• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative genetic studies with applications in plant breeding in the omics era

    2020-12-20 16:55:22JinkngWngJosCrossJunyiGi
    The Crop Journal 2020年5期

    Jinkng Wng, José Cross, Junyi Gi

    aInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

    bInternational Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45, El Batan, Texcoco, Mexico

    cSoybean Research Institute, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China

    Quantitative genetics is concerned with the inheritance of biological traits showing continuous(or quantitative)phenotypic variation.Quantitative traits are common and have been extensively investigated and studied in evolutionary and genetic studies and in plant and animal breeding.Quantitative traits are normally controlled by multiple genes with various kinds of genetic effect,and their phenotypes are readily modified by environmental variation.Based on the multifactorial hypothesis of quantitative traits,classical theories of quantitative genetics(also referred to as statistical genetics in early years)were well established by the 1940s,owing mainly to the contributions of R.A.Fisher,J.B.S.Haldane,and S.Wright.Thanks to the publication of monographs by Mather[1],Kempthorne[2],and Falconer[3],quantitative genetics has spread widely in western countries since 1950 and contributed immensely to the improvement of plants and animals in the 20th century.In China,quantitative genetics started to be taught at agricultural colleges and universities as a postgraduate academic course from the late 1970s to early 1980s,thanks in part to the publication of textbooks by Wu[4],Ma[5],and Liu et al.[6].

    Rapid progress in molecular biology and genomics has made fundamental impacts in theoretical and applied studies of quantitative genetics since the landmark paper of Lander and Botstein[7].In the era of omics,availability of fine-scale genetic linkage maps and easily-accessed genotyping technologies has led to progress in quantitative genetics theory,together with the intensive use of quantitative trait locus(QTL)mapping and map-based cloning in the genetic study of quantitative traits in plants,animals,and humans.As a consequence,novel molecular breeding methods have been developed,including marker-assisted selection,designed breeding,and genomic selection.Two recent Chinese textbooks by Kong[8]and Wang[9]covered classical and modern theories and breeding applications from both population and quantitative genetics.Two professional books edited by Gai et al.[10]and Wang et al.[11],describe some of the major achievements in theoretical and applied quantitative genetics research during the past 30 years in China.

    From 8 to 10 May 2000,Prof.Huidong Mo,a famous biometrician and quantitative geneticist in China,organized a meeting on quantitative genetics at Yangzhou University.Two distinguished scientists,Prof.Changxin Wu(China Agricultural University,Academician of Chinese Academy of Sciences)and Prof.Junyi Gai(Nanjing Agricultural University,Academician of Chinese Academy of Engineering)attended the meeting.During the meeting,the two professors and other participants advocated to have the meeting regularly held once every two years,and named the meeting in Yangzhou as the first National Symposium on Quantitative Genetics in Plants and Animals.Two years later as scheduled,Prof.Wu organized the second symposium at Xiangshan Hotel,Beijing in align with the Xiangshan Scientific Series Conferences led by the Chinese Academy of Sciences.Thereafter,the symposium series became an important event in the Chinese scientific community.The eighth symposium(http://qgc2019.isbreeding.net/)was held from 26 to 28 August 2019 in the Friendship Hotel in Beijing.Eighteen presentations were invited on six themes:(1)new and future areas of quantitative genetics;(2)omics-driven quantitative genetics studies;(3)genetic analysis and gene mapping of quantitative traits;(4)whole-genome dissection and prediction of quantitative traits;(5)quantitative genetic theories for molecular breeding;and(6)applications of quantitative genetics. About 120 researchers and graduate students attended the symposium. Distinguished guests professor Huqu Zhai (former president of CAAS), professor Laifu Liu(Beijing Normal University) and professor Chunming Liu(director general of the Institute of Crop Sciences, CAAS)attended the symposium and gave remark speeches during the opening ceremony. In support of the symposium, The Crop Journal arranged a special issue with the title “Quantitative genetics in the omics era”. After peer review, 17 articles were finally selected, including one review article on genomic selection [12], five articles on analytical methods and tools for quantitative traits [13–17], six articles on genetic studies of quantitative traits [18–23], and five articles on applications in breeding for quantitative traits [24–28].

    For future quantitative genetics, we anticipate that populations that can be used to dissect the genetic architecture of quantitative traits will be more diversified; genetic data and gene information will become more abundant and diverse and will come from more sources and levels; functions and genetic networks of more quantitative trait genes will be investigated; demand for genetic studies and breeding applications will be more specialized and become ever stronger.Bearing in mind these trends, and also based on the articles collected in this issue, we outline below a few research areas that may be potential in theoretical and applied quantitative genetics studies in the near future.

