• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of high-strength duplex nanoporous Cu by dealloying a dual-phase Mg-Cu precursor alloy

    2020-12-18 11:32:18SiYoungLeeSooMinBekEunJiGwkRiKngJuYoungKimSuHyeonKimJungGuLeeSungSooPrk
    Journal of Magnesium and Alloys 2020年3期

    Si-Young Lee,Soo-Min Bek,Eun-Ji Gwk,N-Ri Kng,Ju-Young Kim,Su-Hyeon Kim,Jung Gu Lee,Sung Soo Prk,?

    a School of Materials Science and Engineering,Ulsan National Institute of Science and Technology,Ulsan 44919,Republic of Korea

    b Korea Institute of Materials Science,Changwon 51508,Republic of Korea

    c School of Materials Science and Engineering,University of Ulsan,Ulsan 44610,Republic of Korea

    Received 9 September 2019;received in revised form 19 February 2020;accepted 23 February 2020 Available online 29 May 2020

    Abstract Duplex nanoporous Cu was successfully fabricated by dealloying a dual-phase Mg-Cu precursor alloy consisting of intermetallic Mg2Cu and MgCu2.The duplex nanoporous Cu with embedded nanoporous struts exhibited highly enhanced strength compared to the typical monolithic nanoporous Cu under both compressive and f exural test conditions at room temperature;the duplex np-Cu sample exhibited a 12 times higher compressive strength and a 40 times greater fl xural strength than the monolithic np-Cu sample.Factors responsible for the strength enhancement in the duplex nanoporous Cu are discussed.? 2020 Published by Elsevier B.V.on behalf of Chongqing University.This is an open access article under the CC BY-NC-ND license.(http://creativecommons.org/licenses/by-nc-nd/4.0/)Peer review under responsibility of Chongqing University

    Keywords:Mg-Cu alloy;Nanoporous Cu;Dealloying;Duplex structure;Strength.

    1.Introduction

    Nanoporous materials have recently attracted considerable interest due to their functionality in sensors[1,2],catalysts[3,4],and actuators[5,6].Furthermore,they show promise for the development of high specific-strengt materials[7,8].Among a variety of fabrication methods reported thus far[9-13],dealloying is considered one of the most efficien ways of producing nanoporous-structured metallic materials.Generally,dealloying is applied to single-phase precursor alloys,which consist of two elements or more with different electrochemical nobility.While an electrochemically less noble element in the precursor material selectively dissolves into an electrolyte during the dealloying process,a relatively nobler element remains undissolved and a nanoporous structure is then formed via atomic diffusion[14].

    Despite the advantages of dealloying in fabricating nanoporous structures,nanoporous metals produced via dealloying usually have suffered from issues related to their mechanical properties.Crack formation due to volume shrinkage,frequently occurring during dealloying,has been one of the major factors underlying fragility of dealloyed nanoporous metals,retarding their practical applications[15-17].Fortunately,it has been recently reported that the presence of shrinkage-induced cracks can be controlled by optimizing the dealloying conditions or compositional modificatio of a precursor alloy[18-20].For instance,Sun and Balk showed that nanoporous Au with minimal cracking can be obtained by a multi-step dealloying process[18].Seker et al.reported that micro-void formation in nanoporous Au film can be reduced by dealloying of precursor Au-Ag f lms after thermal treatment[19].Furthermore,Wang et al.found that the inner cracking of nanoporous Cu(np-Cu)can be reduced by microalloying of the Cu-Mn precursor alloy with Si[20].

    As indicated above,recent endeavors to improve the mechanical properties of dealloyed nanoporous metals have been mainly focused on suppressing crack formation during dealloying.However,little attention has been paid to utilizing structural heterogeneity to further improve the mechanical properties of nanoporous metals.In this study,heterogeneously-structured np-Cu having two types of nanoporous constituents was successfully fabricated by dealloying of dual-phase Mg-Cu precursor alloy,and the mechanical properties of the duplex np-Cu were comparatively investigated with those of typical monolithic np-Cu dealloyed from single-phase Mg-Cu precursor alloy.

