• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    I3:A Self-organising Learning Workf low for Intuitive Integrative Interpretation of Complex Genetic Data

    2019-03-07 07:27:34YunTanLuluJiangKankanWangHaiFang
    Genomics,Proteomics & Bioinformatics 2019年5期

    Yun Tan ,Lulu Jiang ,Kankan Wang *,Hai Fang 3,*

    1 State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology,Ruijin Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200025,China

    2 Bristol Renal,School of Clinical Sciences,University of Bristol,Bristol BS1 3NY,UK

    3 Wellcome Centre for Human Genetics,University of Oxford,Oxford OX3 7BN,UK

    Abstract We propose a computational workf low(I3)for intuitive integrative interpretation of complex genetic data mainly building on the self-organising principle.We illustrate the use in interpreting genetics of gene expression and understanding genetic regulators of protein phenotypes,particularly in conjunction with information from human population genetics and/or evolutionary history of human genes.We reveal that loss-of-function intolerant genes tend to be depleted of tissue-sharing genetics of gene expression in brains,and if highly expressed,have broad effects on the protein phenotypes studied.We suggest that this workf low presents a general solution to the challengeof complex genetic data interpretation.I3 is available at http://suprahex.r-forge.r-project.org/I3.html.

    KEYWORDS Self-organising;Human genetics;Interpretation;Evolution;Machine learning

    Introduction

    We know the exciting promise in machine learning applied to geneticsand genomics[1].Wealso know to datethere hasbeen relatively slow progressachieved by machinelearning,in terms of how to intuitively make sense of emerging genetic datasets.Now we are able to generate many new types of genetic datasets,for example,through genetic mapping of gene expression across tissues[2]and genetic screensfor protein phenotyperegulators[3,4].However,our ability to understand such datasets is very limited.The rate of data interpretation is much slower in particular when seeking to integrate with population-wide genetic information and species-wide evolutionary information.Population-wide genetic variants could be aggregated into a metric estimating the loss-of-function intolerance of a gene[5],while evolutionary history of human genes could be estimated by phylostratigraphy[6,7]def ining evolutionary age for a gene as our ancestor in which this gene was first appeared.Data interpretation should be also madeconsidering well-annotated knowledge on genes,usually in theform of signaling pathways such as from Reactome[8].One of the challenges is how to integrate all information accelerating interpretation,ideally achieved in a single workf low.

    To address the challenge above,we propose a computational workf low that enables characterisation of input data and integration with additional(relevant)data for knowledge discovery,all achieved in an intuitive way(Figure 1A).This workf low benef its from three considerations.Firstly,we characterise input data using a self-organising learning algorithm[9].This may be most applicable for its unsupervised nature.As comparisons,supervised machine learning(such as deep learning[10])requires desired outcomes as part of learning that are usually not available for computational biology.Secondly,the self-organising ability is desirable for unbiased integration with additional datasets that can be diverse in data types(binary and continuous).Thirdly,data characterisation is constrained on a regularly shaped map.This is no trivial as the regular map is much easier for effective visualisations.Because of these considerations,one of the def ining features in our workf low is the map-centric interpretation that covers all steps of interpretations(overlaying/integration,clustering,enrichment,and other downstream analyses that are scalable to meet customised needs).

    Our workf low was inspired by the previous work,that is,implementing the self-organising principle to interpret regulatory genomics[11],gene expression patterns[12,13],accessible chromatin[14],and DNA replication timing[15],to name but just a few.To further advocate this principle and also to demonstrate the value and applications of the proposed workf low,we interpreted two complex genetic datasets:one generated from multi-tissue expression quantitative trait loci(eQTL)mapping[2](Figure 1B),and the other from haploid mutagenesis screens for protein phenotypes[3,4](Figure 1C).We view this workf low as Intuitive Integrative Interpretation or‘I3’because it mimics how we human beings,at our disposal,gather together the knowledge available best explaining the data.

    Figure 1 Overview of I3 enabling intuitive integrative interpretation

    Methods

    Detailed description of the I3 workf low

    Step 1:self-organising input data constrained by the map shape

    Weextended a self-organising algorithm to map shapestrained from input data,made availableas part of an R/Bioconductor package‘supraHex’[15].The design of a map shape considers the structure of input data;principle component analysis(PCA)helps to reveal what data point clouds look like(either the shape boundary or the number of density centers).We visualised the trained map as the landscape in 1D or 2D.The support for the 1D landscape was simply done by visualising the codebook matrix associated with the trained map.For example,the trained tissue map was visualised providing a tissue-specific view of all its eGenes,collectively forming tissue landscape.The support for the 2D landscape was achieved by using a 2D squaremap latticeto self-organise,for example,protein phenotypes,in a way that geometric location within this 2D lattice delineates the similarity between them.

    Step 2:obtaining the overlaid map by overlaying additional data onto the trained map

    The algorithm used for overlaying was described previously[15]but based on newly designed map shapes.The trained map overlaid with an additional(non-training)data resulted in an overlaid map that is associated with an overlaid codebook matrix.As described at Step 1,this overlaid codebook matrix was used for landscape visualisation.The correspondence between input data and additional data was measured as Pearson’s correlation coefficient using the codebook matrix associated with the trained/overlaid map.