    1.From bi-parental to multi-parental populations

    Genetic study is impossible without the use of one or several populations[11].Bi-parental segregating populations are derived from two homozygous parents,such as doubled haploid lines,recombinant inbred lines,backcross,and F2and F3populations,which have been widely used in genetic studies and QTL mapping.The integrated QTL IciMapping software package[29]provides many analysis methods for phenotypic and genotypic data associated with such populations.In bi-parental populations,genetic loci with identical genotypes in the two parents cannot be detected,and the number of recombination events is relatively limited,resulting in a lack of mapping precision.In addition,it is not clear whether an identified QTL has multiple alleles unless it is studied in other independent populations.To save time in population development and identify more alleles at a locus,association mapping(also called genome-wide association study,GWAS)has been employed in natural populations or germplasm panels.GWAS depends on population-wide marker-phenotype associations and historical recombination events,and may suffer from unknown population structure and low linkage disequilibrium.As a result,association mapping in plants has so far failed to identify a single major QTL allele that has been of value in public breeding programs[30].

    Multi-parental populations have been developed and are being used in genetic studies in several species in the past ten years.In these populations,each locus harbors multiple alleles,kinship or genetic relationships in the progenies are well defined,and accordingly population structure can be precisely defined.Greater opportunity of recombination during population development increases mapping accuracy and abundant genetic variation allows the detection of more genes and alleles.Linkage analysis methods,QTL mapping methods and associated software packages have been reported for F1populations from two heterozygous parents and from double(or four-way)crosses among four inbred parental lines[31–33],populations of pure lines derived from a double cross[34,35],and populations of pure lines derived from an eight-way cross among eight inbred parental lines[34,36].In this special issue,there is one paper describing the use of a four-way cross pure-line population for mapping QTL for oil content in soybean[22].We anticipate that multi-parental populations will be increasingly developed and used in genetic studies of quantitative traits in the near future,as analysis methods and tools are developed.When more parents are to be considered in population development,the selection of crossing or mating design becomes an issue worthy of investigation[11,32,35,36].In the meantime,there is a need for QTL-by-environment interaction analysis for multiparental populations.To our knowledge,epistatic mapping methods in multi-parental populations have also not been studied.

    2.From QTL to gene function,gene regulation,and gene network

    As mentioned earlier,molecular biology and genomics together with high-resolution QTL mapping methods have made fundamental impacts in theoretical and applied quantitative genetics studies.Genetic architecture refers to the number and genome locations of genes that affect a trait,the magnitude of their effects,and the relative contributions of additive,dominant,and epistatic gene effects[37].Dissecting the genetic architecture of quantitative traits is a long-term and major task in genetics and quantitative genetics.Three articles in this special issue address theoretical aspects of QTL mapping:ordering of high-density molecular markers in linkage map construction[13],improvement of time efficiency in GWAS using high-density SNP markers[15],and statistical methods suitable for multi-trait GWAS[16].Several articles address the application of QTL mapping for kernel shape and color in durum wheat[18],panicle traits in rice[19],seed flooding tolerance in soybean[20],branch number in soybean[21],seed oil content in soybean[22],yield and plant height in alfalfa[23],and seed glucosinolate content in Brassica napus[27].In the study of Sobhi et al.[21],one major-effect QTL was further localized to a chromosomal region 116 kb in length and a candidate gene in this region was confirmed to control branch number in soybean.Wang et al.[27]identified a sulfotransferase gene that has minor but stable effects on plant height traits in Brassica napus.

    We anticipate that QTL mapping will continue to be a major approach in genetic analysis of biological and economic traits.We also expect that the causal genes and sequence changes of detected QTL will be identified,together with their functions and biochemical pathways from gene to phenotype.While this remains a major challenge and will take sustained effort,it is not impossible.The procedure used to elucidate the signaling pathway of GW5 in regulating grain width and grain weight in rice can serve to demonstrate the tedious effort and long research path from one detected QTL to its function and pathway[38–41].In 2005,a QTL for grain width was reported[38]to show stable genetic effects across a wide range of environments in two mapping populations,one of recombinant inbred lines and the other of chromosome segment substitution lines.In 2008,the QTL was fine-mapped in a recombination hotspot region on rice chromosome 5[39],and was further isolated and characterized as a major QTL for grain width and grain weight[40].Weng et al.[40]reported that a 1212-bp deletion was associated with increased grain width in the japonica parent Asominori,in comparison with the slender grain in the indica parent IR 24.In 2017,the GW5 allele at the locus was reported[41]to act in the brassinosteroid signaling pathway and finally regulate grain width and grain weight in rice.