    2.Experimental

    Two precursor Mg-Cu alloys with nominal compositions(at%)of Mg-33.3Cu and Mg-36.7Cu were prepared by induction melting using graphite crucibles under an inert atmosphere with a CO2and SF6mixture and subsequent pouring into a steel mold at ambient temperature.After homogenizing at 450°C for 24h and subsequent water quenching,the alloys were cut into a cubic shape with a side length of 3mm.The alloy samples were ground with SiC papers up to 1200 grit under a water atmosphere;they were then polished using 1μm diamond paste and 0.04μm colloidal silica solution under an ethanol atmosphere.Free-corrosion dealloying was conducted in a 1.5 wt% HCl solution at 0°C to selectively leach Mg atoms from the precursor alloys.Dealloying proceeded until no bubbles appeared to form and the np-Cu samples obtained via dealloying were then subjected to ultrasonic rinsing with ethanol for 1min.

    Microstructural characteristics were investigated using a Hitachi S-4800 scanning electron microscope(SEM),a Quanta 200 field-emissio SEM with a TSL electron backscatter diffraction(EBSD)data collection system,and a JEM-2100F Cs-corrected transmission electron microscope(TEM)equipped with an energy dispersive spectrometer.Samples for TEM analysis were prepared using a focused ion beam technique.Three-dimensional(3D)microstructure reconstruction was conducted for the Mg-36.7Cu precursor alloy using a UES Robo-Met.3D automated serial sectioning system.Thermodynamic calculations were conducted using Pandat 2012.

    For the evaluation of the mechanical response at a selected area,nanoindentation tests were carried out at room temperature using a Berkovich indenter and continuous stiffness measurement with a Keysight G200.Hardness and elastic modulus values were acquired from nanoindentation at indentation depths of 7~8μm according to the method proposed by Oliver and Pharr[21].The mechanical properties of the np-Cu samples were investigated using compressive and three-point fl xural tests at room temperature.The compressive and fl xural tests were conducted at an initial strain rate of 3×10?3s?1using cubic compressive specimens with a side length of 3mm and rectangular fl xural specimens with a length of 8mm,a width of 3mm,and a thickness of 1.5mm,respectively.

    3.Results and discussion

    Fig.1a and b show SEM micrographs of the Mg-Cu precursor alloys.It can be seen that the Mg-33.3Cu and Mg-36.7Cu alloys have single-phase and dual-phase microstructures,respectively.The EBSD phase analysis results given in Fig.1c and d indicated that the former has Mg2Cu phase only and the latter has both Mg2Cu and MgCu2phases in their microstructures.This is well consistent with the Mg-Cu binary phase diagram in Fig.1e.The Mg2Cu and MgCu2phases have been known to have an orthorhombic structure with lattice parameters ofa=0.907nm,b=0.528nm,andc=1.825nm(ICSD no.103,047)and a face-centered cubic structure with a lattice parameter of 0.703nm(ICSD no.46,007),respectively.The dual-phase microstructure of the Mg-36.7Cu alloy is similar to that of cast Al-Si alloy containing eutectic Si phase[22].The 3D-reconstructed image in Fig.1f reveals that the MgCu2phase in the Mg-36.7Cu alloy is interconnected within the Mg2Cu matrix.The volume fraction of the MgCu2phase in the Mg-36.7Cu alloy was measured from the 3D image and found to be~9.4%.The two precursor alloys were subjected to the same dealloying procedures for the fabrication of np-Cu.The appearances of the Mg-36.7Cu precursor alloy and np-Cu obtained after dealloying are comparatively shown in Fig.2.Differences in size and color can be seen between the precursor alloy and dealloyed np-Cu.

    Fig.3a shows a low-magnificatio SEM micrograph obtained after dealloying of the Mg-33.3Cu alloy.It discloses some macroscopic cracks,which were not present prior to dealloying.As mentioned above,the formation of such inner cracks is generally ascribed to volume shrinkage during dealloying[15].The high-magnificatio SEM and TEM micrographs in Fig.3b-e display np-Cu structures obtained after dealloying.The np-Cu made from the Mg-33.3Cu alloy was found to have a monolithic nanoporous structure with well-linked ligaments with a thickness of 36.0±6.1nm,analogous to other dealloyed nanoporous metals reported previously[23-25].The relative density of the monolithic np-Cu was measured and found to be~0.27.

