• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The creep behavior of Mg-9Al-1Si-1SiC composite at elevated temperature

    2020-12-18 11:33:40PengwenZhouShoxiongZhngMingLiHongxiWngWeiliChengLifeiWngHngLiWeiLingYimingLiu
    Journal of Magnesium and Alloys 2020年3期

    Pengwen Zhou,Shoxiong Zhng,Ming Li,b,Hongxi Wng,?,Weili Cheng,?,Lifei Wng,Hng Li,Wei Ling,Yiming Liu

    a Shanxi Key Laboratory of Advanced Magnesium based Materials,College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China

    b Southwest Technology and Engineering Research Institute,Chongqing 400039,China

    Received 29 April 2019;received in revised form 20 June 2019;accepted 21 June 2019 Available online 10 June 2020

    Abstract The creep properties of as-cast Mg-9Al-1Si alloy and Mg-9Al-1Si-1SiC composite were compared.The results show that Mg-9Al-1Si-1SiC composite performs a better creep resistance than that of Mg-9Al-1Si alloy at constant temperature and stress(473K,70MPa).Besides,the creep behavior of Mg-9Al-1Si-1SiC composite at various temperature from 448K to 498K and under stresses of 70-90MPa were systematically investigated.The Mg-9Al-1Si-1SiC composite exhibited a stress exponent from 5.5 to 6.9 and the creep activation energy fell within the range of 86-111kJ/mol.The results showed that the creep mechanism of Mg-9Al-1Si-1SiC composite was mainly attributed to the effects of secondary phase strengthening mechanism and dislocation climb mechanism.? 2020 Published by Elsevier B.V.on behalf of Chongqing University.This is an open access article under the CC BY-NC-ND license.(http://creativecommons.org/licenses/by-nc-nd/4.0/)Peer review under responsibility of Chongqing University

    Keywords:Microstructure;Stress exponent n;Creep activation energy Q;Mg-9Al-1Si-1SiC composite.

    1.Introduction

    Due to the weight reduction objective of automotive industries,high temperature-resistant magnesium alloys have been attracted increased interests for decades[1-3].Recently,researchers have paid more and more attention on the high temperature properties and microstructures of Mg-Al based alloys[4-7].It has been reported that the strength,ductility,hardness and creep resistance of Mg-Al based alloys at high temperature could be enhanced by combined addition of Si elements[8].Because of the Mg2Si with high melting point and modulus,the improvement of mechanical properties of Mg-Al alloy by Si elements is favorable.However,the Mg2Si usually with coarse Chinese-script-shaped in Mg-Al alloy,it cannot improve mechanical properties in the nanometer scale.Furthermore,previous reports revealed that there is remarkable reinforced effect to Mg alloy by ceramic with thermally stable,such as the Al2O3to magnesium alloy AM60[9],the TiB2and Y2O3to pure Mg[10,11],TiO2to ZM5 and the SiCp to Mg-8Sn-1Zn alloy[12,13],these all led to a signifi cant improvement in mechanical properties.Generally,the addition of SiCp particles in the magnesium matrix is regarded as one of the most effective methods due to its high thermal stability and relatively low cost.In fact,Sourav et al.[14].found that all the nanocomposites exhibited superior creep resistance than the unreinforced 2.0Ca+0.3Sb(wt%)added AZ91 alloy.F.Labib et al.[15]reported that grain refine ment strengthening,coefficien of thermal expansion(CTE)mismatch strengthening mechanism and load transfer mechanism were affected by the content of SiC for pure magnesium.In addition,Mondal et al.[16].have reported that various creep temperatures led to the different creep behaviors on AE42-SiC composites.Viswanath et al.[17]investigated the creep behavior and mechanical properties of AZ91-SiCp composites.The results revealed that different creep characteristics were attributed to reinforcement content and applied load.

    However,studies about the creep behavior of n-SiCp/Mg-9Al-1Si composite have not been studied yet.Therefore,the effect of grain size and distribution of secondary phase on the creep properties of as-cast Mg-9Al-1Si alloy and Mg-9Al-1Si-1SiC composite were investigated at constant temperature and stress(473K,70MPa).In addition,operative creep mechanism for as-cast Mg-9Al-1Si-1SiC composite was probed thoroughly.

    2.Experimental procedures

    Both Mg-9Al-1Si alloy and Mg-9Al-1Si-1SiC composite was melt in a steel crucible under a protective atmosphere of CO2and SF6[18].SiC nanoparticles(n-SiCp)was used to serve as a reinforcement with an average size about 60nm.Due to the existence of interference between reinforcement and matrix,the n-SiCp was pre-heated at 773K to remove water vapor,organics and absorbed gases adhering to the particles surface[19].Pure Mg and pure Al were added into the crucible preheated at 623K.Then,the master alloy of Al-30% Si(wt%)were added to the crucible when the temperature raised to 993K and kept for 15min.The melt was raised to 1003K and held for 20min.The melt of Mg-9Al-1Si alloy was casted into a preheated mold with a diameter of 40mm and length of 100mm.On the other hand,the melt cooled down to 863K to add SiC(1wt%)nanoparticles,which were quickly added into the semisolid slurry with stirred(100 r/min).Then the temperature of melt was raised at 973K to make sure that the slurring convert into liquid state.The stirring process stopped until the temperature reached 973K.Then,the ultrasonic probe was dipped into the melt for ultrasonic treatment(1.6kW and 20kHz)for 20min.Finally,the n-SiCp/Mg-9Al-1Si composite melt was poured into a preheated mold.