    In the above example,it took 12 years from preliminary QTL mapping to full understanding of how the QTL or gene contributes to the final grain width and grain weight phenotype in rice.This time would be much longer if population development for the initial QTL mapping were counted.Nonetheless,we anticipate that,in the near future,more and more quantitative trait genes will be fine-mapped,isolated,cloned,and functionally analyzed.This information not only strengthens our understanding of the genetics of quantitative traits,but also helps to apply new biotechnological approaches,such as genome editing and molecular design,in targeted improvement of quantitative traits.In addition,minor-effect QTL or genes have been occasionally reported[27,42].They can be repeatedly detected across environments and populations when a lower inclusion threshold is used,and their genetic effects on phenotypic traits are estimated toward the same direction[42].These minor but stable QTL or genes should also be further investigated.

    3.Increase of prediction accuracy in genomic selection

    The concept of genomic selection(GS)was proposed by Meuwissen et al.[43]in 2001,aiming to use genome-wide,densely distributed DNA markers to increase the efficiency of improving quantitative traits.Reduction in breeding cost per cycle and increase in time efficiency are two major advantages of GS over phenotype-based selection.GS has been applied in two different cases.In the first case,we are interested in the prediction of additive(breeding)values rather than total genetic value,and here additive linear models that summarize the effects of markers are sufficient.In the second case,we are interested in predicting complete genetic values of individuals by considering both additive and non-additive(dominance and epistasis)effects,thereby estimating the performance(commercial value)of the cultivars.There is one review article and one methodology article on GS in this special issue[12,14].Considering the complicated and varied genetic architectures of different quantitative traits,we conclude that new approaches and algorithms are still needed to further increase GS prediction accuracy by considering more genetic and environmental factors.

    GS employs genome-wide markers and phenotypic information from one or several observed and genotyped populations to establish an association between genotype and phenotype and then to predict phenotypic values in tested and/or breeding populations that have been only genotyped with genome-wide markers.Over the last decade,many prediction models have been proposed,differing from one another in assumptions in estimating breeding values and in computational complexity.Genetic values of breeding lines can be predicted for some environments using an incomplete multi-environment testing scheme.Complexity arises in predicting the values of unobserved lines in specific environments using estimates of genotype by environment(GE)interaction.Also important is the high genomic complexity of GE interactions for multiple traits,requiring the use of statistical genetic models that exploit genetic correlations among environments,traits,and traits and environments simultaneously[44,45].In addition,the volume and complexity of GS data demand more interdisciplinary research in computer science,machine learning,mathematics,physics,statistics,genetics and quantitative genetics,and bioinformatics.Deep learning algorithms are powerful for modeling nonlinear patterns and can be incorporated into GS for integrating data from different sources and increasing prediction accuracy.

    4.Applications of genomic selection in conventional breeding programs

    The concept of GS has been proposed for 20 years,during which prediction models have been developed and implemented in various programming languages and platforms.In the meantime,some private companies have adopted GS in their breeding programs,especially for economically important large animals.However,the application of GS in plant breeding lags behind.The major factors may be the differences between animals and plants:generation length,population size,selection intensity,and breeding objectives.But one major reason may be the genotyping cost.Every individual in a newly developed breeding population has to be genotyped with high-density markers for the prediction of its breeding value.Populations in animal breeding normally consist of hundreds or thousands of progeny,sizes much smaller than those of most plant breeding populations.Taking wheat as an example,every season a breeder makes tens or hundreds of single crosses,grows out the F1hybrids made in the previous season,grows out the F2populations(each of 1000–3000 plants)derived from the F1bulk in the previous season,and so on.Thus,one wheat breeder grows millions of segregating and heterozygous individuals and thousands of advanced lines in just one season.Some breeding programs may have two or more seasons in one calendar year.Even though genotyping costs per sample are becoming ever cheaper,the total cost of genotyping all individual plants and the cost relative to the value of the individual(think of a milk cow compared to a wheat plant)are still too expensive for most plant breeding programs.

    Fortunately,the collection of parents used in plant breeding is rather limited,normally numbering in the tens or hundreds every season.It can be acceptable for plant breeders to genotype all parents that will be used to make crosses for a new breeding cycle.Phenotypic data for these parental lines are already available from previous breeding cycles.Guo et al.[46]investigated the accuracy of several models in predicting the performance of F1hybrids between recombinant inbred lines derived from the cross of two elite maize inbred lines.Through GS prediction,the authors identified untested F1hybrids predicted to have higher grain yield than the original commercial F1hybrid.Yao et al.[47]evaluated the prediction power of several GS models in wheat breeding using a set of parents as the training population.By predicting the performance of all possible crosses,they identified and recommended to breeders the optimum crosses for the simultaneous improvement of grain quality and yield.Three articles describing GS applications in plant breeding are included in this special issue.The first focuses on the prediction of general combining ability of maize inbred lines using a sparse diallel cross design[24],the second focuses on the prediction of untested F1maize hybrids from a limited number of tested hybrids between two heterotic groups[25],and the third focuses on the family information of highly structured populations without pedigree data[26].Ali et al.[48]used a wheat population to investigate the prediction accuracies of various GS models for yield and yieldrelated traits in various quality control scenarios,with missing-genotype imputation,and with GWAS-derived markers.These studies suggest future directions in applying GS in plant breeding.

