• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CIRCexplorer3:A CLEAR Pipeline for Direct Comparison of Circular and Linear RNA Expression

    2019-03-07 07:27:34XuKaiMaMengRanWangChuXiaoLiuRuiDongGordonCarmichaelLingLingChenLiYang
    Genomics,Proteomics & Bioinformatics 2019年5期

    Xu-Kai Ma ,Meng-Ran Wang ,Chu-Xiao Liu ,Rui Dong ,Gordon G.Carmichael ,Ling-Ling Chen ,Li Yang *

    1 CAS Key Laboratory of Computational Biology,CAS-MPG Partner Institute for Computational Biology,Shanghai Institute of Nutrition and Health,University of Chinese Academy of Sciences,Chinese Academy of Sciences,Shanghai 200031,China

    2 State Key Laboratory of Molecular Biology,CAS Center for Excellence in Molecular Cell Science,Shanghai Institute of Biochemistry and Cell Biology,University of Chinese Academy of Sciences,Chinese Academy of Sciences,Shanghai 200031,China

    3 Department of Genetics and Genome Sciences,University of Connecticut Health Center,Farmington,CT 06030,USA

    4 School of Life Science and Technology,ShanghaiTech University,Shanghai 201210,China

    KEYWORDS Circular RNA;Back-splicing;Linear RNA;Pre-mRNA splicing;Ribo-RNA-seq

    Abstract Sequences of circular RNAs(circRNAs)produced from back-splicing of exon(s)completely overlap with those from cognate linear RNAs transcribed from the same gene loci with the exception of their back-splicing junction(BSJ)sites.Therefore,examination of global circRNA expression from RNA-seq datasets generally relies on the detection of RNA-seq fragments spanning BSJ sites,which is different from the quantification of linear RNA expression by normalized RNA-seq fragments mapped to whole gene bodies.Thus,direct comparison of circular and linear RNA expression from thesamegenelociin a genome-widemanner hasremained challenging.Here,weupdatethepreviously-reported CIRCexplorer pipelineto version 3 for circular and linear RNA expression analysis from ribosomal-RNA depleted RNA-seq(CIRCexplorer3-CLEAR).A new quantitation parameter,fragments per billion mapped bases(FPB),is applied to evaluate circular and linear RNA expression individually by fragments mapped to circRNA-specific BSJsites or to linear RNA-specific splicing junction(SJ)sites.Comparison of circular and linear RNA expression levels isdirectly achieved by dividing FPBcirc by FPBlinear to generate a CIRCscore,which indicates therelativecircRNA expression level using linear RNA expression level asthebackground.Highlyexpressed circRNAs with low cognate linear RNA expression background can be readily identified by CIRCexplorer3-CLEAR for further investigation.CIRCexplorer3-CLEAR is publically available at https://github.com/YangLab/CLEAR.

    Introduction

    Eukaryotic pre-mRNA splicing is catalyzed by spliceosomes to join upstream 5′splice donor sites with downstream 3′splice acceptor sites to produce linear(m)RNAs.Interestingly,downstream 5′splice donor sites can also be linked to upstream 3′splice acceptor sites,referred to as back-splicing,leading to the production of circular RNAs(circRNAs)[1—3].Unlike most mature linear RNAs(including both coding and long non-coding RNAs),circRNAs are covalently closed and lack 3′-end poly(A)tails,resulting in their depletion in poly(A)+RNA-seq datasets.By taking advantage of RNAseq datasets that prof ile non-polyadenylated transcripts and computational approaches that aim to identify fragments mapped to back-splicing junction(BSJ)sites[4,5],a largenumber of circRNAs have been successfully prof iled as being coexpressed with their cognate linear RNAs from the same gene loci[2,3,6—8].Recent studies have shown that the biogenesis of circRNAs is catalyzed by canonical spliceosomal machinery and modulated by bothcis-elements andtrans-factors[1—3,9,10].Importantly,increasing lines of evidence have revealed that somecircRNAsplay important rolesunder physiological and pathological conditions,such as neurogenesis,cancer metastasis,and innateimmune responses,with different modes of action[6,11—14].

    Despite these findings,comprehensive characterization of circRNA biogenesis and function has been impeded because the majority of circRNAs are processed from middle exons of genes and their sequences almost completely overlap with those of their cognate linear RNAs except for the BSJ sites[2].Thus,a direct expression comparison of circular and linear RNAs from the same gene loci in a genome-wide manner has remained challenging.The primary obstacle for direct expression comparison is owing to distinct strategies for circular and linear RNA quantification from mapped RNA-seq fragments.In general,RNA-seq fragments that are solely mapped to BSJsites are used to represent circRNA expression,such as by raw or normalized fragment counts(fragments per million mapped fragments,FPM)as shown in Figure 1A(left).On the other hand,RNA-seq fragments mapped to exon bodies and exon-exon splicing junction(SJ)sites are summed up and normalized for linear RNA quantification,such as by fragments per kilobase of transcript per million mapped fragments(FPKM)[15]as shown in Figure 1A(right).Since FPM is unscaled to FPKM,the relative expression levels of most circRNAs are not comparable to those of their cognate linear RNAs when analyzing RNA-seq datasets.

    To solve this problem,we have further updated our previously-reported CIRCexplorer[7]and CIRCexplorer2[16]pipelines to version 3 for circular and linear RNA expression analysis from ribosomal-RNA depleted RNA-seq(CIRCexplorer3-CLEAR,or CLEAR for simplicity,Figure 1B).With the CLEAR pipeline,RNA-seq fragments mapped to circRNA-specific BSJ sites or linear RNA-specific SJsites are individually normalized to evaluate circular or linear RNA expression,each in fragments per billion mapped bases(FPB).Unlike using the non-comparable FPM and FPKM values,expression levels of circular and linear RNAs are both quantified by FPB values with the CLEAR pipeline,and thus can be directly compared by dividing FPBcircby FPBlinearto generate a CIRCscore.In this scenario,relative circRNA expression can be evaluated by using linear RNA expression as an expression background, and highlyexpressed circRNAs with low cognate linear RNA expression background can be identified for further functional studies.Parallel analyses further suggest that CLEAR is more reliable for circular and linear RNA expression comparison than other related methods,with economic memory usage and comparable time consumption.