    The Leica 2700M optical microscope(OM,Leica Microsystem GmbH,Wetzlar,Germany)and a MIRA3 scanning electron microscope(SEM,TESCAN Ltd,Brno-Kohoutovice,Czech Republic)were used to analyze microstructures.The composition of second phases was determined by energy dispersive spectrometer(EDS).The transmission electron microscopy(TEM)using a JEM-2100F(JEOL Ltd,Tokyo,Japan)was used to certifie n-SiCp.The tensile creep test was conducted in a RDL100 creep machine.

    3.Results and discussions

    3.1.Microstructural characteristics

    Fig.1 shows the micrographs of as-cast Mg-9Al-1Si and Mg-9Al-1Si-1SiC alloys.As indicated in Fig.1(a)and(b),some Chinese-script-shaped and black massive-like phases could be observed along the dendrite boundaries.The EDS results validated that these phases are Mg2Si and Mg17Al12,respectively.It can be observed that the particle size of Mg2Si reduce from almost 50μm to 25μm,as show in Fig.1(c)and(d),and the size of Mg17Al12have be refine too.The grain size of Mg-9Al-1Si-1SiC composites is smaller than that of Mg-9Al-1Si alloy,which can be attributed to the influenc of n-SiCp by the heterogeneous nucleation mechanism onα-Mg.Besides,the restricted effect to the grain boundary ofα-Mg by n-SiCp particles during solidificatio plays an important role in the modificatio of microstructures.[20,21].In addition,the size of Mg2Si and Mg17Al12phase are great refine and the distribution becomes homogeneous after the addition of n-SiCp.It is probably due to the nucleation sites for Mg2Si and Mg17Al12phase provided by the n-SiCpwhich results in the size of both phases reducing greatly.

    Furthermore,the n-SiCp distributes uniformly in Mg-9Al-1Si-1SiC composites,as illustrated in Fig.1(e),the result of electron diffraction patterns(SAD)in region A(Fig.1(f))indicates that the particles are n-SiCp.As shown in Fig.2,the n-SiCp have a predominant effect on the modificatio of microstructures of Mg-9Al-1Si alloy[22].

    Creep curves of as-cast Mg-9Al-1Si and as-cast Mg-9Al-1Si-1SiC composites were observed clearly in Fig.3(a).It is apparent that the curve of as-cast Mg-9Al-1Si-1SiC composites shows typical three-stages creep characteristics:a more obvious primary creep stage than Mg-9Al-1Si followed frst by steady-creep state and then tertiary stage.Detailed creep properties of as-cast composites at 473K and 70MPa are displayed in Table 1.As indicated,the stable creep rate of as-cast Mg-9Al-1Si-1SiC composites dropped compared to as-cast Mg-9Al-1Si alloy,which reached to 6.94 E?7 s?1.It is attributed to the improvement of homogeneity of microstructure by n-SiCp in composites.For Mg-9Al-1Si-1SiC composites,it is possible that the refine Mg17Al12and Mg2Si phases decrease the chance of crack extend with a creep life achieved 50.59h.Fig.3(b)and(c)displays the side surfaces of as-cast Mg-9Al-1Si alloy and Mg-9Al-1Si-1SiC composites at 473K and 70MPa.It indicates that both Mg-9Al-1Si alloy and Mg-9Al-1Si-1SiC composites appear cracks along the Mg17Al12phases,however,the cracks in the Mg-9Al-1Si-1SiC are more scatter.Besides,some microcracks are adjacent to the Mg17Al12phases and Mg2Si phases.It can be seen that microcracks are generated at grain boundary,where distributed coarse and low melting pointβ-Mg17Al12(as shown in Fig.3(b)).As we all know,the existence of coarseβ-Mg17Al12phases aggravates the spreading of microcracks,which results in the formation of holes in Mg-9Al-1Si composite.As shown in Fig.3(c),β-Mg17Al12phases are refine due to the addition of n-SiCp and microcracks are still generated at the grain boundary in Mg-9Al-1Si-1SiC composite.It's remarkable that the range of microcracks is not enlarged and the size of cavities becomes smaller.

    Previous studies[22]reported that the addition of n-SiCp led to the significan refinemen and uniform distribution of stable Mg2Si phase at elevated temperature,which facilitated to hinder the sliding of grain boundary.At an elevated temperature,as we all know,the mechanism of grain boundary sliding plays a vital role in the whole of tensile process[23].Meanwhile,the dispersed distributed n-SiCp in grains interiors could hinder the motivation of dislocation[24,25].In addition,n-SiCp distributed at grain boundary could also prevent grain boundary from sliding by pinning effect,which contributes to the enhancement of the creep properties of Mg-9Al-1Si-1SiC composites.