    5.Simulation,prediction and decision-support tools in genetics and breeding

    Many QTL and genes for quantitative traits have been reported for various traits in plants and animals.The challenge remains for breeders to determine how best to use this abundance of information[6].Simulation approaches could consider more practical genetic models incorporating multiple alleles,pleiotropy,epistasis,and gene-byenvironment interaction which have been learned from genetic studies,and therefore compare and optimize the selection method under more realistic scenarios[11,28,49].Several articles describing tools are included in this special issue:for linkage analysis and genetic map construction[13],for genome-wide association study[15,16],and for phenotypic data analysis[17].

    In the omics ear together with the coming of big data times,we anticipate that simulation,prediction and decisionsupport tools are in high demand in genetics and breeding.In one paper reporting a breeding simulation tool,the authors describe its use to compare GS with conventional selection in the presence of epistasis[28].Such tools will be highly helpful for breeders wishing to compare breeding efficiencies among selection strategies,to predict cross performance using known gene information,and to investigate the efficient use of identified QTL and GS in conventional breeding[49].Such tools can help breeders to investigate many what-if crossing and selection scenarios and allow them to be rapidly tested and compared in silico before resource-intensive field experiments are conducted.

    Acknowledgments

    The authors appreciate the financial support from the National Natural Science Foundation of China(31861143003),the Agricultural Science and Technology Innovation Program of CAAS,and the CAAS Talent Program.The authors also wish to extend their sincere thanks to all contributors to the eighth symposium and the special issue.