    Step 3:identification of gene clusters from the trained map

    We generalised a region-growing algorithm[15]to partition the trained map into gene clusters,each of which is continuous over the map.

    Step 4:by-cluster summary of the overlaid map

    The summary was calculated based on the overlap map(obtained at Step 3)by averaging values over each continuous cluster(identified at Step 2).

    Step 5:enrichment analysis of identified clusters

    The enrichment analysis was based on f isher’s exact test.This type of analysis can be conveniently renamed according to the knowledge used.Based on f isher’s exact test(two-tails),we performed curated gene set analysis and evolutionary analysis to identify both enrichments and depletions for gene clusters.We curated gene sets,including the developmental disorder genes from Developmental Disorders Genotype-to-Phenotype(DDG2P;1724 genes mapped to EntrezGene;the same hereinafter)[16],ExAC LoF intolerance genes(3160 genes)[5],genes reported in the genome-wide association study(GWAS)Catalogue(5122 genes)[17],phenotype genes annotated using human phenotype ontology(HPO;3522 genes)[18],and Online Mendelian Inheritance in Man(OMIM)disease genes(4212 genes)[19].Evolutionary analysis for these gene clusters was based on 16 phylostrata,each representing a group of genes that appeared at a specific ancestor[6].These phylostrata are ordered by the evolutionary history:Cellular organisms(1715 genes),Eukaryota(4525 genes),Opisthokonta(276 genes),Metazoa(1912 genes),Eumetazoa(1152 genes),Bilateria(1090 genes),Chordata(308 genes),Euteleostomi(2693 genes),Amniota(532 genes),Mammalia(512 genes),Theria(580 genes),Eutheria(731 genes),Euarchontoglires(119 genes),Catarrhini(211 genes),Homininae(252 genes),and Homo sapiens(25 genes).Based on f isher’s exact test(on-tail),we performed pathway analysis and druggable analysis to identify enrichments only.Pathway analysis was performed using Reactome pathways[8],and druggable analysis using DGIdb druggable gene categories[20].

    Datasets from human embryos,GTEx and haploid mutagenesis screens

    We obtained human embryo transcriptome datasets involving 5441 differentially expressed genes/probesets and 6 successive developmental stages with three replicates for each stage[13].We obtained 7890 eGenes(qvalue<0.05)in brain subregions and the whole blood from GTEx(version 6p)[2].Positive regulators for 11 protein phenotypes(FDR<0.05;1321 genes in total)were obtained according to studies using a random mutagenesis-based haploid screen[3,4].All these datasets were used as input data for training.

    Def inition of loss-of-function(LoF)intolerant genes

    We obtained LoF intolerant genes from the Exome Aggregation Consortium[5],defined as genes having at least 90%probability of LoF intolerance.This resulted in a statusvector involving 17,568 genes,with 1 for LoF intolerance and 0 otherwise.This vector was used as additional data for overlaying.

    Phenotypic effects and expression levels of regulators

    For each regulator identified by a random mutagenesis-based haploid screen[3,4],we defined phenotypic effects as the number of phenotypes that this regulator was declared significant(FDR<0.05).Its expression level was calculated as median of RNA-seq data of 10 independent wild-type HAP1 cells[3].These continuous values were used as additional data for overlaying.

    Results and discussion

    Overview of intuitive integrative interpretation(I3)

    I3is designed as a general and f lexible workf low(Figure 1A)enabling map-centric intuitive interpretation of input data,allowing for integration with additional(relevant)data and knowledge discovery with annotation(built-in)data.As a general workf low,it can be used to interpret any input data(a numeric matrix containing,for example,genes in rows and measures in columns).As a f lexible workf low,it can integrate any relevant additional data(also provided by the user)and provides built-in annotation data(such as evolution and pathways)for knowledge discovery.I3outputs rich visuals for intuitive interpretation,including landscape visualisation,correspondence between input and additional data,and identification of clusters and enrichments.

    At the core ofI3is the self-organising learning.In the literature,a number of tools have been reported for similar purposes,includingSOM Toolbox[21],Cluster 3.0[22],and two R packages(kohonen[23]andsupraHex[15]).Amongst these,SOM Toolboxis widely used but requires the commercial license(MATLAB).Cluster 3.0supports the graphical user interface but suffers from output visualisation.Both packageskohonenandsupraHexare open source and similar in the use and visualisation.A major limitation of current toolsisthat all of them are limited in the choice of map shapes.All butsupra-Hexsupports the sheet-like map only.This is essential for modeling input data of diverse or unknown shapes.To illustratethis point,we used human embryo transcriptomedatasets[13]and compared the trained map of different shapes.This data involves six successive developmental stages.We already know there are two groups of genes,displaying gradually reduced or gradually increased expression patterns;suchprioriknowledge can be used to assess the performance.PCA revealed two highly dense regions/centres of genes;for this we devised a butterf ly-like map(Figure S1A).In doing so,we found that two groups of genes were nicely separated and mapped to each of two wings(Figure S1B).As comparisons,we also modeled the same data based on the sheet map and found that the separation boundary is less clear(Figure S1C).

