩强制内射视频| 亚洲国产高清在线一区二区三| 国产精品蜜桃在线观看| 亚洲自偷自拍三级| 中国美白少妇内射xxxbb| 大片免费播放器 马上看| 制服丝袜香蕉在线| 韩国av在线不卡| 国内揄拍国产精品人妻在线| 小蜜桃在线观看免费完整版高清| 免费观看性生交大片5| 黑丝袜美女国产一区| 色婷婷久久久亚洲欧美| 日韩av在线免费看完整版不卡| 国产精品一二三区在线看| 欧美日韩精品成人综合77777| 国产精品伦人一区二区| 欧美精品一区二区免费开放| 久久精品夜色国产| 哪个播放器可以免费观看大片| 国产免费又黄又爽又色| 99久久综合免费| 欧美精品一区二区免费开放| 久久这里有精品视频免费| 日韩免费高清中文字幕av| 精品久久久久久久久亚洲|