    深爱激情五月婷婷| 国产片特级美女逼逼视频| 日本欧美国产在线视频| 99久国产av精品| 午夜视频国产福利| 日日啪夜夜撸| 日韩强制内射视频| 国产人妻一区二区三区在| 亚洲久久久久久中文字幕| 午夜免费男女啪啪视频观看| 神马国产精品三级电影在线观看| 18禁在线播放成人免费| 久久草成人影院| 中国美白少妇内射xxxbb| 欧美精品一区二区大全| 精品久久国产蜜桃| 午夜激情欧美在线| 国产伦在线观看视频一区| 亚洲精品aⅴ在线观看| 97超视频在线观看视频| 午夜老司机福利剧场| 欧美高清性xxxxhd video| 久久精品国产亚洲av涩爱| 久久99精品国语久久久| 日本免费a在线| 国产亚洲精品久久久com| 乱码一卡2卡4卡精品| .国产精品久久| 久久精品久久久久久噜噜老黄 | 成人二区视频| 伊人久久精品亚洲午夜| 久久久久精品久久久久真实原创| 好男人视频免费观看在线| 久久久久久久国产电影| 国产黄片美女视频| 七月丁香在线播放| 日韩亚洲欧美综合| 国产激情偷乱视频一区二区| 国产精品国产三级专区第一集| 久久久久久久午夜电影| 青春草国产在线视频| 看黄色毛片网站| 久久精品人妻少妇| 国产精品爽爽va在线观看网站| 熟女人妻精品中文字幕| 亚洲在线观看片| 精品熟女少妇av免费看| 精品久久国产蜜桃| 又爽又黄无遮挡网站| 国产亚洲精品av在线| 波多野结衣高清无吗| 成人特级av手机在线观看| 午夜激情欧美在线| 国产精品不卡视频一区二区| 中文欧美无线码| 深爱激情五月婷婷| 美女高潮的动态| 日日摸夜夜添夜夜添av毛片| av国产免费在线观看| 一夜夜www| 蜜桃亚洲精品一区二区三区| 老司机影院毛片| 精品一区二区免费观看| 午夜福利视频1000在线观看| 日本一本二区三区精品| 国产女主播在线喷水免费视频网站 | 亚洲国产日韩欧美精品在线观看| av免费观看日本| 国产高清有码在线观看视频| 精品人妻一区二区三区麻豆| 精品人妻偷拍中文字幕| 在线观看美女被高潮喷水网站| 麻豆av噜噜一区二区三区| 久久久久免费精品人妻一区二区| 26uuu在线亚洲综合色| 岛国在线免费视频观看| 午夜久久久久精精品| 欧美日韩一区二区视频在线观看视频在线 | av在线老鸭窝| 久久久亚洲精品成人影院| 国产一区二区亚洲精品在线观看| 成人鲁丝片一二三区免费| 国产精品99久久久久久久久| www.色视频.com| 亚洲va在线va天堂va国产| 蜜桃久久精品国产亚洲av| 联通29元200g的流量卡| 国产又黄又爽又无遮挡在线| 别揉我奶头 嗯啊视频| 国产乱人偷精品视频| 人人妻人人看人人澡| 久久久久久久久久久免费av| 国产成人freesex在线| 欧美激情久久久久久爽电影| 身体一侧抽搐| 久久久亚洲精品成人影院| 免费电影在线观看免费观看| 国产精品爽爽va在线观看网站| 最后的刺客免费高清国语| 久久精品国产亚洲网站| 午夜久久久久精精品| 亚洲成人av在线免费| 国产精品,欧美在线| 大香蕉97超碰在线| a级一级毛片免费在线观看| 91午夜精品亚洲一区二区三区| 欧美性感艳星| 尤物成人国产欧美一区二区三区| 国产乱人视频| 欧美zozozo另类| 久久久久久久久久久丰满| 99视频精品全部免费 在线| 亚洲国产最新在线播放| 女的被弄到高潮叫床怎么办| 国产极品精品免费视频能看的| 麻豆国产97在线/欧美| a级毛色黄片| 免费看光身美女| 午夜a级毛片| 最后的刺客免费高清国语| 午夜精品一区二区三区免费看| 寂寞人妻少妇视频99o| 少妇的逼好多水| a级毛色黄片| www.av在线官网国产| 久久久成人免费电影| 2021少妇久久久久久久久久久| 啦啦啦韩国在线观看视频| 男人舔奶头视频| 观看美女的网站| 1024手机看黄色片| 欧美色视频一区免费| 国产亚洲一区二区精品| 十八禁国产超污无遮挡网站| 看片在线看免费视频| 日韩在线高清观看一区二区三区| 欧美日韩综合久久久久久| 天天躁夜夜躁狠狠久久av| 亚洲精品乱久久久久久| 精品免费久久久久久久清纯| 一本久久精品| a级毛色黄片| 可以在线观看毛片的网站| 看十八女毛片水多多多| 亚洲自拍偷在线| 国产男人的电影天堂91| 午夜福利在线观看吧| 精品人妻熟女av久视频| 久久精品熟女亚洲av麻豆精品 | 国产精品99久久久久久久久| 日韩三级伦理在线观看| 日韩 亚洲 欧美在线| 特级一级黄色大片| 久久久成人免费电影| 麻豆成人午夜福利视频| 