    I3consists of f ive steps(Figure 1A):training the map using the input data in a self-organising manner but constrained by the map shape(Step 1),obtaining the overlaid map by overlaying additional data onto the trained map(Step 2),identification of gene clusters from the trained map(Step 3),the bycluster summary of the overlaid map(Step 4),and enrichment analysis of identified clusters using annotation data(Step 5).In this study,without loss of generality we applied theI3workf low to interpret two complex genetic datasets.Figure 1B gives a summary of data used to interpret eQTL genes(eGenes)in brain tissues mainly regarding LoF intolerant genes and genes at different evolutionary ages,while Figure 1C interprets genetic regulators mainly regarding protein phenotypic effects,gene expression and LoF intolerance.

    Interpreting genetics of gene expression in brains

    The Genotype-Tissue Expression(GTEx)project identified genetic variants associated with expression of genes(eGenes)in a tissue-specific manner[2].Here we illustrate the power ofI3in interpreting eGenes found in 10 brain subregions(and the whole blood as comparisons)with respect to their selective pressure against mutations(Figure 2A).An eGene for a tissue was defined if its expression is significantly regulated by a variant,measured by the q value.A gene under selective pressure was defined if extremely intolerant to LoF mutations.

    A diamond-shaped map models tissue-specific eGenes in brains

    We prepared the input data matrix with an eGene(in rows)found in a tissue(in columns),in which we observed a diamond-like shape of distribution(Figure S2A).Based on this,we designed a diamond-shape map and trained it by the input data via the self-organising learning algorithm.We visualised the trained map as the tissue landscape(Figure 2B),identifying the similar maps between brain tissues that show sharp difference as compared to the one seen in the whole blood.We also designed a triangle-shape map for comparisons and observed the more constrained distribution for eGenes,suggesting that this shape is less effective in completely unfolding input data(Figure S2C).

    Thetrained tissue map isoverlaid to producethe LoFintolerance map(Figure 2C)

    By comparing the tissue landscape and the LoF intolerance map,we found that all brain tissues negatively correlated with LoF intolerance;this autocorrelation is a much stronger than that seen in the whole blood(Figure S2B).

    The trained tissue map is divided into gene clusters for knowledge discovery

    We obtained a total of 9 gene clusters(C1—C9)from the tissue landscape(Table S1),each covering continuous regions(Figure 2D)and summarised by the probability of containing LoF intolerant genes(Figure 2E).We observed that tissuespecific eGenes in C3—C5 had a high probability of containing LoF intolerant genes,and a low probability for tissue-sharing eGenes in C8—C9.Enrichment analysis using curated gene sets conf irmed this observation;we found that C3—C4 significantly enriched for LoF intolerant genes and C8—C9 significantly depleted of LoF intolerant genes(Figure 2F).We also observed enrichment for phenotype genes and disease genes in C8—C9,and developmental disorder genes enriched in C9 only.Notably,C9 contains eGenes shared by all brain tissues(not in the wholeblood),least under selective pressure.To fortify the above findings,we also performed evolutionary age analysis.We found a preference of genes in C2—C3 to be created at our ancestor Eumetazoa or earlier,and these genes are unlikely to be created at our ancestor Chordata or later(Figure2G).By contrast,wedid not observesuch evolutionary origin preference for genes in C7—C9.Based on the trained map in brains,we produced the map for other tissues(Figure S3A).For the clusters C8—C9 mostly depleted of LoF intolerant genes,wefound the majority of tissues haveeGenes.We also revealed that tissues(such as subcutaneous adipose,tibial artery,transformed f ibroblasts,muscular esophagus,lung,skeletal muscle,tibial nerve,skin and thyroid)had a much higher number of eGenes.Collectively,I3reveals that LoF intolerant genes are depleted of tissue-sharing genetics of expression(not just in brains but most of other tissues;such relationship is more consistent for brain-derived tissues),and there exists a preference in their evolutionary origin.Without selective pressure in population and/or in evolution seems to be prerequisite for a gene causing diseased phenotypes and even developmental disorders.