    Method

    Direct circular and linear RNA expression comparison by the CLEAR pipeline

    CLEAR was developed to achieve direct circular and linear RNA expression comparison.Ribo-RNA-seq datasets that prof ileboth polyadenylated linear and non-polyadenylated circular RNAs in parallel are used for precise circular and linear RNA expression comparison.

    The CLEAR pipeline includes two main steps:alignment and quantification (Figure 1B). For the alignment,ribo-RNA-seq fragments were first mapped by HISAT2[17](version 2.0.5;parameters:hisat2--no-softclip--scoremin L,-16,0--mp 7,7--rfg 0,7--rdg 0,7--dta-k 1--max-seeds 20)against the GRCh38/hg38 human reference genome with known gene annotations(Figure S1)for subsequent linear RNA quantification analysis.HISAT2-unmapped fragments were then mapped to the same GRCh38/hg38 reference genome using TopHat-Fusion (version 2.0.12;parameters:tophat2 -fusion-search --keep-fasta-order--bowtie1 --nocoverage-search)for subsequent circRNA quantification.

    For the quantification,we applied a new FPB value to quantitate linear RNA expression by HISAT2-mapped fragments to SJsitesof the maximally-expressed transcript annotation(Figure S2).The maximally-expressed transcript of a given gene is selected with the highest FPKM value,which is calculated by StringTie(version 1.3.3;parameters:stringtie-e-G)from HISAT2 aligned BAM f ile[18].Fragments mapped to BSJs were retrieved from Top Hat-Fusion as previously reported(version 2.3.6;parameters:CIRCexplorer2 parse-f-t TopHat-Fusion)[16,19]and normalized by totallymapped bases to obtain FPB values for circRNA quantification.

    Figure 1 A computational pipeline for direct circular and linear RNA expression comparison

    Direct comparison of circular and linear RNA expression is achieved using the CIRCscore value that divides FPBcircby FPBlinear,which represents relative circRNA expression using linear RNA expression as the background.

    Flexibility of the CLEAR pipeline

    Other aligners,including TopHat2(version 2.0.12;parameter:tophat2-a 6--microexon-search-m 2-g 1)with known gene annotations(Figure S3)or MapSplice(version 2.1.8 with default parameters)with gene annotations(ensGene_v89.txt updated at 2017/05/08)can also be used in the CLEAR pipeline with similar outputs.

    In the CLEAR pipeline,comparablecircular or linear RNA expression by FPBs and their direct comparison by the CIRCscorecan beobtained directly from raw RNA-seq FASTQ f iles or processed RNA-seq results,such as CIRCexplorer2 output f iles[16].Please see https://github.com/YangLab/CLEAR for details.

    Cell culture

    PA1 cells were purchased from the American Type Culture Collection(ATCC;http://www.atcc.org),and maintained in MEMαsupplemented with 10%FBS,1%glutamine and 0.1%penicillin/streptomycin at 37°C in a 5%CO2cell culture incubator.PA1 cells were routinely tested to exclude mycoplasma contamination.

    Comparison of FPB with qPCR quantification

    Total RNAs from cultured PA1 cells were extracted with Trizol(Thermo Fisher Scientific;Cat No.15596018,Waltham,USA)according to the manufacturer’s protocol.Extracted RNAs were treated with DNase I(DNA-freeTMkit;Thermo Fisher Scientific;Catalog No.AM 1907,Waltham,USA),and reversely transcribed with SuperScript III(Thermo Fisher Scientific;Catalog No.18080044)to produce cDNA and then applied for qPCR analysis.Expression ofACTB,which encodesβ-actin,was examined as an internal control for normalization.Expression of examined linear and circular RNAs was determined from three independent experiments.The primers used in this study are listed in Table S1.

    Mapping efficiencies of circRNAs by different pipelines

    Three different mapping strategies,including CLEARembedded CIRCexplorer2,MapSplice,and circtools with embedded tool(detect circRNAs from chimeric reads,DCC)[20,21],were applied to fetch fragments mapped to BSJ and/or SJsites in PA1 ribo-RNA-seq dataset[16,22].efficiencies of BSJ-mapped fragments were compared by all three pipelines.Normalized circRNA expression was compared between CLEAR with CIRCscores and circtools with circular over linear ratios(CLRs).

    Specifically,for the CLEAR pipeline,fragments mapped to BSJor SJsites and CIRCscores were directly obtained by one single command line:-g hg38.fa-i hisat2_index-j bowtie1_index-G gene.gtf-o out_dir-p 10.For Map Splice pipeline,fragments mapped to BSJsites were obtained by:-p 10--fusion--min-fusion-distance 200--gene-gtf gene.gtf-o out_dir-c chromosomes-x bowtie1_index-1 PA1.For circtools,PA1 ribo-RNA-seq dataset[16,22]were mapped by circtools pipeline with tool(spliced transcripts alignment to a reference,STAR)as suggested at https://docs.circ.tools/en/latest/Detect.html.After a series of reformatting steps,fragments mapped to BSJ or SJ sites were obtained by circtools with parameters:detect@samplesheet-T 10-N-D-an gene.gtf-F-Nr 1 1-fg-G-A hg38.fa-B@bam_f iles.txt.CLRs of circRNAs were finally calculated by dividing BSJ fragments with the mean of SJ-mapped fragments with customized scripts according to circtools.

    For the comparison of consumed memories and elapsed time by CLEAR or circtools,ribo-RNA-seq datasets in PA1[16,22]or cortex[23]were used for the analysis with parameters described above.Consumed memories were recorded by linux commandpsevery 20 s.