白带黄色成豆腐渣| 久久久久久久午夜电影| 在线播放国产精品三级| 久久久午夜欧美精品| 卡戴珊不雅视频在线播放| 国产成人精品一,二区| 日韩av在线免费看完整版不卡| 日本av手机在线免费观看| 精品人妻一区二区三区麻豆| 91aial.com中文字幕在线观看| 91精品伊人久久大香线蕉| av在线老鸭窝| 欧美日韩精品成人综合77777| 日韩高清综合在线| 国产午夜精品一二区理论片| 美女黄网站色视频| 成人二区视频| 免费观看在线日韩| 一夜夜www| 国产一区有黄有色的免费视频 | 黄片wwwwww| 一本久久精品| 国产精品乱码一区二三区的特点| 国产男人的电影天堂91| 九九爱精品视频在线观看| 大话2 男鬼变身卡| 亚洲国产精品成人综合色| 午夜精品一区二区三区免费看| 国产三级在线视频| 1024手机看黄色片| 九草在线视频观看| 欧美精品国产亚洲| 国产在线一区二区三区精 | 国产精华一区二区三区| 日韩,欧美,国产一区二区三区 | 中国美白少妇内射xxxbb| www.色视频.com| 最近的中文字幕免费完整| 国产精品国产高清国产av| 亚洲自偷自拍三级| 亚洲不卡免费看| 一区二区三区高清视频在线| 亚洲高清免费不卡视频| 欧美日本视频| 日本与韩国留学比较| 国产精品日韩av在线免费观看| 国产老妇伦熟女老妇高清| 亚洲精品一区蜜桃| 免费av不卡在线播放| 国产极品天堂在线| 日本猛色少妇xxxxx猛交久久| 欧美色视频一区免费| 级片在线观看| 最近中文字幕2019免费版| 国产精品国产三级国产av玫瑰| 男插女下体视频免费在线播放| 久久精品国产鲁丝片午夜精品| 国产伦一二天堂av在线观看| 亚洲av日韩在线播放| 精品国产三级普通话版| 精品免费久久久久久久清纯| 麻豆av噜噜一区二区三区| 国产淫语在线视频| 日本黄色视频三级网站网址| 七月丁香在线播放| 一本久久精品| 麻豆精品久久久久久蜜桃| 日日摸夜夜添夜夜添av毛片| 只有这里有精品99| 国产高清国产精品国产三级 | 久久久精品大字幕| 国内精品美女久久久久久| 欧美精品国产亚洲| 亚洲国产色片| 国产成人午夜福利电影在线观看| 久久99蜜桃精品久久| 精品免费久久久久久久清纯| 51国产日韩欧美| 中文字幕av在线有码专区| 精品一区二区三区人妻视频| 中文欧美无线码| 日韩成人av中文字幕在线观看| 亚洲av免费高清在线观看| 亚洲在线自拍视频| 美女脱内裤让男人舔精品视频| 九九久久精品国产亚洲av麻豆| 毛片一级片免费看久久久久| 亚洲色图av天堂| 亚洲伊人久久精品综合 | 蜜桃亚洲精品一区二区三区| 亚洲欧美日韩东京热| 亚洲乱码一区二区免费版| 日本av手机在线免费观看| 直男gayav资源| av在线蜜桃| 国国产精品蜜臀av免费| 国产精品一二三区在线看| 美女大奶头视频| 国语对白做爰xxxⅹ性视频网站| av在线亚洲专区| 久久精品影院6| 欧美高清性xxxxhd video| 日产精品乱码卡一卡2卡三| 亚洲最大成人手机在线| 精品不卡国产一区二区三区| 日日摸夜夜添夜夜爱| 看黄色毛片网站| 国产一区亚洲一区在线观看| 老女人水多毛片| www日本黄色视频网| 国产精品美女特级片免费视频播放器| 大话2 男鬼变身卡| 美女cb高潮喷水在线观看| 少妇熟女aⅴ在线视频| 色综合站精品国产| 国产精品野战在线观看| 亚洲av成人av| 99热这里只有是精品50| 亚洲综合色惰| 久久久久久久久久久丰满| 国产一区二区三区av在线| 国产精品美女特级片免费视频播放器| 我的老师免费观看完整版| 美女内射精品一级片tv| 岛国毛片在线播放| 日本免费a在线| 少妇的逼水好多| 亚洲18禁久久av| 亚洲图色成人| 精品国产三级普通话版| 成人亚洲精品av一区二区| 免费看a级黄色片| 中文乱码字字幕精品一区二区三区 | www.av在线官网国产| 日韩强制内射视频| 成人一区二区视频在线观看| 天堂√8在线中文| 级片在线观看| 亚洲av男天堂| 99久久人妻综合| 少妇人妻一区二区三区视频| 日本黄色片子视频| 亚洲精品自拍成人| 亚洲成人久久爱视频| 免费观看在线日韩| 午夜福利视频1000在线观看| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久av不卡| 国产白丝娇喘喷水9色精品| 亚洲av电影在线观看一区二区三区 | 午夜福利视频1000在线观看| 