    Fig.1.OM,SEM and TEM micrographs of as-cast samples:(a,c)Mg-9Al-1Si;(b,d)Mg-9Al-1Si-1SiC;(e)the distribution of SiC nanoparticles and selected area diffraction(SAD)patterns of n-SiCp in Mg-9Al-1Si-1SiC composite.

    Table 1Creep properties of as-cast composites at 473K and 70MPa.

    In order to investigate the properties of creep resistance and mechanism of as-cast Mg-9Al-1Si-1SiC composites,a series of creep tests at different temperatures(448K,473K and 498K)and stresses(70MPa,80MPa and 90MPa)are conducted.A set of representative creep curves are presented in Fig.4.The detailed statistics are displayed in Table 2.As shown in Fig.4,the tendency of creep curves of Mg-9Al-1Si-1SiC composite at different temperatures and stresses are almost similar.Note that,a very well-define primary stage,second stage and tertiary stage appear in all of curves.It is noteworthy that the time of stable creep becomes shorter with stress increasing at a constant temperature or at constant stress with temperature increasing.Consequently,the creep life reaches up to 112.77h at 448K/70MPa,which indicates the property of creep resistance is the most favorable(Table 2).

    Fig.2.The effect of n-SiCp on Mg-9Al-1Si alloy.

    Table 2Creep properties of Mg-9Al-1Si-1SiC composite at different stresses and temperatures.

    In fact,there is a power-law equation can be used to describe the minimum creep rate(·ε)of metals and the external stressσas follows[26-29]:

    whereQis the activation energy for creep,Ais the material constant,nis the stress exponent,Ris the gas constant(R=8.31J/(mol·K)),andTis the absolute temperature andσis the applied stress,respectively.The relationship between n andσcould be derived at the constant temperature:

    The relationship betweenQandTcould be derived at a constant stress:

    Fig.3.Creep curves and Side surfaces of Mg-9Al-1Si and Mg-9Al-1Si-1SiC composites at 473K/70MPa creep test:(a)Creep curves,(b)Mg-9Al-1Si,(c)Mg-9Al-1Si-1SiC.

    Fig.4.Creep curves of Mg-9Al-1Si-1SiC composite at different stresses and temperatures.

    Fig.5.The linear relationship between ln·εand lnσat different temperatures(a),ln·εand T?1 at different stresses(b)of Mg-9Al-1Si-1SiC composite.

    Table 3The creep stress exponent and creep activation energy of Mg-9Al-1Si-1SiC composite at different temperatures and stresses.

    Fig.5(a)shows the relationship between ln·εand lnσon as-cast Mg-9Al-1Si-1SiC composites at various temperatures.It can be they approximately display linear relation.It obviously obverse that it approximately forms a line with a slope of approximately 6 by data points from various conditions,illustrating that Mg-9Al-1Si-1SiC composite exhibits a typical feature of dislocation climbing controlled creep[26].The detailed stress exponent n is also listed in Table 3.It is clearly observed that the stress exponent n increases gradually with temperature increases.In fact,the high temperature Mg-9Al-1Si-1SiC composite possess large grain size and a faster sliding of grain boundary comparing the low temperature.It is noteworthy that the Gifkins'core-mantle theory suggests that an increased fin grain size results in the creep exponent decreasing[30].For Mg-9Al-1Si-1SiC composite,the higher of the temperature,the more significan effect of the stress on the properties of creep resistance will be.According to stress exponent n,creep mechanism of composites is induced.n=4-6,dislocation climb is the main creep mechanism is;n≥6,creep mechanism is induced by secondary phases strengthening effect[31,32].The research above indicates that the stress exponent n is related to the microstructure,temperature as well as stress.When the temperature of creep increases from 448K to 498K,the stress exponent n of as-cast Mg-9Al-1Si-1SiC composite increases from 5.5 to 6.9 revealing the major creep mechanism of Mg-9Al-1Si-1SiC composite transforms from dislocation climb at 448K into secondary phases strengthening effect at 498K.Besides,the creep mechanism at 473K can be regarded as a transition between the two temperatures.In fact,the particle of n-SiCp distributing in grain impede dislocation climb at all temperatures[25].However,there are different morphology of Mg17Al12phase at different temperature in Mg-9Al-1Si-1SiC composite,As shown in Fig.6(c,f,i),with increasing temperature of creep,the distribution of the Mg17Al12phase was extremely dispersed and the size was remarkably decreased to become much fine particles.Meanwhile,the n-SiCp particle promotes the creep mechanism to transform to secondary phases strengthening effect.Thus,the creep performance was dominated by the secondary phases.