    Integrative interpretation of genetic regulators of protein phenotypes

    Figure 2 Genetics of gene expression in brain tissues

    Figure 3 Genetic regulators of protein phenotypes

    Haploid genetic screens are new techniques identifying genetic regulators of protein phenotypes by introducing random mutagenesis into haploid cells and linking such mutations to protein states as phenotypic readouts[3,4].We here demonstrate the utility ofI3in understanding positive genetic regulators with respect to three factors:phenotypic effects,expression and LoF intolerance based on a trefoil-shape map(Figure 3A and Figure S4).The 2D landscape of protein phenotypes reveals information on both phenotypes and regulators(Figure 3B).Phenotypes with the similar regulator prof ile(e.g.,phosphorylated ERK and p38)are placed together,and far away for phenotypes with a very different prof ile(i.e.,PD-L1).Phenotype-sharing regulators are mostly mapped onto the top-left leaf of the trefoil,more precisely,gene cluster 5(C5 in Figure 3C;Table S2).Indeed,regulators in C5 had broadest phenotypic effects(Figure 3D).The previousstudy showed that genes with high expression levelstend to be genetic regulators of protein phenotypes[3].To further explain this,we examined the relationship between expression levels and phenotypic effects.Weobserved that regulatorswith high expression(Figure 3E)could have both broad phenotypic effects(C5)and narrow effects(C1—C4 and C8).WithI3,we found that regulators in C5 had higher probability of containing LoF intolerant genes than those seen in C1—C4 and C8(Figure 3F).We also found enrichment of chromatin biology in C5(Figure 3G);this is consistent with the fact that ERK and p38(important players in MAPK cascades)have broad regulatory impacts in gene expression and thus strong regulation on chromatin-related genes[24].Interestingly,pathways(e.g.,signaling by EGFR)relevant to MAPK were not enriched in C5,implying the more complex genetic regulation involving these pathways than previously thought in the classical‘EGFR-EGF-RAS-RAF-MEK-ERK’axis.For clusters C2—C3 and C8,enrichment of diverse signallings was observed(Figure 3G).Taken together,I3reveals a putative model,that is,the LoF intolerance may act asa latent factor explaining the relationship between expression levels and phenotypic effects(Figure 3H).Beyond interpretation,we also explore the pharmaceutical use of genes identified by genetic screens,that is,to evaluate the druggability for each gene cluster.The top druggable gene category is‘histone modification’enriched in C5(BAZ1B,DOT1L,EED,EZH2,HCFC1,ING5,KAT7,KDM 2A,KMT2A,MECP2,PHF8,PRMT1,SETDB1,SIN3B,SUZ12,andUSP7),followed by‘clinically actionable’genes(APC,BAP1,BCL2L1,CD274,CREBBP,EWSR1,FBXW7,FLCN,GREM 1,IFNGR1,JAK1,JAK2,KDM 5C,NCOR1,NF2,NSD1,RB1,TSC1,andTSC2)in C7,a gene cluster unique to PD-L1(Figure 3I and Table S3).Given the broad phenotypic effects and high expression level in C5,we suggest those genes involved in histone modification should be given a high priority for follow-up in experiments.

    Conclusion

    TheI3workf low is implemented in the R running environment,an open source platform that is widely used,and thus can reach the wide audience.The workf low is designed in a non-linear and intuitive way(Figure 1)with the focus on the f lexibility rather than the easy-to-use interface;this is one of current limitations that should be overcome in the future,for example,by developing a web server to removethedependency on R.Another future effort is to automate the selection of the map shape or to explore other ways(beyond PCA)doing so;for example,in a less visual-aided way f ine-tuning the specific parameters.Nonetheless,we have demonstrated the value of this workf low.Interpreting genetics of gene expression reveals a lack of selective pressure for tissue-sharing eGenes in brains.Interpreting genetic regulators of protein phenotypes points to the importance of LoF intolerance in bridging expression levels and phenotypic effects.Both applications are achieved in relatively short runtime(the training f inished in seconds using one core on Mac OS X).To conclude,I3provides an integrated solution to complex genetic datasets for downstream interpretation and knowledge discovery.

    Availability

    I3is available at http://suprahex.r-forge.r-project.org/I3.html.

    Authors’contributions

    YT performed the analysis and revised the manuscript.LJ revised the manuscript.KW conceived the project,contributed to the interpretation and edited the manuscript.HF conceived theproject,performed theanalysisand drafted themanuscript.All authors read and approved the final manuscript.

    Competing interests

    The authors have declared no competing interests.

    Acknowledgments

    We thank anonymous reviewers for constructive comments.This work was supported by the National Natural Science Foundation of China(Grant No.31301041 awarded to HF,and Grant Nos.81530003 and 81770153 awarded to KW).

    Supplementary material

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.gpb.2018.10.006.