国产精品久久久久久久电影| 午夜老司机福利剧场| 色综合色国产| 久久6这里有精品| av在线亚洲专区| a级毛片免费高清观看在线播放| 精品久久久噜噜| 我的女老师完整版在线观看| 最近最新中文字幕大全电影3| 国内揄拍国产精品人妻在线| 国产91av在线免费观看| 久久精品久久久久久噜噜老黄 | 97超视频在线观看视频| 中文在线观看免费www的网站| 在线观看一区二区三区| 蜜桃久久精品国产亚洲av| 亚洲成人中文字幕在线播放| 嘟嘟电影网在线观看| 自拍偷自拍亚洲精品老妇| 狂野欧美白嫩少妇大欣赏| 一区二区三区高清视频在线| 国产精品一区www在线观看| 欧美三级亚洲精品| 男人和女人高潮做爰伦理| 插逼视频在线观看| 六月丁香七月| 美女脱内裤让男人舔精品视频| 毛片一级片免费看久久久久| .国产精品久久| 丝袜美腿在线中文| 女人久久www免费人成看片 | 国产爱豆传媒在线观看| 午夜爱爱视频在线播放| 久久精品人妻少妇| 免费在线观看成人毛片| 免费观看在线日韩| 日日摸夜夜添夜夜爱| 成人一区二区视频在线观看| 久久精品久久久久久噜噜老黄 | 三级经典国产精品| 国产精品日韩av在线免费观看| 青春草国产在线视频| 99视频精品全部免费 在线| 亚洲最大成人av| 天美传媒精品一区二区| 久久人妻av系列| 伦精品一区二区三区| www.色视频.com| 又爽又黄无遮挡网站| 男女啪啪激烈高潮av片| 91在线精品国自产拍蜜月| 欧美一级a爱片免费观看看| 波野结衣二区三区在线| 日韩强制内射视频| 国产亚洲av片在线观看秒播厂 | 国产精品99久久久久久久久| 在线免费观看的www视频| 麻豆精品久久久久久蜜桃| 亚洲欧美日韩东京热| 日韩大片免费观看网站 | 成人午夜精彩视频在线观看| 国产亚洲5aaaaa淫片| 日日摸夜夜添夜夜爱| 国产免费又黄又爽又色| 村上凉子中文字幕在线| 亚洲婷婷狠狠爱综合网| 成人一区二区视频在线观看| 男女下面进入的视频免费午夜| 国内精品宾馆在线| 99久久精品一区二区三区| 国产一区二区在线观看日韩| 久99久视频精品免费| 欧美不卡视频在线免费观看| 国产高清视频在线观看网站| 国产单亲对白刺激| 国产精品一区二区性色av| 亚洲aⅴ乱码一区二区在线播放| 国产激情偷乱视频一区二区| 久久久成人免费电影| 99在线视频只有这里精品首页| 国产精品乱码一区二三区的特点| 国产精品女同一区二区软件| 欧美人与善性xxx| 国产黄片视频在线免费观看| 欧美不卡视频在线免费观看| 日韩高清综合在线| 两个人的视频大全免费| 熟女人妻精品中文字幕| 日本与韩国留学比较| 日韩av不卡免费在线播放| 能在线免费观看的黄片| 亚洲精品,欧美精品| 日本黄色片子视频| 久久精品久久久久久噜噜老黄 | 男女边吃奶边做爰视频| 国产伦理片在线播放av一区| 久久6这里有精品| 一个人看的www免费观看视频| 欧美成人一区二区免费高清观看| 日本免费在线观看一区| 精品欧美国产一区二区三| 永久免费av网站大全| 能在线免费观看的黄片| 国产午夜精品久久久久久一区二区三区| 一级av片app| 26uuu在线亚洲综合色| 99久久人妻综合| 美女黄网站色视频| 国产激情偷乱视频一区二区| 亚洲av一区综合| 黄色配什么色好看| 丰满少妇做爰视频| 欧美精品一区二区大全| 桃色一区二区三区在线观看| 少妇被粗大猛烈的视频| 国产 一区 欧美 日韩| 又粗又硬又长又爽又黄的视频| 啦啦啦韩国在线观看视频| 一级毛片电影观看 | 亚洲国产欧美人成| 尾随美女入室| 精品免费久久久久久久清纯| 成人亚洲欧美一区二区av| 99久国产av精品国产电影| 久久久久久九九精品二区国产| 少妇熟女欧美另类| 日本午夜av视频| av线在线观看网站| АⅤ资源中文在线天堂| 波多野结衣巨乳人妻| 乱人视频在线观看| 免费无遮挡裸体视频| 18禁裸乳无遮挡免费网站照片| 老司机影院毛片| 男人和女人高潮做爰伦理| 久久精品人妻少妇| 18禁动态无遮挡网站| 精品久久久久久电影网 | 国产高清国产精品国产三级 | 18禁在线无遮挡免费观看视频| 亚洲国产高清在线一区二区三| 亚洲国产色片| 国产精品无大码| 欧美极品一区二区三区四区| 亚洲av免费在线观看| 午夜视频国产福利| 岛国在线免费视频观看| 久久精品91蜜桃| 久99久视频精品免费| 免费一级毛片在线播放高清视频| 自拍偷自拍亚洲精品老妇| 中文字幕免费在线视频6| 国产私拍福利视频在线观看| 