    RNA-seq datasets used in this study

    Datasets used for this study include publicly available ribo-,poly(A)+,poly(A)-/ribo-,and RNase R RNA-seq datasets from PA1 cell line[16,22],ribo-RNA-seq datasets of 12 tissues from ENCODE[23](Table S2),as well as ribo-RNAseq datasets of 20 human hepatocellular carcinoma(HCC)samples and their paired normal samples from Gene Expression Omnibus(GEO:GSE77509)[24].

    Results

    Development of the CLEAR pipeline

    The CLEAR pipeline was set up for direct circular and linear RNA expression comparison on a genome-wide scale(Figure 1B).Two characteristic features for circular and linear RNA quantification are applied in the CLEAR pipeline.Similar to circRNA quantification by RNA-seq fragments solely mapped to BSJ sites,fragments that only map to canonical SJ sites by HISAT2 are used for linear RNA quantification(Figure 1B,right).Different from commonly-used FPKM that countsfragmentsmapped to both exon bodiesand SJsites,linear RNA quantification by fragments only mapped to canonical SJ sites is comparable to circRNA quantification by those mapped to BSJ sites(Figure 1B).In addition,fragments mapped to SJ or BSJ sites are normalized by totally mapped bases,rather than by totally mapped fragments,to get FPB for linear or circular RNA quantification(Figure1B,left,Quantification).Direct circular and linear RNA expression comparison can then be achieved with the CIRCscore that divides FPBcircby FPBlinear(Figure 1B,left).

    Comparison of FPB with FPKM for linear RNA quantification

    To evaluate the accuracy of FPB for RNA quantification,commonly-used FPKM values are obtained from the same HISAT2-mapped results.Basically,HISAT2-mapped results are first converted to BAM format by SAMtools[25].String-Tie[18]is then used to calculate transcript expression by FPKM.Since multiple linear RNAs can be produced from a given gene locus,the average FPB value of fragments mapped to all SJ sites in the maximally-expressed linear transcript is used to represent the expression of this gene in the current study(Figure 1B and Figure S2A,S2B).

    With the requirement of FPBlinear>0 and FPKMlinear>0,linear RNA expression,when quantitated by FPBlinear,is highly correlated with that quantitated by FPKMlinearin the PA1 cell line[22](Figure 2A).Indeed,thevalue of FPBlinearis theoretically equivalent to that of FPKMlinear(Figure S2C).Furthermore,FPBlinearis highly correlated with the relative expression of 13 linear RNAs as measured by RT-qPCR in PA1 cells(Figure2B,Table S3).Weobserve a high correlation between FPBlinearand FPKMlinearwhen using different aligners,such as Top Hat2[26]and Map Splice[27],to analyze the ribo-RNA-seq dataset of PA1(Figure S3).Finally,FPBlinearis also highly correlated with FPKMlinearin ENCODE RNAseq datasets from the 12 human tissues examined(Figure S4 and Table S2).Collectively,these findings reveal that FPBlinearis applicable for linear RNA quantification.

    Comparison of FPB with FPM for circRNA quantification

    As expected,circRNA expression,when quantitated by FPBcirc,is highly correlated with that by FPMcirc(Figure 2C).Experimentally,FPBcircis also highly correlated with the relative expression of 13 examined circRNAs as measured by RTqPCR in PA1 cells(Figure 2D,Table S3).The expression of these 13 circRNAs ranges from~1 to 10 FPB(Figure2D),and their cognate linear RNAs are evaluated above(Figure 2B).

    Importantly,compared to commonly-used FPM,FPB is resistant to differences in sequencing lengths and strategies,such as 1×50vs.1×100 or single-endvs.paired-end RNAseq datasets(Figure2E).These resultsare in reasonableagreement with the def initions of FPB and FPM.For example,1 FPB is equivalent to 0.1 FPM for 1×100 bp single-end RNA-seq datasets(Figure S5A)and to 0.2 FPM for 2×100 bp paired-end RNA-seq datasets(Figure S5B).Importantly,in this scenario,FPB can be used directly for crosssample comparison regardless of different sequencing lengths and strategies employed.

    Figure 2 Comparison of FPB with other quantification statistics

    Evaluation of relative circRNA expression by CIRCscore

    Different from unscaled and non-comparable values of FPKMlinear(for linear RNA expression)and FPMcirc(for circRNA expression),FPBlinearfor linear RNA measurement is comparable to FPBcircfor circRNA measurement.We divide FPBcircby FPBlinearto obtain CIRCscore values,by which expression levels of circular and linear RNAs are directly compared in a genome-wide manner.Importantly,the CIRCscore washighly correlated with theexperimental comparison of circularvs.linear RNA relative expression as measured by RTqPCR in 13 gene loci from PA1 cells examined in this study(Figure2F and Table S3),conf irming that CIRCscoreprovides an additional parameter to evaluate circRNA expression normalized by their cognate linear RNA expression background.