    亚洲av男天堂| 18禁裸乳无遮挡动漫免费视频| 亚洲成人av在线免费| 尾随美女入室| 麻豆成人av视频| 99久久精品一区二区三区| 国产爽快片一区二区三区| 亚洲国产精品成人久久小说| 毛片一级片免费看久久久久| 在线观看免费高清a一片| 亚洲av电影在线观看一区二区三区| 久久久久久久久大av| 国产极品天堂在线| 最近中文字幕2019免费版| 内射极品少妇av片p| h视频一区二区三区| 在线播放无遮挡| 天堂中文最新版在线下载| 亚洲欧美精品专区久久| 啦啦啦在线观看免费高清www| 精品少妇内射三级| 另类精品久久| 国产淫语在线视频| 精品一区二区三卡| 亚洲av成人精品一区久久| 久热久热在线精品观看| 亚洲成人一二三区av| 18禁动态无遮挡网站| 久久精品国产亚洲网站| 久久精品夜色国产| 国内精品宾馆在线| 美女cb高潮喷水在线观看| 久久6这里有精品| 色94色欧美一区二区| 自线自在国产av| 久久久久久久久久久丰满| 亚洲精品一区蜜桃| 欧美精品高潮呻吟av久久| 久久久国产欧美日韩av| 亚洲美女搞黄在线观看| 麻豆乱淫一区二区| 最近的中文字幕免费完整| 99热全是精品| 超碰97精品在线观看| 亚洲精品成人av观看孕妇| 妹子高潮喷水视频| 热re99久久精品国产66热6| 美女视频免费永久观看网站| 在线 av 中文字幕| 精品少妇黑人巨大在线播放| 欧美区成人在线视频| 亚洲精品,欧美精品| 日本猛色少妇xxxxx猛交久久| 久久6这里有精品| 最近2019中文字幕mv第一页| 亚洲精品乱码久久久v下载方式| 亚洲人成网站在线观看播放| 中文字幕人妻丝袜制服| 日韩精品有码人妻一区| 亚洲精品久久午夜乱码| 少妇熟女欧美另类| 午夜免费观看性视频| 女性生殖器流出的白浆| 日产精品乱码卡一卡2卡三| 欧美bdsm另类| 色吧在线观看| 国内揄拍国产精品人妻在线| 国产在线一区二区三区精| 久久久国产欧美日韩av| 国产在线男女| 亚洲中文av在线| 人妻夜夜爽99麻豆av| 欧美bdsm另类| 国产精品免费大片| 青春草国产在线视频| 免费看不卡的av| 午夜日本视频在线| 久久青草综合色| 国产精品久久久久久久久免| 亚洲成人av在线免费| 国产成人免费观看mmmm| 国产 精品1| 国产av一区二区精品久久| 男人舔奶头视频| 狂野欧美激情性xxxx在线观看| 日韩一区二区三区影片| 久久久久国产网址| 亚洲一级一片aⅴ在线观看| 99久国产av精品国产电影| 美女中出高潮动态图| 国产女主播在线喷水免费视频网站| 黑人高潮一二区| 亚洲四区av| 国产淫语在线视频| 欧美日韩视频精品一区| 午夜91福利影院| 涩涩av久久男人的天堂| 一级毛片黄色毛片免费观看视频| 多毛熟女@视频| 日韩一区二区三区影片| 波野结衣二区三区在线| 亚洲内射少妇av| 欧美xxxx性猛交bbbb| 在线播放无遮挡| 国产 一区精品| 日日爽夜夜爽网站| 欧美一级a爱片免费观看看| 两个人的视频大全免费| 国产亚洲最大av| 在线观看www视频免费| 亚洲在久久综合| 日韩伦理黄色片| 亚洲成人手机| 丝袜喷水一区| 日本与韩国留学比较| 成人18禁高潮啪啪吃奶动态图 | 天美传媒精品一区二区| 极品少妇高潮喷水抽搐| 男女免费视频国产| 少妇的逼好多水| 国产精品99久久99久久久不卡 | freevideosex欧美| 成人18禁高潮啪啪吃奶动态图 | 日本91视频免费播放| 中文字幕人妻丝袜制服| 我要看日韩黄色一级片| 丰满饥渴人妻一区二区三| 成年人免费黄色播放视频 | 极品教师在线视频| 成人亚洲精品一区在线观看| 色吧在线观看| 国产黄色视频一区二区在线观看| 人妻一区二区av| 亚洲天堂av无毛| 黄色毛片三级朝国网站 | 中国国产av一级| 亚洲精品456在线播放app| 人人妻人人澡人人爽人人夜夜| 99久久中文字幕三级久久日本| 男人和女人高潮做爰伦理| 人妻 亚洲 视频| av播播在线观看一区| 国产成人免费无遮挡视频| 精品亚洲成a人片在线观看| 寂寞人妻少妇视频99o| 国产精品欧美亚洲77777| 99热这里只有是精品在线观看| www.av在线官网国产| 女人精品久久久久毛片| 最近2019中文字幕mv第一页| 欧美日本中文国产一区发布| 大码成人一级视频| 如何舔出高潮| av免费观看日本| 日日爽夜夜爽网站| 成人综合一区亚洲| 久久99蜜桃精品久久| 国产成人a∨麻豆精品| 又黄又爽又刺激的免费视频.