    On the other hand,the np-Cu prepared from the Mg-36.7Cu alloy presented a duplex nanoporous structure having two different types of np-Cu parts,which appeared to correspond to the Mg2Cu and MgCu2phases existing prior to dealloying.This suggests that each np-Cu part constructed via dealloying was strongly affected by the type of pre-existing intermetallic phase in the precursor alloy.Hereafter,the np-Cu parts from the Mg2Cu and MgCu2phases are denoted as np-Cu I and np-Cu II,respectively.It should be noted here that the inner cracks observable in the np-Cu I part were not present in the np-Cu II part.In terms of morphology,the duplex np-Cu sample can be characterized by the incorporation of the continuous np-Cu II struts within the np-Cu I matrix.Analysis of the TEM diffraction patterns in Fig.3f and g confirme that Cu is the only substance constituting the ligaments of the np-Cu I and np-Cu II parts.The measured ligament thicknesses of the np-Cu I and np-Cu II parts in the duplex np-Cu sample were 34.0±5.7nm and 21.4±5.5nm,respectively.Although the relative density of the embedded np-Cu II part cannot be directly measured,it is expected to be much larger than that of the np-Cu I part,considering the Cu to Mg atomic ratios of the corresponding intermetallic phases.The monolithic and duplex np-Cu samples are schematically represented in Fig.4.

    Fig.1.SEM micrographs of the(a)Mg-33.3Cu and(b)Mg-36.7Cu precursor alloys,EBSD phase maps of the(c)Mg-33.3Cu and(d)Mg-36.7Cu precursor alloys,(e)a Mg-Cu binary phase diagram,and(f)a 3D-reconstructed image of the Mg-36.7Cu precursor alloy.

    Fig.2.Appearances of the cuboidal samples(a)before and(b)after dealloying the Mg-36.7Cu precursor alloy.

    Nanoindentation tests were carried out to separately investigate the mechanical response of each nanoporous part inthe duplex np-Cu sample.Fig.5 shows the force-indentation depth curves of the np-Cu I and np-Cu II parts and corresponding hardness and elastic modulus variations of the np-Cu I and np-Cu II parts as a function of indentation depth are given in Fig.6.As listed in Table 1,hardness values were found to be 25.4±0.6 and 70.4±0.5MPa for the np-Cu I and np-Cu II parts,respectively,showing that the np-Cu II part has a~3 times greater hardness value than the np-Cu I part.Furthermore,elastic modulus values were found to be 206.9±6.9 and 2858.1±95.8MPa for the np-Cu I and np-Cu II parts,respectively,indicating that the difference in elastic modulus(~14 times)is much larger than that in hardness between the np-Cu I and np-Cu II parts.These nanoindentation results suggest that the duplex np-Cu sample additionally having the np-Cu II part would provide advantages in strength-related properties over the monolithic np-Cu sample without it.

    Table 1Hardness and elastic modulus values obtained from the nanoindentation tests for the np-Cu I and np-Cu II parts of the duplex np-Cu sample.

    Fig.3.(a)Low-magnificatio and(b)high-magnificatio SEM micrographs of the monolithic np-Cu sample and high-magnificatio(c)SEM and(d,e)TEM micrographs of the duplex np-Cu sample with the diffraction patterns obtained from the(f)np-Cu I and(g)np-Cu II parts in the TEM micrograph.

    Fig.4.Schematic diagrams of the(a)monolithic and(b)duplex np-Cu samples.

    Fig.5.Force-indentation depth curves of the np-Cu I and np-Cu II parts in the duplex np-Cu sample.

    Fig.6.Variations in(a)hardness and(b)elastic modulus of the np-Cu I and np-Cu II parts in the duplex np-Cu sample as a function of indentation depth.

    Fig.7.(a)Compressive and(b)fl xural stress-strain curves of the monolithic and duplex np-Cu samples.

    Fig.7a provides the compressive stress-strain curves of the monolithic and duplex np-Cu samples.The monolithic np-Cu sample showed a low compressive yield strength of 1.3±0.6MPa at the early stage of compressive strain.This was followed by a stress plateau and a densification-induce stress increase,phenomena that are typically observed during the compressive deformation of nanoporous materials[26,27].On the other hand,the duplex np-Cu sample showed a steeper slope in the elastic region and a higher yield point as compared to the monolithic np-Cu sample.It displayed a compressive yield strength(CYS)of 15.4±1.5MPa,which is~12 times greater than the CYS of the monolithic np-Cu sample.The plateau region observed in the monolithic np-Cu sample did not appear in the duplex np-Cu sample.Instead,stress was found to considerably drop after a yield point,which was followed by a rather gradual stress increase at strains exceeding~35% due to densification Such a stress drop after yielding has been similarly shown in np-Cu fabricated by dealloying of Al-Cu precursor alloys[28].