    Wefurther compared CIRCscoreby CLEAR with CLR by another previously reported circRNA quantification toolkit,circtools[20].Different from CIRCscore that can be achieved by the CLEAR pipeline directly with a simple command,multiple steps are required to obtain CLR with circtools[20].Importantly,CIRCscore by CLEAR is more accurate than CLR by circtools.For example,CIRCscore of a highlyexpressed circRNA,circCAMSAP-1,is shown as~3.65(Figure3A,blue),which issimilar to RT-qPCR validation with relative expression(circRNA/linear RNA)of~3.82(Figure 3A,gray).However,CLR calculated by circtools with a customized script isabout~0.80(Figure3A,light blue),which is very different from the value derived from RT-qPCR validation.To find out what causes the difference,we performed mapping analysis.It shows that about 126 fragments at the BSJ site ofcircCAMSAP-1 can be identified by the CLEARembedded CIRCexplorer2 pipeline,while only 36 fragments are identified by the circtools-embedded DCC pipeline(Figure 3A),suggesting that DCC could be less efficient for BSJ-mapped fragment calling.The comparison of CIRCexplorer2,Map Splice,and DCC conf irms that DCC is less efficient for circRNA identification(Figure 3).In the ribo-RNA-seq dataset from PA1 cells,356 overlapping circRNAs(with fragments mapped to BSJ≥3)identified by both CIRCexplorer2 and Map Splice failed to be detected by DCC,while only 107 or 99 overlapping circRNAs identified by both CIRCexplorer2 and DCC or MapSplice and DCC were undetected by MapSplice or CIRCexplorer2(Figure 3B),respectively.Among 787 overlapping circRNAs identified by all three pipelines,DCC was also shown to inefficiently call fragments mapped to BSJs in general(Figure 3C).Of note,CIRCexplorer2 and Map Splice are two reliable pipelines for circRNA prof iling[4,28].Taken together,CIRCscore from the CLEAR pipeline is reliable for circRNA normalization using cognate linear RNA expression as background.

    Comparison of FPB and CIRCscore in circRNA analysis

    circRNAs are generally co-expressed with their cognate linear RNAs and that sequences of circRNAs largely overlap with those of linear RNAs.Therefore,the advantage of using CIRCscoreto quantitate circRNA expression isthat it normalizes circRNA expression to the linear RNA expression background.As shown in the PA1 cell line,among those with FPBcirc≥1,some circRNAs with high FPB values have low CIRCscore values(Figure 4A,blue),possibly due to the high expression of their cognate linear RNAs(Figure 4B).However,other circRNAs with comparable FPB values have relatively high CIRCscores(Figure 4A,red),as their cognate linear RNAs are expressed at low levels(Figure 4C).This observation suggests variable expression patterns of circular and their cognate linear RNAs from different genomic loci.

    We further applied CLEAR to evaluate circRNAs in 12 additional human tissues with both FPB and CIRCscore values(Figure 5A and Table S4).Consistent with previous findings[29],circRNAs are more abundant in brain samples than in non-brain tissues.Among all six brain samples examined,circRNAs are more enriched in the cortex,occipital,and diencephalon,but less in the cerebellum,when evaluated by both FPB(Figure 5A,left)and CIRCscore(Figure 5A,right)values.In the six non-brain tissues,circRNAs are enriched in the heart and thyroid at a comparable level to that in the cerebellum.About 10%—20%of circRNAs with FPBcirc≥1 areexpressed at a comparable or even higher level than their cognate linear RNAs,as indicated by CIRCscore≥1(Figure 5A,right),such as in gene loci forcircTPTE2P5andcircPHF7(Figure 5B).Taken together,the identification of highly-expressed circRNAs with high FPBcircand CIRCscore values reveals that some gene loci are particularly favorable for circRNA production(Table S4),and such circRNAs warrant subsequent functional studies.

    CIRCscore reduces individual differences

    Different from FPB,using CIRCscore to evaluate circRNA expression can reduce individual differences that are caused by RNA-seq samples themselves.For example,compared to paired normal samples,circRNA expression evaluated by the FPBcircvalueisinconsistent in a batch of 20 human HCC samples(GEO:GSE77509)[24].Some HCC samples appear to have generally low circRNA expression;while others,such as samples#11 and#16,appear to have significantly high circRNA expression(Figure S6A).Consequently,it is hard to distinguish circRNA expression differences between HCC and their paired normal samples using FPBcircin these 20 HCC samples(Figure 6A,P=0.99).Strikingly,however,circRNAs are generally lowly expressed in almost all HCC samples when CIRCscore isused to normalizecircRNA expression with cognate linear RNA background (Figure 6B,P=3.59×10-5and Figure S6B).These results suggest that it is important to take cognate linear RNA expression into consideration for circRNA quantification,which can be achieved by the CLEAR pipeline in a genome-wide manner.Taken together,quantification of circRNA expression by CIRCscore helps to eliminate individual differences among paired comparisons,and can therefore be used to decipher the trend of circRNA expression changes under different conditions and for different diseases across RNA-seq datasets.

    Discussion

    Recently,circRNAs have been widely detected in cell lines and tissues examined by deep sequencing of non-polyadenylated RNAs and using specific computational pipelines for detecting RNA-seq reads/fragments mapped to BSJsites[16,29,30].Due to distinct strategies for circular or linear RNA quantification(Figure 1A),computational pipelines for direct circular and linear RNA expression comparison from RNA-seq datasets have remained challenging.In this study,we have developed CLEAR by applying normalized RNA-seq fragments solely mapped to BSJ or canonical SJ sites individually for circular(FPBcirc)or cognate linear(FPBlinear)RNA quantification(Figure 1B).

    Figure 3 Comparison of circRNA quantification by CIRCexplorer3-CLEAR and other tools

    Figure 4 Difference of circRNA quantification by FPB and CIRCscore

    Figure 5 Application of CIRCexplorer3-CLEAR among 12 human tissue samples

    Figure 6 Removal of possible errors/f luctuations and individual differences using CIRCscore quantification

    The CLEAR pipeline has at least two advantages in circRNA studies.First,the FPB values are highly correlated with canonical FPKMs for linear RNAs and FPMs for circRNAs(Figure 2),which are unlikely affected by RNA-seq strategies,making cross-sample comparisons feasible.Second,direct comparison of circular and cognate linear RNAs with the CIRCscore not only precisely quantitates circRNA expression relative to normalized linear RNA expression background(Figures 4 and 5),but also eliminates possible errors/f luctuations caused by sample preparation/sequencing differences(Figure 6).This reduces inaccuracies for circRNA quantification and subsequent cross-sample comparison.Compared to other multi-step methods for circular and linear RNA comparison,such as DCC/circtools,the CLEAR pipeline is efficient(Figure 3),memory-economical(Figure S7),easily performed with a single command(Figure S7),and user-friendly due to the application of reliable CIRCexplorer2[4,28].By using cognatelinear RNAsasbackground,CLEAR hasthe potential to allow users to identify highly expressed circRNAs in different biological settings for subsequent functional studies.This is important,because so far it has often been diff icult to identify the circRNAs with the highest expression levels in contexts of interest,or those more highly expressed than their cognate linear RNAs,for functional studies.