    Fig.5(b)shows the linear relationship between ln·εandT?1of Mg-9Al-1Si-1SiC composite at different stresses.The results of creep activation energyQare listed in detail in Table 3.The creep activation energyQcan reflec the ways of dislocations overcoming obstacles so that creep mechanism of composites can be obtained indirectly.It is reported that lower creep activation energyQresults in dislocations overcoming obstacles by cross-slip.While the higher creep activation energyQresults in dislocations overcoming obstacles by dislocation climb,which is probably attributed to diffusion of vacancies and atoms.Previous study[32,33]has shown that creep mechanism is dominated by grain boundary diffusion when creep activation energyQreaches to 92 KJ/mol,and creep mechanism is dominated by lattice diffusion whenQreaches to 135 KJ/mol.In the present study,the creep activation energy Q of Mg-9Al-1Si-1SiC composite increased from 86 to 111 KJ/mol which is close to grain boundary diffusion activation energy of Mg[26].It can be concluded that the value of activation energyQin 70MPa and 90MPa are symmetry about the 92 KJ/mol.However,comparing with the creep in 70MPa and 90MPa,there is a higher creep activation energyQwhen creep stress in 80MPa,which indicates that the major creep mechanism is probably dislocation climbing for Mg-9Al-1Si-1SiC composite.And the value of activation energy suggests that creep mechanism of as-cast Mg-9Al-1Si-1SiC composite also consists by grain boundary diffusion and the dislocation cross-slip because it reaches 111 KJ/mol[30].The stress of creep may influenc the movement of dislocation:there is a little influenc at low stress such as 70MPa because of the hinder effect of n-SiCp,which distributing in the interior of grain and grain boundary.The mechanism of dislocation cross-slip and dislocation climb appearance with the increase on a stress elevate at 80MPa.Besides,there is not enough time for dislocation climb to be happened for Mg-9Al-1Si-1SiC composite creep in 90MPa,the dislocation of cross-slip and grain boundary diffusion act as two mechanisms.Based on the results of creep stress exponent n and creep activation energyQ,it can be concluded that the dominant operative creep mechanism of Mg-9Al-1Si-1SiC composite is dislocation climb and secondary phase strengthening effect at(448-498K)/(70-90MPa).

    Fig.6.Side surfaces of Mg-9Al-1Si-1SiC composite at different stresses and temperature creep test.

    In order to exploration the creep fracture mechanism of Mg-9Al-1Si-1SiC composite,the side surfaces of Mg-9Al-1Si-1SiC composite at different stress and temperature creep test are shown in Fig.6.As shown in Fig.6(a,b,c),the size of cavities is getting bigger with the stress increasing at a constant temperature.It is similar with the temperature increasing under the constant stress condition,Generally,thermally creep of metals should void grain growth at grain boundaries.There are cavities existence in the vicinity of a macroscopic crack tip which leads to the formation of microcracks and ultimate fracture[34].During creeping,dislocation pile-ups at grain boundary interfaces,which results in the stress concentration.However,stress concentration accelerates crack initiation,meanwhile,cracks develop into cavities with grain boundary sliding[35].Then,cavities spread along grain boundary which is perpendicular to the direction of stress with temperature and stress increasing,as presented in Fig.6(d,e,f,g,h,i).It can be concluded that the cavities are grew up and gathered which lead to the increase of stable creep rate of the composite and the decrease of creep resistance[36].Therefore,Mg-9Al-1Si-1SiC composite exhibits lower performance in creep resistance under high temperature and high stress.

    4.Conclusions

    (1)The distribution of secondary phases is more uniform in as-cast Mg-9Al-1Si-1SiC composite than that in ascast Mg-9Al-1Si composite,which indicates the restricted effect to the grain boundary ofα-Mg by n-SiCp particles during solidificatio plays an important role in the modificatio of microstructures.

    (2)The stable creep rate of as-cast Mg-9Al-1Si composite is 1.17 E?6 s?1and the creep life is 37.34h at 473K/70MPa.The stable creep rate of as-cast Mg-9Al-1Si-1SiC composite decreases by one order of magnitudes and reaches up to 6.94 E?7 s?1.Owing to the modificatio effect by n-SiCp particles of microstructures,the creep life prolongs to 50.59h.

    (3)The stress exponent n of as-cast Mg-9Al-1Si-1SiC composite ranges from 5.5 to 6.9 and the creep activation energy of it is from 86 to 111 KJ/mol.Creep mechanism of as-cast Mg-9Al-1Si-1SiC composite is possibly major controlled by the co-effect of climbing of dislocation and secondary phase particles strengthening effect when the creep test is conducted under(448-498K)/(70-90MPa)conditions.

    Acknowledgments

    This work was supported by Shanxi provice scientifi facilities and instruments shared service platform of magnesium-based matierals electric impulse aided forming(201805D141005);National Natural Science Foundation of China(51404166,51704209,U1810208);Science and Technology Major Project of Shanxi province(20191102008,20191102007,20181101008);Natural Science Foundation of Shanxi Province(201701D121045);Shanxi Province Science Foundation for Youths(2016021063);The Projects of International Cooperation in Shanxi(201803D421086).