| 欧美精品人与动牲交sv欧美| 美女内射精品一级片tv| 成人午夜精彩视频在线观看| 91aial.com中文字幕在线观看| 啦啦啦视频在线资源免费观看| 一个人免费看片子| 国产真实伦视频高清在线观看| av卡一久久| 黄色欧美视频在线观看| 欧美精品一区二区免费开放| 中文乱码字字幕精品一区二区三区| 在线播放无遮挡| 搡女人真爽免费视频火全软件| 丰满少妇做爰视频| 亚洲无线观看免费| 亚洲自偷自拍三级| 亚洲精品国产av蜜桃| 国产男女超爽视频在线观看| 亚洲国产精品一区三区| 亚洲av成人精品一区久久| 久久99精品国语久久久| 国产精品熟女久久久久浪| 欧美老熟妇乱子伦牲交| 丰满人妻一区二区三区视频av| 狂野欧美激情性bbbbbb| 国产有黄有色有爽视频| 亚洲色图综合在线观看| 又黄又爽又刺激的免费视频.| 亚洲精品自拍成人| 久久6这里有精品| 特大巨黑吊av在线直播| 欧美精品高潮呻吟av久久| 最近手机中文字幕大全| 国产成人精品婷婷| 日本av手机在线免费观看| 久久精品夜色国产| 男女无遮挡免费网站观看| 亚洲第一区二区三区不卡| 一区二区av电影网| 大片电影免费在线观看免费| 午夜福利在线观看免费完整高清在| 这个男人来自地球电影免费观看 | 国产精品一二三区在线看| 色视频www国产| 少妇的逼水好多| 在线观看av片永久免费下载| 国国产精品蜜臀av免费| 亚洲欧美日韩另类电影网站| 免费人成在线观看视频色| 日韩人妻高清精品专区| 成人国产av品久久久| 成人特级av手机在线观看| 肉色欧美久久久久久久蜜桃| 国产精品人妻久久久久久| 在线观看av片永久免费下载| 91久久精品国产一区二区三区| 亚洲一级一片aⅴ在线观看| 日韩免费高清中文字幕av| av黄色大香蕉| 男女边摸边吃奶| 天美传媒精品一区二区| 99久久人妻综合| 免费观看av网站的网址| 男女国产视频网站| 三上悠亚av全集在线观看 | 男男h啪啪无遮挡| 日本91视频免费播放| 欧美日韩综合久久久久久| 国产一区亚洲一区在线观看| 国产69精品久久久久777片| 久久鲁丝午夜福利片| 国产成人91sexporn| 精品国产国语对白av| 欧美一级a爱片免费观看看| 日本黄大片高清| 男女国产视频网站| 国产乱人偷精品视频| 肉色欧美久久久久久久蜜桃| 丰满迷人的少妇在线观看| 天堂俺去俺来也www色官网| 日日摸夜夜添夜夜爱| 色94色欧美一区二区| 啦啦啦中文免费视频观看日本| 国产午夜精品久久久久久一区二区三区| 丝袜喷水一区| 热re99久久国产66热| 国内揄拍国产精品人妻在线| 色94色欧美一区二区| 国产免费视频播放在线视频| 高清在线视频一区二区三区| 男人舔奶头视频| 91精品国产国语对白视频| 国产免费又黄又爽又色| 精品国产乱码久久久久久小说| 国产亚洲精品久久久com| 亚洲,一卡二卡三卡| 久久ye,这里只有精品| 精品久久久久久久久av| 十分钟在线观看高清视频www | 国产亚洲av片在线观看秒播厂| 22中文网久久字幕| 国产免费一区二区三区四区乱码| 久久av网站| 国产成人免费观看mmmm| 丝袜在线中文字幕| 日韩人妻高清精品专区| 亚洲国产最新在线播放| 高清视频免费观看一区二区| 久久人人爽人人爽人人片va| 精品99又大又爽又粗少妇毛片| 亚洲av日韩在线播放| 校园人妻丝袜中文字幕| 秋霞伦理黄片| 中国三级夫妇交换| 国产欧美日韩一区二区三区在线 | 高清av免费在线| 如何舔出高潮| 汤姆久久久久久久影院中文字幕| 我要看黄色一级片免费的| 高清视频免费观看一区二区| 色哟哟·www| 丝瓜视频免费看黄片| 日韩av不卡免费在线播放| 毛片一级片免费看久久久久| 日韩成人伦理影院| 少妇的逼好多水| 久久精品国产a三级三级三级| 亚洲精品亚洲一区二区| 色婷婷久久久亚洲欧美| 国产精品一区二区在线观看99| 男女国产视频网站| 国产色婷婷99| 极品人妻少妇av视频| 日韩一区二区三区影片| 国产成人精品无人区| 91久久精品国产一区二区成人| 日韩一区二区视频免费看| 精品国产一区二区久久| 亚洲成人一二三区av| 大话2 男鬼变身卡| 午夜福利影视在线免费观看| 黄色一级大片看看| 噜噜噜噜噜久久久久久91| 免费黄频网站在线观看国产| 99热国产这里只有精品6| 欧美xxxx性猛交bbbb| 最近中文字幕2019免费版| 在线观看美女被高潮喷水网站| 亚洲三级黄色毛片| 色吧在线观看| 