    It is worth noting that different RNA sequencing strategies have been applied to prof ile circRNAs,including ribo-,poly(A)-/ribo-,and RNase R-treated RNA-seq datasets(Figure 4).Different from poly(A)+RNA-seq datasets that are used to detect polyadenylated cognate linear RNAs,all three types of non-polyadenylated RNA-seq can be used to determine circRNA expression by FPB.However,only ribo-RNA-seq datasets that prof ile both polyadenylated linear and non-polyadenylated circular RNAs in parallel are suitable for direct circular and linear RNA expression comparison by CIRCscore(Figure 4).In contrast,in poly(A)-/ribo-,and RNase R-treated RNA-seq datasets,polyadenylated linear RNAs are largely depleted,which is unsuitable for accurate linear RNA quantification and subsequent CIRCscore evaluation.

    Taken together,the CLEAR pipeline provides a comprehensive way to quantitatively evaluate circRNA expression acrosssamplesand to identify highly expressed circRNAswith low linear RNA expression background.

    Availability

    The CIRCexplorer3-CLEAR pipeline and its application can be downloaded from https://github.com/YangLab/CLEAR.

    Authors’contributions

    LY conceived and designed theproject.XKM,MRW,and RD performed computational analyses under the supervision by LY.CXL performed experiments under the supervision by LLC.LY,LLC,and GGC wrote the paper with input from XKM and MRW.All authors read and approved the final manuscript.

    Competing interests

    The authors have declared no competing interests.

    Acknowledgments

    This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences,China(Grant No.XDB19020104),the National Natural Science Foundation of China(Grant Nos.31730111,31925011,and 91940306),and the Howard Hughes Medical Institute International Program,the United States(Grant No.55008728).

    Supplementary material

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.gpb.2019.11.004.