    九九在线视频观看精品| 王馨瑶露胸无遮挡在线观看| 亚洲成人一二三区av| 精品视频人人做人人爽| 男女免费视频国产| 久久99热这里只有精品18| 亚洲精品国产色婷婷电影| 亚洲综合精品二区| 国产日韩欧美亚洲二区| 黄色一级大片看看| 欧美精品一区二区免费开放| 久久综合国产亚洲精品| 99热6这里只有精品| 欧美97在线视频| av福利片在线观看| 亚洲欧洲国产日韩| 91在线精品国自产拍蜜月| 建设人人有责人人尽责人人享有的 | 国产精品伦人一区二区| 久久亚洲国产成人精品v| av网站免费在线观看视频| 国产一区亚洲一区在线观看| 在线 av 中文字幕| 99热这里只有是精品50| 1000部很黄的大片| 男女国产视频网站| 免费看av在线观看网站| 国产精品一区二区三区四区免费观看| 日日啪夜夜撸| 少妇裸体淫交视频免费看高清| 亚洲精品第二区| 99久久精品一区二区三区| 男女免费视频国产| 亚洲精品国产成人久久av| 丝袜脚勾引网站| 精品久久久噜噜| 国产精品久久久久久久电影| 啦啦啦在线观看免费高清www| 插阴视频在线观看视频| 成人美女网站在线观看视频| 中文天堂在线官网| 国产亚洲午夜精品一区二区久久| 国产中年淑女户外野战色| av专区在线播放| 22中文网久久字幕| 久久综合国产亚洲精品| 熟妇人妻不卡中文字幕| 国产熟女欧美一区二区| 免费久久久久久久精品成人欧美视频 | 亚洲精品乱码久久久v下载方式| 亚洲欧美日韩东京热| 欧美日韩在线观看h| 亚洲国产精品一区三区| 亚洲精品国产av蜜桃| 久久久久国产网址| 亚洲综合色惰| 春色校园在线视频观看| 亚洲av中文字字幕乱码综合| 久久国产乱子免费精品| 亚洲综合精品二区| 久久久精品免费免费高清| 日韩人妻高清精品专区| 超碰av人人做人人爽久久| 国产精品一二三区在线看| kizo精华| 久久精品久久久久久噜噜老黄| 日韩强制内射视频| 男男h啪啪无遮挡| a 毛片基地| 嘟嘟电影网在线观看| 一级毛片aaaaaa免费看小| 伦理电影大哥的女人| 国产女主播在线喷水免费视频网站| 亚洲色图av天堂| 亚洲电影在线观看av| 边亲边吃奶的免费视频| 少妇人妻一区二区三区视频| 视频区图区小说| 亚洲自偷自拍三级| 国产精品女同一区二区软件| 自拍欧美九色日韩亚洲蝌蚪91 | 久久99热这里只频精品6学生| 中文字幕精品免费在线观看视频 | 久久久欧美国产精品| 高清黄色对白视频在线免费看 | 国产精品99久久99久久久不卡 | 成年女人在线观看亚洲视频| 在线观看免费日韩欧美大片 | 91久久精品国产一区二区三区| 欧美精品亚洲一区二区| 精品少妇黑人巨大在线播放| 99热网站在线观看| 水蜜桃什么品种好| 精品少妇黑人巨大在线播放| 十分钟在线观看高清视频www | 国产亚洲一区二区精品| 亚洲中文av在线| 亚洲欧美成人综合另类久久久| 能在线免费看毛片的网站| 精品亚洲成国产av| 国产亚洲5aaaaa淫片| 久久人人爽av亚洲精品天堂 | 亚洲精品乱久久久久久| 免费黄色在线免费观看| 九草在线视频观看| 亚洲国产欧美在线一区| 国产亚洲一区二区精品| av天堂中文字幕网| 黑人猛操日本美女一级片| 亚洲精品成人av观看孕妇| 人妻一区二区av| 日本午夜av视频| 毛片一级片免费看久久久久| 男人添女人高潮全过程视频| 亚洲真实伦在线观看| 午夜免费鲁丝| 在线观看人妻少妇| 国产永久视频网站| 色视频在线一区二区三区| 内地一区二区视频在线| 国产免费一级a男人的天堂| 国产精品欧美亚洲77777| 免费在线观看成人毛片| 免费看光身美女| 亚洲国产av新网站| 欧美xxxx性猛交bbbb| 人妻一区二区av| 精品国产三级普通话版| 日本欧美国产在线视频| 欧美高清成人免费视频www| 国产精品成人在线| 婷婷色综合www| 秋霞伦理黄片| av国产免费在线观看| 97热精品久久久久久| 久久国产精品男人的天堂亚洲 | 精品99又大又爽又粗少妇毛片| 国产男女超爽视频在线观看| 亚洲精品国产色婷婷电影| 久热久热在线精品观看| 国产高潮美女av| 一级二级三级毛片免费看| 干丝袜人妻中文字幕| 国产午夜精品一二区理论片| 色综合色国产| 天天躁日日操中文字幕| 国产深夜福利视频在线观看| 日韩,欧美,国产一区二区三区| 少妇人妻一区二区三区视频| 日本av手机在线免费观看| 国产v大片淫在线免费观看| 尾随美女入室| 日本免费在线观看一区| 国产黄色免费在线视频| av在线app专区| av.