可以在线观看毛片的网站| 亚洲av电影在线观看一区二区三区 | 韩国av在线不卡| 日本午夜av视频| 精品人妻一区二区三区麻豆| 97在线视频观看| 不卡视频在线观看欧美| 午夜老司机福利剧场| ponron亚洲| 色视频www国产| 婷婷六月久久综合丁香| 欧美潮喷喷水| 一夜夜www| 美女脱内裤让男人舔精品视频| 简卡轻食公司| 精品久久久久久久久亚洲| 久久久a久久爽久久v久久| 成人特级av手机在线观看| 日本熟妇午夜| 亚洲最大成人手机在线| 久久99蜜桃精品久久| 国产精品永久免费网站| 国产一区二区亚洲精品在线观看| 久久精品国产亚洲av涩爱| 午夜老司机福利剧场| 日韩人妻高清精品专区| 欧美另类亚洲清纯唯美| 欧美精品国产亚洲| 两性午夜刺激爽爽歪歪视频在线观看| 男插女下体视频免费在线播放| 亚洲精品亚洲一区二区| 午夜精品国产一区二区电影 | 国产女主播在线喷水免费视频网站 | 日本三级黄在线观看| 国产精品一区二区三区四区久久| 亚洲,欧美,日韩| 成人无遮挡网站| 国产精品综合久久久久久久免费| 男人狂女人下面高潮的视频| www.色视频.com| 波多野结衣巨乳人妻| 亚洲国产精品成人综合色| 人妻夜夜爽99麻豆av| 成人二区视频| 黑人高潮一二区| 国产午夜精品论理片| 欧美xxxx黑人xx丫x性爽| 久久热精品热| 免费黄网站久久成人精品| 亚洲内射少妇av| 亚洲在久久综合| 国产亚洲av嫩草精品影院| 自拍偷自拍亚洲精品老妇| 99久久成人亚洲精品观看| 国产亚洲午夜精品一区二区久久 | 尾随美女入室| 一本久久精品| 国产精品福利在线免费观看| 午夜久久久久精精品| 亚洲最大成人av| av天堂中文字幕网| 久久人人爽人人片av| 成人国产麻豆网| 欧美潮喷喷水| 少妇猛男粗大的猛烈进出视频 | 精品国产露脸久久av麻豆 | 欧美色视频一区免费| 国产爱豆传媒在线观看| 最近的中文字幕免费完整| 国内精品美女久久久久久| 亚洲av免费高清在线观看| 熟女电影av网| 毛片女人毛片| 日韩欧美 国产精品| 亚洲成人久久爱视频| 国产极品天堂在线| 韩国av在线不卡| 精品人妻视频免费看| 亚洲欧美精品综合久久99| 最新中文字幕久久久久| 尤物成人国产欧美一区二区三区| 最近最新中文字幕免费大全7| 天堂网av新在线| 床上黄色一级片| 人人妻人人看人人澡| 观看美女的网站| 白带黄色成豆腐渣| 一区二区三区乱码不卡18| 亚洲电影在线观看av| 国产真实乱freesex| 日日啪夜夜撸| 欧美3d第一页| 久久精品久久久久久噜噜老黄 | 国产精品一及| 成人一区二区视频在线观看| 中文字幕熟女人妻在线| 日本熟妇午夜| 丰满少妇做爰视频| 欧美精品一区二区大全| 麻豆精品久久久久久蜜桃| av免费观看日本| 级片在线观看| 国产黄a三级三级三级人| 人人妻人人看人人澡| 最近中文字幕高清免费大全6| 久久久久国产网址| 日韩亚洲欧美综合| av国产免费在线观看| 秋霞伦理黄片| 欧美成人一区二区免费高清观看| av在线观看视频网站免费| 丝袜喷水一区| 校园人妻丝袜中文字幕| 欧美一区二区精品小视频在线| 中文字幕免费在线视频6| 一级爰片在线观看| 视频中文字幕在线观看| 成人毛片60女人毛片免费| 国产91av在线免费观看| 狂野欧美激情性xxxx在线观看| 精品国产一区二区三区久久久樱花 | 日韩在线高清观看一区二区三区| 亚洲欧美清纯卡通| 3wmmmm亚洲av在线观看| 欧美变态另类bdsm刘玥| 最近手机中文字幕大全| 日韩中字成人| 小蜜桃在线观看免费完整版高清| 国产在视频线精品| 欧美日韩精品成人综合77777| 看片在线看免费视频| 18禁裸乳无遮挡免费网站照片| 国产真实伦视频高清在线观看| 成人一区二区视频在线观看| videossex国产| 国产真实伦视频高清在线观看| 一级毛片aaaaaa免费看小| videossex国产| 少妇人妻一区二区三区视频| 日韩一区二区视频免费看| 一本久久精品| 少妇被粗大猛烈的视频| 亚洲精华国产精华液的使用体验| 亚洲四区av| 男女下面进入的视频免费午夜| 91精品一卡2卡3卡4卡| 日本欧美国产在线视频| 男人舔女人下体高潮全视频| 91精品一卡2卡3卡4卡| 亚洲欧美日韩高清专用| 国产伦精品一区二区三区视频9| 中国美白少妇内射xxxbb| 麻豆成人午夜福利视频| 久久久久久伊人网av| 看免费成人av毛片| 国产精品国产三级国产专区5o |