    超碰av人人做人人爽久久 | 国产aⅴ精品一区二区三区波| 熟女少妇亚洲综合色aaa.| 老司机福利观看| 免费av观看视频| 午夜福利在线观看免费完整高清在 | 精品久久久久久久久久久久久| 成人精品一区二区免费| 午夜福利在线观看免费完整高清在 | 变态另类丝袜制服| 亚洲欧美日韩高清专用| 精品国内亚洲2022精品成人| 亚洲精品在线美女| 天堂√8在线中文| 久久久久九九精品影院| 九色国产91popny在线| 欧美不卡视频在线免费观看| 亚洲精品一区av在线观看| 国产私拍福利视频在线观看| 国产成人影院久久av| 国产精品久久电影中文字幕| 成年版毛片免费区| 国产精品久久久久久精品电影| 制服丝袜大香蕉在线| 中文字幕精品亚洲无线码一区| 国产成人av激情在线播放| 麻豆成人av在线观看| 一区福利在线观看| 最近最新免费中文字幕在线| 天堂影院成人在线观看| 九九在线视频观看精品| 九九久久精品国产亚洲av麻豆| 国产伦人伦偷精品视频| 两人在一起打扑克的视频| 国产激情偷乱视频一区二区| 久久久久亚洲av毛片大全| 99在线人妻在线中文字幕| 日韩欧美精品免费久久 | 婷婷精品国产亚洲av| 五月伊人婷婷丁香| 51午夜福利影视在线观看| 国产亚洲欧美98| 韩国av一区二区三区四区| 91字幕亚洲| 一进一出好大好爽视频| 午夜精品久久久久久毛片777| 亚洲av成人精品一区久久| 动漫黄色视频在线观看| 男女床上黄色一级片免费看| 成人性生交大片免费视频hd| 亚洲无线观看免费| 3wmmmm亚洲av在线观看| 99国产精品一区二区蜜桃av| 国产v大片淫在线免费观看| 熟妇人妻久久中文字幕3abv| 国产真人三级小视频在线观看| 欧美性感艳星| 亚洲人与动物交配视频| 免费av观看视频| 嫩草影视91久久| 国产亚洲欧美在线一区二区| 久久久久性生活片| 可以在线观看的亚洲视频| 精品久久久久久久久久免费视频| 国产精品98久久久久久宅男小说| 男女做爰动态图高潮gif福利片| 99国产精品一区二区蜜桃av| 国产久久久一区二区三区| 日韩精品中文字幕看吧| 国产精品久久久久久精品电影| 在线观看午夜福利视频| 国产色婷婷99| 久久精品人妻少妇| 亚洲av一区综合| 亚洲精品456在线播放app | 国产精品野战在线观看| 婷婷精品国产亚洲av在线| 成年女人永久免费观看视频| 成人鲁丝片一二三区免费| 久久久久免费精品人妻一区二区| 丁香欧美五月| a在线观看视频网站| 观看免费一级毛片| 精品一区二区三区视频在线观看免费| 国产成年人精品一区二区| 久久九九热精品免费| 真实男女啪啪啪动态图| 在线观看av片永久免费下载| 欧美性感艳星| 老司机福利观看| 99久久九九国产精品国产免费| 啦啦啦免费观看视频1| 18禁美女被吸乳视频| 国产v大片淫在线免费观看| 欧美日韩瑟瑟在线播放| 宅男免费午夜| 午夜精品在线福利| av专区在线播放| 精品电影一区二区在线| 深爱激情五月婷婷| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美日韩东京热| 亚洲精品成人久久久久久| 欧美成人性av电影在线观看| 法律面前人人平等表现在哪些方面| 欧美日韩精品网址| 亚洲18禁久久av| 欧美乱妇无乱码| 可以在线观看毛片的网站| 一进一出抽搐gif免费好疼| 九色成人免费人妻av| 尤物成人国产欧美一区二区三区| 精品国产超薄肉色丝袜足j| 亚洲熟妇中文字幕五十中出| 色视频www国产| 欧美绝顶高潮抽搐喷水| 黄色女人牲交| 在线观看免费午夜福利视频| 丁香六月欧美| 白带黄色成豆腐渣| 久久国产乱子伦精品免费另类| 51午夜福利影视在线观看| 99久久精品国产亚洲精品| www.熟女人妻精品国产| 国产精品久久久久久久电影 | 亚洲成a人片在线一区二区| 好看av亚洲va欧美ⅴa在| 91av网一区二区| 免费人成视频x8x8入口观看| 99热这里只有是精品50| 久久久久亚洲av毛片大全| 一夜夜www| 欧美成人免费av一区二区三区| 国产乱人伦免费视频| 国产蜜桃级精品一区二区三区| 中国美女看黄片| 两个人看的免费小视频| 久久久久亚洲av毛片大全| 国产伦人伦偷精品视频| 真实男女啪啪啪动态图| 无遮挡黄片免费观看| 日本a在线网址| 99热这里只有精品一区| 国产高潮美女av| 国产精品三级大全| 国产精品久久久久久久久免 | 每晚都被弄得嗷嗷叫到高潮| 成人特级av手机在线观看| 欧美丝袜亚洲另类 | 国产探花在线观看一区二区| 午夜福利18| 狠狠狠狠99中文字幕| 蜜桃久久精品国产亚洲av| 亚洲成人免费电影在线观看| 观看美女的网站| 欧洲精品卡2卡3卡4卡5卡区| 欧美一区二区精品小视频在线| 极品教师在线免费播放| 国产综合懂色| 亚洲真实伦在线观看| 亚洲欧美日韩卡通动漫| 一级毛片女人18水好多| 成人三级黄色视频| 麻豆成人午夜福利视频| 国产精品乱码一区二三区的特点| 亚洲av美国av| xxxwww97欧美| 亚洲中文字幕一区二区三区有码在线看| 19禁男女啪啪无遮挡网站| 两人在一起打扑克的视频| 网址你懂的国产日韩在线| 美女黄网站色视频| 免费在线观看亚洲国产| 精品不卡国产一区二区三区| av在线天堂中文字幕| 欧美日韩亚洲国产一区二区在线观看| 国内精品美女久久久久久| 露出奶头的视频| 亚洲av不卡在线观看| 欧美区成人在线视频| 老汉色av国产亚洲站长工具| 午夜福利成人在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 丰满乱子伦码专区| 亚洲不卡免费看| 亚洲电影在线观看av| 嫩草影院精品99| 色av中文字幕| 97碰自拍视频| 国产亚洲精品久久久com| 国产激情偷乱视频一区二区| 亚洲成人中文字幕在线播放| 别揉我奶头~嗯~啊~动态视频| 欧美日韩国产亚洲二区| 久久婷婷人人爽人人干人人爱| 久久午夜亚洲精品久久| 99久久九九国产精品国产免费| 亚洲精品色激情综合| 三级毛片av免费| 国产毛片a区久久久久| 亚洲精品美女久久久久99蜜臀| 精品无人区乱码1区二区| 