在线天堂| 亚洲av福利一区| a 毛片基地| 亚洲精品一二三| 亚洲美女黄色视频免费看| 成人18禁高潮啪啪吃奶动态图 | 欧美人与善性xxx| 国产精品偷伦视频观看了| 欧美另类一区| 中文乱码字字幕精品一区二区三区| 国产日韩欧美亚洲二区| 夫妻性生交免费视频一级片| 男女下面进入的视频免费午夜| 久久综合国产亚洲精品| 99热这里只有是精品在线观看| 午夜免费观看性视频| 午夜福利网站1000一区二区三区| av又黄又爽大尺度在线免费看| 国产在视频线精品| 尤物成人国产欧美一区二区三区| 大香蕉久久网| 日本午夜av视频| 久久青草综合色| 亚洲精品中文字幕在线视频 | 日韩一区二区视频免费看| 国产爱豆传媒在线观看| 日韩av免费高清视频| 欧美日韩视频高清一区二区三区二| 人妻少妇偷人精品九色| 涩涩av久久男人的天堂| 十八禁网站网址无遮挡 | 国产极品天堂在线| 日韩三级伦理在线观看| 18禁裸乳无遮挡免费网站照片| 狠狠精品人妻久久久久久综合| 亚洲精品一二三| 这个男人来自地球电影免费观看 | 亚洲国产精品国产精品| 国产精品一区二区三区四区免费观看| 久久精品久久久久久噜噜老黄| 一级毛片我不卡| 免费看不卡的av| 精品国产三级普通话版| 色视频www国产| 国产av精品麻豆| 国产高清国产精品国产三级 | 欧美另类一区| 国产精品麻豆人妻色哟哟久久| 久久99蜜桃精品久久| 男男h啪啪无遮挡| 久久精品国产亚洲av天美| 日韩成人伦理影院| 免费人成在线观看视频色| 免费人成在线观看视频色| 欧美老熟妇乱子伦牲交| 亚洲精品,欧美精品| 国产高清有码在线观看视频| 丝瓜视频免费看黄片| 免费看不卡的av| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美成人综合另类久久久| 天美传媒精品一区二区| a级毛色黄片| 久久毛片免费看一区二区三区| 国产精品一区二区在线观看99| 视频区图区小说| 有码 亚洲区| 色婷婷久久久亚洲欧美| 夜夜爽夜夜爽视频| 天堂中文最新版在线下载| 精华霜和精华液先用哪个| 一级毛片久久久久久久久女| 婷婷色av中文字幕| 一个人看视频在线观看www免费| 日本色播在线视频| 天美传媒精品一区二区| 纯流量卡能插随身wifi吗| 成人毛片a级毛片在线播放| 啦啦啦视频在线资源免费观看| 久热这里只有精品99| 日本wwww免费看| 久久精品国产亚洲网站| 成人毛片a级毛片在线播放| 在线观看免费高清a一片| 亚洲av中文字字幕乱码综合| 国产男人的电影天堂91| 在线亚洲精品国产二区图片欧美 | 精品国产一区二区三区久久久樱花 | 夜夜骑夜夜射夜夜干| 精品少妇黑人巨大在线播放| 日韩强制内射视频| 国产色爽女视频免费观看| 日本色播在线视频| 成年免费大片在线观看| 亚洲精品aⅴ在线观看| 91精品伊人久久大香线蕉| 少妇的逼水好多| 亚洲av.av天堂| 国产一级毛片在线| 国产亚洲5aaaaa淫片| 2021少妇久久久久久久久久久| 亚洲国产日韩一区二区| 美女xxoo啪啪120秒动态图| 成人美女网站在线观看视频| av免费在线看不卡| 亚洲av在线观看美女高潮| 在线观看免费日韩欧美大片 | 国产精品免费大片| 日本一二三区视频观看| 国产av一区二区精品久久 | 2018国产大陆天天弄谢| 国产精品一二三区在线看| 尾随美女入室| 午夜福利高清视频| 国产高清国产精品国产三级 | 少妇人妻一区二区三区视频| 啦啦啦中文免费视频观看日本| 男人狂女人下面高潮的视频| 久久久久国产网址| 国产精品秋霞免费鲁丝片| 天堂8中文在线网| 一级av片app| 色综合色国产| 精品一区二区免费观看| 毛片女人毛片| 亚洲人成网站高清观看| av网站免费在线观看视频| 一级毛片我不卡| 久久久久国产网址| 久久青草综合色| 97超碰精品成人国产| 国产一区亚洲一区在线观看| 丝袜喷水一区| 国产精品一及| 国产欧美日韩一区二区三区在线 | 我的老师免费观看完整版| 一区二区三区免费毛片| 色综合色国产| 国产黄片视频在线免费观看| 亚洲,欧美,日韩| 97在线视频观看| 丝袜喷水一区| 亚洲精品乱久久久久久| 免费黄频网站在线观看国产| 99久久中文字幕三级久久日本| 香蕉精品网在线| 汤姆久久久久久久影院中文字幕| 一级黄片播放器| 91久久精品电影网| 国产人妻一区二区三区在| 精品熟女少妇av免费看| 