亚洲美女搞黄在线观看| 成人黄色视频免费在线看| 中文乱码字字幕精品一区二区三区| 国产成人精品福利久久| 天堂8中文在线网| 国产视频内射| 国产乱来视频区| 高清在线视频一区二区三区| 赤兔流量卡办理| 欧美区成人在线视频| 男人舔奶头视频| 日本vs欧美在线观看视频 | 日韩视频在线欧美| 久久久久久久久久成人| 国产成人一区二区在线| 人体艺术视频欧美日本| 色网站视频免费| 一级毛片aaaaaa免费看小| 亚洲精品日本国产第一区| 在线 av 中文字幕| 夜夜骑夜夜射夜夜干| 亚洲精品国产av成人精品| 亚洲欧美成人精品一区二区| 大片电影免费在线观看免费| 又黄又爽又刺激的免费视频.| 26uuu在线亚洲综合色| 久久人人爽人人片av| 男女免费视频国产| 亚洲精品国产av成人精品| 三级经典国产精品| 免费观看性生交大片5| 少妇被粗大的猛进出69影院 | 亚洲欧美一区二区三区黑人 | 午夜福利网站1000一区二区三区| 亚洲欧美清纯卡通| 大陆偷拍与自拍| av在线播放精品| 亚洲欧美成人精品一区二区| 日韩强制内射视频| 国产在线男女| 97在线视频观看| 成人综合一区亚洲| 国产精品人妻久久久影院| 乱人伦中国视频| 最黄视频免费看| 国产亚洲一区二区精品| 国产精品国产三级专区第一集| 男人和女人高潮做爰伦理| 欧美最新免费一区二区三区| 亚洲色图综合在线观看| 亚洲在久久综合| 国产亚洲最大av| 男女无遮挡免费网站观看| 色吧在线观看| tube8黄色片| 亚洲美女视频黄频| 亚洲精品乱码久久久v下载方式| 国产精品无大码| 午夜激情福利司机影院| 久久久久久久久久久免费av| 黑人猛操日本美女一级片| 大又大粗又爽又黄少妇毛片口| 日日啪夜夜撸| 国产av国产精品国产| 欧美人与善性xxx| 99九九线精品视频在线观看视频| 人妻一区二区av| 激情五月婷婷亚洲| 亚洲人成网站在线观看播放| 欧美国产精品一级二级三级 | 嫩草影院新地址| 色5月婷婷丁香| 噜噜噜噜噜久久久久久91| 午夜免费男女啪啪视频观看| 成人特级av手机在线观看| 久久久精品免费免费高清| 国产亚洲91精品色在线| 日本欧美视频一区| 国产亚洲欧美精品永久| 久久精品熟女亚洲av麻豆精品| 各种免费的搞黄视频| av在线老鸭窝| 国产亚洲欧美精品永久| 国产av一区二区精品久久| 色哟哟·www| a级一级毛片免费在线观看| 国产精品三级大全| 97超碰精品成人国产| 久久午夜综合久久蜜桃| 观看免费一级毛片| 视频区图区小说| 久久久久久久国产电影| 亚洲欧美成人综合另类久久久| 欧美日韩亚洲高清精品| 日韩伦理黄色片| 特大巨黑吊av在线直播| 欧美bdsm另类| 亚洲美女搞黄在线观看| 99久久中文字幕三级久久日本| 久久精品国产鲁丝片午夜精品| 国产伦精品一区二区三区视频9| 熟妇人妻不卡中文字幕| 99久久精品热视频| 久久久久久久亚洲中文字幕| 国产男人的电影天堂91| a级一级毛片免费在线观看| a级毛片免费高清观看在线播放| 久热这里只有精品99| 亚洲精品国产色婷婷电影| 人人妻人人看人人澡| av一本久久久久| 人人妻人人看人人澡| 成人18禁高潮啪啪吃奶动态图 | 国产男女超爽视频在线观看| 午夜福利影视在线免费观看| 国产成人精品无人区| a 毛片基地| 亚洲精品视频女| 少妇 在线观看| 蜜臀久久99精品久久宅男| 三级国产精品片| 自拍偷自拍亚洲精品老妇| 热re99久久精品国产66热6| 国产真实伦视频高清在线观看| 婷婷色av中文字幕| 国产极品粉嫩免费观看在线 | 成年女人在线观看亚洲视频| 一级毛片电影观看| 中国美白少妇内射xxxbb| 青青草视频在线视频观看| 日韩,欧美,国产一区二区三区| 亚洲,一卡二卡三卡| 人人妻人人澡人人爽人人夜夜| 好男人视频免费观看在线| 九九在线视频观看精品| 国产精品嫩草影院av在线观看| 国产成人精品无人区| 最近的中文字幕免费完整| 日产精品乱码卡一卡2卡三| 亚洲成人一二三区av| 又大又黄又爽视频免费| 国产精品麻豆人妻色哟哟久久| xxx大片免费视频| 国产伦精品一区二区三区四那| 在线观看国产h片| 亚洲,欧美,日韩| 啦啦啦中文免费视频观看日本| 久久女婷五月综合色啪小说| 国产精品久久久久成人av| 黑丝袜美女国产一区| 久久97久久精品| 看免费成人av毛片| 一区二区三区免费毛片| 国产精品一区二区三区四区免费观看| 亚洲av电影在线观看一区二区三区| 爱豆传媒免费全集在线观看| 