欧美激情久久久久久爽电影| 国产精品三级大全| 午夜久久久久精精品| 亚洲精品在线美女| 一二三四社区在线视频社区8| 日韩亚洲欧美综合| 日韩精品中文字幕看吧| 久久久久久大精品| 国产成人啪精品午夜网站| 国产精品亚洲美女久久久| 日韩成人在线观看一区二区三区| www.www免费av| 久久草成人影院| 国产精品98久久久久久宅男小说| 欧美性猛交╳xxx乱大交人| 亚洲第一电影网av| 最好的美女福利视频网| 午夜福利视频1000在线观看| 欧美日韩瑟瑟在线播放| 欧美日韩中文字幕国产精品一区二区三区| 欧美国产日韩亚洲一区| 午夜福利18| 嫁个100分男人电影在线观看| 波多野结衣巨乳人妻| avwww免费| 欧美色视频一区免费| 在线观看舔阴道视频| 丰满的人妻完整版| 老司机午夜福利在线观看视频| 又紧又爽又黄一区二区| 观看美女的网站| xxx96com| 啦啦啦免费观看视频1| tocl精华| 国产黄片美女视频| 99国产综合亚洲精品| 国产综合懂色| 一a级毛片在线观看| 熟女人妻精品中文字幕| 网址你懂的国产日韩在线| 国产一区二区亚洲精品在线观看| 日本在线视频免费播放| 免费看a级黄色片| 免费看十八禁软件| 久久精品亚洲精品国产色婷小说| 有码 亚洲区| 校园春色视频在线观看| 此物有八面人人有两片| 俺也久久电影网| 国产伦在线观看视频一区| 国产精品,欧美在线| av片东京热男人的天堂| 在线观看av片永久免费下载| 美女cb高潮喷水在线观看| 久久精品亚洲精品国产色婷小说| 亚洲无线在线观看| 国产成人av激情在线播放| 久久精品国产自在天天线| 女生性感内裤真人,穿戴方法视频| 色综合欧美亚洲国产小说| 精品一区二区三区视频在线观看免费| 51午夜福利影视在线观看| 成人欧美大片| 高清日韩中文字幕在线| 老司机午夜福利在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 精品免费久久久久久久清纯| 欧美乱码精品一区二区三区| www.999成人在线观看| www国产在线视频色| ponron亚洲| 最近最新免费中文字幕在线| 亚洲最大成人中文| av在线天堂中文字幕| 男女那种视频在线观看| 男女做爰动态图高潮gif福利片| e午夜精品久久久久久久| 国产精品98久久久久久宅男小说| 男女之事视频高清在线观看| 香蕉久久夜色| 亚洲精品国产精品久久久不卡| 精品久久久久久久久久久久久| 午夜影院日韩av| 日韩高清综合在线| 欧美日韩精品网址| 在线观看美女被高潮喷水网站 | 91九色精品人成在线观看| 免费电影在线观看免费观看| 老司机午夜福利在线观看视频| 免费在线观看影片大全网站| 国产精华一区二区三区| 午夜两性在线视频| 一个人观看的视频www高清免费观看| 91九色精品人成在线观看| 亚洲国产欧洲综合997久久,| 黄色丝袜av网址大全| 亚洲国产精品sss在线观看| 欧美色视频一区免费| 国产精品1区2区在线观看.| 国产精品女同一区二区软件 | av黄色大香蕉| 国产主播在线观看一区二区| 少妇的丰满在线观看| 国产三级中文精品| 亚洲国产色片| 精品国产超薄肉色丝袜足j| 欧美成人a在线观看| 亚洲一区二区三区不卡视频| 日本精品一区二区三区蜜桃| 国产中年淑女户外野战色| 国产亚洲精品综合一区在线观看| 精品国产三级普通话版| 男人和女人高潮做爰伦理| 免费一级毛片在线播放高清视频| 99国产极品粉嫩在线观看| 免费看美女性在线毛片视频| 国产av一区在线观看免费| 在线天堂最新版资源| 深夜精品福利| 桃色一区二区三区在线观看| 又紧又爽又黄一区二区| 午夜福利免费观看在线| 亚洲avbb在线观看| 日本免费一区二区三区高清不卡| 一个人免费在线观看电影| 日韩欧美在线二视频| 熟女电影av网| 免费看美女性在线毛片视频| 淫妇啪啪啪对白视频| 97碰自拍视频| 夜夜爽天天搞| 真人做人爱边吃奶动态| 中文字幕人成人乱码亚洲影| 国产真实乱freesex| 在线观看66精品国产| 男女之事视频高清在线观看| 一个人看视频在线观看www免费 | 国产极品精品免费视频能看的| 国产精品久久视频播放| 变态另类成人亚洲欧美熟女| 久久精品91无色码中文字幕| 麻豆成人av在线观看| 国产精品久久久久久人妻精品电影| 在线观看舔阴道视频| 国产一区二区三区在线臀色熟女| 免费av观看视频| 综合色av麻豆| 久久精品国产综合久久久| 亚洲熟妇熟女久久| 一区二区三区国产精品乱码| 琪琪午夜伦伦电影理论片6080| 啦啦啦观看免费观看视频高清| 精品乱码久久久久久99久播| 制服人妻中文乱码| 亚洲,欧美精品.| 真实男女啪啪啪动态图| 一二三四社区在线视频社区8| 久久久精品大字幕| 亚洲内射少妇av| 看免费av毛片| 久久精品综合一区二区三区| 欧美日本视频| 日本a在线网址| 少妇熟女aⅴ在线视频| а√天堂www在线а√下载| 国产伦在线观看视频一区| 18禁在线播放成人免费| 国产精品99久久久久久久久| 深爱激情五月婷婷| 欧美日韩瑟瑟在线播放| 亚洲黑人精品在线| 国产精品亚洲一级av第二区| 一本久久中文字幕| 12—13女人毛片做爰片一| 午夜免费激情av| 亚洲人成网站在线播放欧美日韩| 美女cb高潮喷水在线观看| 午夜两性在线视频| 亚洲av免费高清在线观看| 精品国产超薄肉色丝袜足j| 亚洲五月婷婷丁香| av在线蜜桃| 国产亚洲精品久久久com| 全区人妻精品视频| 给我免费播放毛片高清在线观看| 三级国产精品欧美在线观看| 99精品久久久久人妻精品| 国产99白浆流出| 亚洲av免费高清在线观看| 国产免费一级a男人的天堂| 给我免费播放毛片高清在线观看| 国产精品综合久久久久久久免费| 一进一出抽搐动态| av天堂在线播放| 欧美丝袜亚洲另类 | 免费在线观看影片大全网站| 日韩有码中文字幕| 亚洲美女黄片视频| 成熟少妇高潮喷水视频| 搡女人真爽免费视频火全软件 | 少妇人妻一区二区三区视频| 最新在线观看一区二区三区| 少妇丰满av| 国产成人啪精品午夜网站| 久久这里只有精品中国| 最新美女视频免费是黄的| 黄片小视频在线播放| 