2021少妇久久久久久久久久久| 亚洲av二区三区四区| 国产高清有码在线观看视频| 日韩,欧美,国产一区二区三区| 青春草亚洲视频在线观看| 精品视频人人做人人爽| 日韩av免费高清视频| 国产一区有黄有色的免费视频| 草草在线视频免费看| 91精品国产九色| 日本与韩国留学比较| 国产美女午夜福利| 午夜福利网站1000一区二区三区| 精品一区二区三区视频在线| 男女免费视频国产| 国产淫片久久久久久久久| h日本视频在线播放| 黑人猛操日本美女一级片| 欧美高清性xxxxhd video| 80岁老熟妇乱子伦牲交| 日日摸夜夜添夜夜添av毛片| 成人国产av品久久久| 国产精品久久久久久久电影| 十分钟在线观看高清视频www | 亚洲成人手机| 免费少妇av软件| 亚洲天堂av无毛| 丰满少妇做爰视频| 99久久精品一区二区三区| 日韩制服骚丝袜av| 国产精品一二三区在线看| 大陆偷拍与自拍| 国产综合精华液| 亚洲av在线观看美女高潮| 大话2 男鬼变身卡| 亚洲av电影在线观看一区二区三区| 欧美成人午夜免费资源| 国产熟女欧美一区二区| 精品久久国产蜜桃| 香蕉精品网在线| 日本黄大片高清| 国产精品女同一区二区软件| videos熟女内射| 交换朋友夫妻互换小说| 日本av手机在线免费观看| 国产在线一区二区三区精| 在线观看av片永久免费下载| 久久国产亚洲av麻豆专区| 日本欧美视频一区| freevideosex欧美| 91精品伊人久久大香线蕉| 精品视频人人做人人爽| 日本av免费视频播放| 99久久精品国产国产毛片| 五月开心婷婷网| 一区二区三区四区激情视频| 亚洲av二区三区四区| 国产精品久久久久久av不卡| 免费av不卡在线播放| av卡一久久| 黄色日韩在线| 成人无遮挡网站| 波野结衣二区三区在线| 国语对白做爰xxxⅹ性视频网站| 最近中文字幕2019免费版| 97热精品久久久久久| 大陆偷拍与自拍| 18禁裸乳无遮挡免费网站照片| 欧美区成人在线视频| 成人无遮挡网站| 欧美区成人在线视频| 婷婷色综合www| 亚洲第一区二区三区不卡| 日韩免费高清中文字幕av| 肉色欧美久久久久久久蜜桃| 在现免费观看毛片| 亚洲一区二区三区欧美精品| 啦啦啦啦在线视频资源| av国产免费在线观看| 亚洲av不卡在线观看| 男女下面进入的视频免费午夜| 内地一区二区视频在线| 丰满人妻一区二区三区视频av| 新久久久久国产一级毛片| 丰满人妻一区二区三区视频av| 国产一区有黄有色的免费视频| 亚洲自偷自拍三级| 午夜视频国产福利| 免费大片18禁| 看十八女毛片水多多多| 夜夜骑夜夜射夜夜干| 日本黄大片高清| 熟女人妻精品中文字幕| 国产精品福利在线免费观看| 18禁动态无遮挡网站| 精品国产三级普通话版| av在线老鸭窝| 男女边吃奶边做爰视频| 欧美老熟妇乱子伦牲交| 国精品久久久久久国模美| 亚洲色图av天堂| 亚洲国产最新在线播放| 亚洲欧美一区二区三区黑人 | a级一级毛片免费在线观看| 国产视频首页在线观看| 不卡视频在线观看欧美| 大片免费播放器 马上看| 国产高清不卡午夜福利| 99久国产av精品国产电影| 成人毛片60女人毛片免费| 欧美精品亚洲一区二区| 国产真实伦视频高清在线观看| 欧美 日韩 精品 国产| 日韩不卡一区二区三区视频在线| 亚洲图色成人| 国产一区二区三区av在线| 少妇人妻精品综合一区二区| 国产精品久久久久久精品电影小说 | 不卡视频在线观看欧美| 亚洲一级一片aⅴ在线观看| 妹子高潮喷水视频| 亚洲欧美精品自产自拍| 美女福利国产在线 | 国产精品偷伦视频观看了| 日韩亚洲欧美综合| 大香蕉久久网| 亚洲av电影在线观看一区二区三区| 观看免费一级毛片| 美女主播在线视频| 狂野欧美白嫩少妇大欣赏| 精品国产一区二区三区久久久樱花 | 91精品伊人久久大香线蕉| 欧美高清成人免费视频www| 日韩中文字幕视频在线看片 | 国产一区二区在线观看日韩| 乱码一卡2卡4卡精品| 午夜激情久久久久久久| 国产伦理片在线播放av一区| 久久韩国三级中文字幕| 午夜福利在线观看免费完整高清在| 久久久久网色| 亚洲精品,欧美精品| 中文字幕免费在线视频6| 国产成人免费观看mmmm| 亚洲丝袜综合中文字幕| 日本av手机在线免费观看| 亚洲精品自拍成人| 国产精品久久久久成人av| 亚洲成色77777| 免费观看无遮挡的男女| 日韩电影二区| 国产精品一区二区三区四区免费观看| 欧美另类一区| 亚洲精品一二三| 