    Furthermore,the fl xural stress-strain curves of the monolithic and duplex np-Cu samples are provided in Fig.7b.Although the overall stress levels of the curves were quite low,the difference in strength between the np-Cu samples was found to be more pronounced in the f exural test results than in the compressive test results.The monolithic and duplex np-Cu samples exhibited maximum f exural strengths of 0.04±0.03 and 1.7±0.2MPa,respectively,indicating that the latter is~40 times stronger than the former under the f exural test conditions.

    Fig.8.SEM micrographs of the duplex np-Cu samples(a)after a compressive strain of 0.06 and(b)after a f exural strain of 0.03.

    The strength of nanoporous materials has been interpreted using scaling equations having structure-related variables such as relative density and ligament size[16,29-31].A calculation using the Hodge equation[30],whereσyis the yield strength of nanoporous metal,σsis the yield strength of bulk metal(σs=33~333.4MPa for Cu)[32],kis a strength coefficien(k=0.14MPa m0.5for Cu)[33],tis the ligament thickness(t=36nm in this study),andρris the relative density(ρr=0.27 in this study),indicated that the expected yield strength of the monolithic np-Cu sample is in a range of 32.4~45.1MPa.A calculation using the scaling law recently proposed by Huber et al.[31],wherecis a coefficien of~1.4[31],σySis the yield strength of a ligament,ris the ligament radius(r=18nm in this study),lis the spacing between nodes connecting ligaments(l=~50nm in this study),and cRis a geometry parameter of~1.1[31],also indicated that the yield strength of the monolithic np-Cu sample should be higher than 6.5MPa,considering thatσySis greater thanσs[34-36].Besides these calculations,the hardness value of the monolithic np-Cu sample(25.4MPa)corresponds to yield strengths of 8.5~9.6MPa,according to recent reports on relationship between the hardness and yield strength of nanoporous materials[27,37,38].However,the sample was experimentally shown to have a compressive yield strength of only~1.3MPa,suggesting the occurrence of premature fracture during the compressive test.In this regard,the discrepancy between the predicted and experimental strength values can be attributed to a detrimental effect of dealloying-induced inner cracks on maintaining high strength.

    On the other hand,the duplex np-Cu sample has much higher levels of strength under both compressive and fl xural test conditions than the monolithic np-Cu sample.Since nearly no difference was detected between the np-Cu I parts of the monolithic and duplex np-Cu samples,the relatively enhanced strength observed in the latter can be considered closely associated with its incorporation of the np-Cu II part.As indicated in Fig.8,observations of the duplex np-Cu samples subjected to compressive and fl xural stress conditions clearly revealed that the np-Cu II part acted as supporting struts or frames,which can resist dimensional change under an applied stress and also can prevent the propagation of cracks formed in the np-Cu I part.These roles of the np-Cu II part in load-bearing and crack-arresting are consistent with the aforementioned nanoindentation results,showing that the np-Cu II part has higher levels of hardness and elastic modulus than the np-Cu I part.This beneficia influenc of the supporting np-Cu II struts on strengthening would be more effective when combined with an improvement in the structural integrity of the np-Cu I matrix.

    4.Conclusion

    Dual-phase and single-phase Mg-Cu precursor alloys were subjected to free-corrosion dealloying for the fabrication of duplex and monolithic np-Cu samples,respectively.The duplex np-Cu sample having both np-Cu I and np-Cu II parts exhibited a 12 times higher compressive strength and a 40 times greater fl xural strength than the monolithic np-Cu sample without the np-Cu II part.The compressive and fl xural strengthening observed in the duplex np-Cu sample was attributed to the load-bearing and crack-arresting effects of the embedded np-Cu II part,which acted as supporting struts.

    Acknowledgment

    This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2019R1A2C1003905).