美女中出高潮动态图| 久久久久人妻精品一区果冻| 伦理电影大哥的女人| 丰满少妇做爰视频| 久久久亚洲精品成人影院| 天堂俺去俺来也www色官网| 最新中文字幕久久久久| 亚洲av成人精品一区久久| 国国产精品蜜臀av免费| 一个人看视频在线观看www免费| 午夜91福利影院| 国产精品一区二区性色av| 99热这里只有是精品在线观看| 3wmmmm亚洲av在线观看| 亚洲第一av免费看| 一级二级三级毛片免费看| 性高湖久久久久久久久免费观看| 美女cb高潮喷水在线观看| 一级,二级,三级黄色视频| 美女视频免费永久观看网站| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线观看播放| 在线观看免费高清a一片| 天堂中文最新版在线下载| 国产日韩欧美视频二区| 精品久久久久久电影网| 午夜免费观看性视频| 观看美女的网站| 精品国产露脸久久av麻豆| 国产精品一区www在线观看| 亚洲欧美精品专区久久| 在线观看人妻少妇| 亚洲av电影在线观看一区二区三区| 成人亚洲精品一区在线观看| 国产 精品1| 精华霜和精华液先用哪个| 涩涩av久久男人的天堂| 亚洲精品国产色婷婷电影| 成人免费观看视频高清| 男人爽女人下面视频在线观看| 国产一区二区三区av在线| 91成人精品电影| 黑人猛操日本美女一级片| 少妇高潮的动态图| 久久久久网色| 日本色播在线视频| 国产色爽女视频免费观看| 久久影院123| 人人妻人人澡人人爽人人夜夜| 国产精品一区www在线观看| 亚洲不卡免费看| 国产欧美另类精品又又久久亚洲欧美| 中国美白少妇内射xxxbb| 亚洲国产最新在线播放| 2022亚洲国产成人精品| 久久精品国产亚洲av天美| 少妇的逼好多水| 免费大片黄手机在线观看| 中文字幕精品免费在线观看视频 | 精品人妻偷拍中文字幕| 特大巨黑吊av在线直播| 日韩av免费高清视频| 99国产精品免费福利视频| 亚洲欧美清纯卡通| 欧美精品一区二区免费开放| tube8黄色片| 国产综合精华液| 九九在线视频观看精品| 丰满饥渴人妻一区二区三| 日日撸夜夜添| 熟女av电影| 最后的刺客免费高清国语| 亚洲精品亚洲一区二区| 高清在线视频一区二区三区| 久久午夜综合久久蜜桃| 精品国产一区二区三区久久久樱花| 韩国av在线不卡| 国产成人免费观看mmmm| 国产毛片在线视频| 婷婷色综合www| 亚洲欧美精品专区久久| 高清在线视频一区二区三区| 久久久久人妻精品一区果冻| 一级毛片黄色毛片免费观看视频| 热re99久久精品国产66热6| 国产一区亚洲一区在线观看| 国产在线视频一区二区| 简卡轻食公司| 亚洲欧洲国产日韩| 少妇的逼水好多| 亚洲成人手机| 亚洲一区二区三区欧美精品| 极品少妇高潮喷水抽搐| 青青草视频在线视频观看| 国产成人精品久久久久久| 特大巨黑吊av在线直播| 夫妻午夜视频| 亚洲经典国产精华液单| 久久久久国产精品人妻一区二区| 九九久久精品国产亚洲av麻豆| 亚洲精品一二三| 最后的刺客免费高清国语| 亚洲美女黄色视频免费看| 在线观看一区二区三区激情| 一区二区三区四区激情视频| 久久久亚洲精品成人影院| 十八禁高潮呻吟视频 | 色94色欧美一区二区| 韩国av在线不卡| 日韩三级伦理在线观看| www.av在线官网国产| 熟女人妻精品中文字幕| 国产精品秋霞免费鲁丝片| 久久毛片免费看一区二区三区| 18禁在线无遮挡免费观看视频| 2022亚洲国产成人精品| 国产一区有黄有色的免费视频| 欧美日韩视频高清一区二区三区二| 午夜福利在线观看免费完整高清在| 美女视频免费永久观看网站| 国产亚洲午夜精品一区二区久久| 色网站视频免费| 免费看日本二区| 国产精品三级大全| 精品国产一区二区三区久久久樱花| 成人二区视频| 夫妻午夜视频| 熟女电影av网| 一级av片app| 日韩av免费高清视频| 夫妻性生交免费视频一级片| 免费看av在线观看网站| 久久人人爽人人爽人人片va| 免费av不卡在线播放| 啦啦啦啦在线视频资源| 亚洲内射少妇av| 欧美日韩综合久久久久久| 男人狂女人下面高潮的视频| 一边亲一边摸免费视频| 大陆偷拍与自拍| 亚洲国产欧美日韩在线播放 | 大香蕉久久网| 一级黄片播放器| 黑人高潮一二区| 三级经典国产精品| 热re99久久精品国产66热6| 爱豆传媒免费全集在线观看| 伦理电影大哥的女人| 久久99热6这里只有精品| 中文精品一卡2卡3卡4更新|