一级毛片久久久久久久久女| 亚洲国产精品999| 国产高清国产精品国产三级 | 99热网站在线观看| 乱码一卡2卡4卡精品| 国产成人91sexporn| 97在线人人人人妻| 一区二区av电影网| 国产深夜福利视频在线观看| 亚洲国产精品专区欧美| 免费黄频网站在线观看国产| 777米奇影视久久| 免费人成在线观看视频色| 国国产精品蜜臀av免费| 中文资源天堂在线| 嫩草影院新地址| 亚洲色图av天堂| 国产免费一区二区三区四区乱码| 色网站视频免费| 精品久久久精品久久久| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美清纯卡通| 一级毛片黄色毛片免费观看视频| 国产精品一区二区在线不卡| 成人一区二区视频在线观看| 七月丁香在线播放| 亚洲美女搞黄在线观看| 婷婷色综合大香蕉| 国产成人aa在线观看| 中文字幕av成人在线电影| 久久久久网色| 寂寞人妻少妇视频99o| 18禁裸乳无遮挡免费网站照片| 波野结衣二区三区在线| 少妇猛男粗大的猛烈进出视频| 国产亚洲av片在线观看秒播厂| 日韩伦理黄色片| 久热久热在线精品观看| 91aial.com中文字幕在线观看| 99热全是精品| 91午夜精品亚洲一区二区三区| 中文乱码字字幕精品一区二区三区| 大话2 男鬼变身卡| 亚洲国产最新在线播放| 男的添女的下面高潮视频| 极品教师在线视频| 亚州av有码| 人人妻人人爽人人添夜夜欢视频 | 国产精品一区www在线观看| 亚洲熟女精品中文字幕| 少妇精品久久久久久久| 免费大片18禁| 亚洲国产高清在线一区二区三| 免费黄色在线免费观看| 精品国产三级普通话版| 99久久精品一区二区三区| 免费观看无遮挡的男女| 交换朋友夫妻互换小说| 中文字幕制服av| 日韩av免费高清视频| 久久鲁丝午夜福利片| 2021少妇久久久久久久久久久| 国产精品成人在线| 一个人免费看片子| 国产综合精华液| 欧美三级亚洲精品| 超碰97精品在线观看| 亚州av有码| 内射极品少妇av片p| 亚洲四区av| 国产真实伦视频高清在线观看| 又黄又爽又刺激的免费视频.| 成人漫画全彩无遮挡| 在线天堂最新版资源| 国产亚洲一区二区精品| 18禁裸乳无遮挡动漫免费视频| 91狼人影院| 国产精品久久久久成人av| 日本av免费视频播放| 在线观看一区二区三区激情| 天美传媒精品一区二区| av在线蜜桃| 国产精品蜜桃在线观看| 亚洲内射少妇av| 性高湖久久久久久久久免费观看| 亚洲欧美一区二区三区国产| 精品久久久久久电影网| 人人妻人人看人人澡| 亚洲婷婷狠狠爱综合网| 亚洲精品乱码久久久久久按摩| 亚洲av在线观看美女高潮| 日韩强制内射视频| 国产熟女欧美一区二区| 亚洲av综合色区一区| 大码成人一级视频| 亚洲欧美日韩东京热| av女优亚洲男人天堂| 国产一区二区在线观看日韩| 人妻 亚洲 视频| 97热精品久久久久久| 国产黄频视频在线观看| 国产精品麻豆人妻色哟哟久久| 日本爱情动作片www.在线观看| 永久免费av网站大全| 国产爽快片一区二区三区| 一级a做视频免费观看| .国产精品久久| 国产乱来视频区| 黑人高潮一二区| 国产探花极品一区二区| 久久久久精品性色| 菩萨蛮人人尽说江南好唐韦庄| 国产精品不卡视频一区二区| 一本久久精品| 国产真实伦视频高清在线观看| 联通29元200g的流量卡| 欧美成人a在线观看| 久久99精品国语久久久| 黄色欧美视频在线观看| av卡一久久| 在线观看免费日韩欧美大片 | 又爽又黄a免费视频| 天堂8中文在线网| 欧美精品一区二区大全| 亚洲av在线观看美女高潮| 偷拍熟女少妇极品色| 1000部很黄的大片| 99久久人妻综合| 在线观看美女被高潮喷水网站| 日本黄大片高清| 丝瓜视频免费看黄片| 18禁在线播放成人免费| 身体一侧抽搐| 国产在线一区二区三区精| 少妇裸体淫交视频免费看高清| 交换朋友夫妻互换小说| 又爽又黄a免费视频| 日本av手机在线免费观看| 国产乱人视频| 精品亚洲成a人片在线观看 | 日本黄大片高清| 九九爱精品视频在线观看| 国产精品免费大片| 精品国产露脸久久av麻豆| 国产精品久久久久久久久免| 97在线视频观看| 欧美三级亚洲精品| 九九爱精品视频在线观看| 超碰av人人做人人爽久久| 22中文网久久字幕| 精品亚洲成国产av| 啦啦啦视频在线资源免费观看| 久久99精品国语久久久| 免费人成在线观看视频色| 插阴视频在线观看视频|