男女那种视频在线观看| 有码 亚洲区| 麻豆一二三区av精品| 听说在线观看完整版免费高清| 日韩欧美在线乱码| 亚洲七黄色美女视频| 久久久久国产精品人妻aⅴ院| 日韩av在线大香蕉| 国产视频一区二区在线看| 美女cb高潮喷水在线观看| 悠悠久久av| 成年人黄色毛片网站| 午夜福利高清视频| 99热6这里只有精品| 日本黄大片高清| 黄色片一级片一级黄色片| 中文字幕av成人在线电影| av片东京热男人的天堂| 2021天堂中文幕一二区在线观| 中出人妻视频一区二区| 久久精品夜夜夜夜夜久久蜜豆| 内地一区二区视频在线| 88av欧美| 欧美最黄视频在线播放免费| 国产精品女同一区二区软件 | 波多野结衣巨乳人妻| 舔av片在线| 国产熟女xx| 欧美+亚洲+日韩+国产| 老司机午夜十八禁免费视频| 精华霜和精华液先用哪个| 国产精品 欧美亚洲| 亚洲精品色激情综合| 免费人成在线观看视频色| 亚洲av电影在线进入| 中文资源天堂在线| 久久久久久久精品吃奶| 手机成人av网站| 日韩高清综合在线| 大型黄色视频在线免费观看| 欧美黑人巨大hd| 亚洲av中文字字幕乱码综合| 在线观看美女被高潮喷水网站 | 日本成人三级电影网站| 欧美日韩综合久久久久久 | 欧美日韩中文字幕国产精品一区二区三区| 久久久成人免费电影| 国产在视频线在精品| 欧美成人a在线观看| 九色国产91popny在线| 久久精品人妻少妇| 久久久久久久久大av| 嫁个100分男人电影在线观看| 丁香六月欧美| 国产三级中文精品| 丰满乱子伦码专区| 嫁个100分男人电影在线观看| 色av中文字幕| 日韩精品中文字幕看吧| АⅤ资源中文在线天堂| 亚洲欧美精品综合久久99| 欧美三级亚洲精品| 男人舔女人下体高潮全视频| 国产国拍精品亚洲av在线观看 | 国产精品亚洲av一区麻豆| 成人一区二区视频在线观看| 亚洲av成人不卡在线观看播放网| 国产精品三级大全| 一进一出抽搐动态| 成人精品一区二区免费| eeuss影院久久| 欧美最新免费一区二区三区 | 叶爱在线成人免费视频播放| av女优亚洲男人天堂| 午夜日韩欧美国产| 天堂动漫精品| 国产单亲对白刺激| 国产高清视频在线播放一区| 最近最新免费中文字幕在线| 亚洲国产日韩欧美精品在线观看 | av黄色大香蕉| 午夜福利18| 亚洲av免费高清在线观看| 亚洲无线观看免费| 国产精品久久久人人做人人爽| 可以在线观看的亚洲视频| 亚洲av五月六月丁香网| 日韩 欧美 亚洲 中文字幕| 给我免费播放毛片高清在线观看| 级片在线观看| 在线观看免费视频日本深夜| 哪里可以看免费的av片| 欧美一区二区国产精品久久精品| 首页视频小说图片口味搜索| 精品一区二区三区视频在线观看免费| 一二三四社区在线视频社区8| 亚洲欧美激情综合另类| 国产毛片a区久久久久| 女生性感内裤真人,穿戴方法视频| 婷婷丁香在线五月| 精品福利观看| 国产一区二区亚洲精品在线观看| 国产精品嫩草影院av在线观看 | www日本在线高清视频| 亚洲熟妇熟女久久| 亚洲国产精品久久男人天堂| 在线a可以看的网站| 他把我摸到了高潮在线观看| 欧美日韩一级在线毛片| 久久国产精品影院| 少妇的逼好多水| 成人18禁在线播放| 最新中文字幕久久久久| 美女高潮的动态| 亚洲人成网站在线播放欧美日韩| 国产精品自产拍在线观看55亚洲| 观看免费一级毛片| 丁香欧美五月| 三级毛片av免费| 免费看光身美女| 欧美一区二区国产精品久久精品| 亚洲精品456在线播放app | 免费大片18禁| 99热精品在线国产| 国内揄拍国产精品人妻在线| 成人性生交大片免费视频hd| 欧美最新免费一区二区三区 | 狠狠狠狠99中文字幕| 啪啪无遮挡十八禁网站| 日本三级黄在线观看| 婷婷精品国产亚洲av| 18禁国产床啪视频网站| 黄色片一级片一级黄色片| 无限看片的www在线观看| 噜噜噜噜噜久久久久久91| 精品人妻一区二区三区麻豆 | 又黄又爽又免费观看的视频| 国产一区二区在线av高清观看| 久久久久久久亚洲中文字幕 | 淫秽高清视频在线观看| 精品久久久久久久久久免费视频| 日本 av在线| 日本黄色片子视频| 亚洲精品在线观看二区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品456在线播放app | 久久国产精品人妻蜜桃| 国产精品久久久久久精品电影| 亚洲一区高清亚洲精品| 三级男女做爰猛烈吃奶摸视频| 超碰av人人做人人爽久久 | 伊人久久大香线蕉亚洲五| 国产欧美日韩一区二区精品| 在线观看66精品国产| 嫩草影院精品99| 欧美大码av| 久久亚洲精品不卡| 18禁裸乳无遮挡免费网站照片| 99国产精品一区二区三区| 中文字幕熟女人妻在线| 亚洲天堂国产精品一区在线| 97碰自拍视频| 国产美女午夜福利| 麻豆成人av在线观看| 国产一区二区三区在线臀色熟女| 国内久久婷婷六月综合欲色啪| 亚洲国产高清在线一区二区三| 91久久精品国产一区二区成人 | 男人舔奶头视频| 国产精品嫩草影院av在线观看 | 在线免费观看的www视频| 精品午夜福利视频在线观看一区| 国产三级在线视频| 两人在一起打扑克的视频| 亚洲真实伦在线观看| 免费在线观看亚洲国产| 波多野结衣高清无吗| 国产麻豆成人av免费视频| 免费在线观看影片大全网站| 午夜福利在线观看吧| 精品福利观看| 欧美成人a在线观看| 国产精品99久久99久久久不卡| 嫩草影院入口| 女同久久另类99精品国产91| 99riav亚洲国产免费| 熟女少妇亚洲综合色aaa.| 搞女人的毛片| 国产精品三级大全| 欧美一级a爱片免费观看看| 免费av毛片视频| 内地一区二区视频在线| 久久国产乱子伦精品免费另类| 亚洲成人中文字幕在线播放| 国产精华一区二区三区| 一个人看视频在线观看www免费 | 18美女黄网站色大片免费观看| 国产毛片a区久久久久| 一夜夜www| 特大巨黑吊av在线直播| 亚洲欧美精品综合久久99| 亚洲 欧美 日韩 在线 免费| 亚洲av一区综合| 日韩国内少妇激情av| 69av精品久久久久久| 国产精品国产高清国产av|