    寂寞人妻少妇视频99o| 99国产精品免费福利视频| 蜜桃在线观看..| av.在线天堂| 日韩不卡一区二区三区视频在线| 色视频在线一区二区三区| 日韩欧美精品免费久久| 欧美高清性xxxxhd video| 精品一品国产午夜福利视频| 网址你懂的国产日韩在线| 欧美精品一区二区免费开放| 观看美女的网站| 少妇 在线观看| 成人一区二区视频在线观看| 寂寞人妻少妇视频99o| 一级毛片 在线播放| 在线观看免费高清a一片| 国产v大片淫在线免费观看| 日日摸夜夜添夜夜添av毛片| 这个男人来自地球电影免费观看 | 汤姆久久久久久久影院中文字幕| 国产精品欧美亚洲77777| 亚洲va在线va天堂va国产| 久久久久久人妻| 欧美高清成人免费视频www| 边亲边吃奶的免费视频| 成人特级av手机在线观看| 中文乱码字字幕精品一区二区三区| 中文在线观看免费www的网站| 成人免费观看视频高清| 久久久久久久久大av| 卡戴珊不雅视频在线播放| 亚洲成人一二三区av| 欧美高清成人免费视频www| 男女边摸边吃奶| 国产成人免费观看mmmm| 日韩av免费高清视频| 欧美精品一区二区大全| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久久电影| 蜜臀久久99精品久久宅男| 国产精品福利在线免费观看| 欧美精品国产亚洲| 欧美成人a在线观看| 五月天丁香电影| 国产精品久久久久久久久免| 日韩电影二区| 精品国产一区二区三区久久久樱花 | 小蜜桃在线观看免费完整版高清| 免费看光身美女| 最近中文字幕2019免费版| 亚洲精品自拍成人| 成人国产麻豆网| 97在线视频观看| 嫩草影院入口| 久久久久网色| 免费看日本二区| 又黄又爽又刺激的免费视频.| 国产精品人妻久久久久久| 亚洲中文av在线| 两个人的视频大全免费| 久久国产乱子免费精品| 亚洲精品乱久久久久久| 有码 亚洲区| 啦啦啦中文免费视频观看日本| 久久久久网色| 国产91av在线免费观看| 赤兔流量卡办理| 国产精品.久久久| 久久精品国产亚洲av涩爱| 狂野欧美白嫩少妇大欣赏| 国产在线一区二区三区精| 国产毛片在线视频| 免费黄频网站在线观看国产| 日本黄色日本黄色录像| 中文欧美无线码| 日韩中文字幕视频在线看片 | 国产久久久一区二区三区| 国产av一区二区精品久久 | 国产爽快片一区二区三区| h视频一区二区三区| 亚洲国产高清在线一区二区三| www.色视频.com| 亚州av有码| 一级a做视频免费观看| 好男人视频免费观看在线| 啦啦啦中文免费视频观看日本| 毛片一级片免费看久久久久| 久久国产亚洲av麻豆专区| 一二三四中文在线观看免费高清| 水蜜桃什么品种好| 九九久久精品国产亚洲av麻豆| 久久精品久久久久久噜噜老黄| 国产一区亚洲一区在线观看| 久久人人爽av亚洲精品天堂 | 免费av不卡在线播放| 亚洲精品久久久久久婷婷小说| 亚洲国产精品专区欧美| 在线观看三级黄色| av国产精品久久久久影院| 久久久久网色| 久久久久久久亚洲中文字幕| 性高湖久久久久久久久免费观看| 免费人妻精品一区二区三区视频| 成人国产av品久久久| 久久人人爽人人爽人人片va| 男男h啪啪无遮挡| 国产精品伦人一区二区| 中文资源天堂在线| 日本与韩国留学比较| 偷拍熟女少妇极品色| 99热全是精品| 亚洲国产精品国产精品| 欧美日本视频| 免费人妻精品一区二区三区视频| 国模一区二区三区四区视频| 80岁老熟妇乱子伦牲交| 成人国产麻豆网| 夜夜骑夜夜射夜夜干| 日韩电影二区| 五月伊人婷婷丁香| 女性被躁到高潮视频| h视频一区二区三区| 一区二区三区精品91| 高清不卡的av网站| 美女中出高潮动态图| 欧美精品人与动牲交sv欧美| 精品国产乱码久久久久久小说| 亚州av有码| av天堂中文字幕网| 日本-黄色视频高清免费观看| 交换朋友夫妻互换小说| 亚洲熟女精品中文字幕| 国产男女内射视频| 精品久久久精品久久久| 亚洲美女搞黄在线观看| 国产精品.久久久| 日韩中字成人| 97在线视频观看| 国产人妻一区二区三区在| 女的被弄到高潮叫床怎么办| 成人免费观看视频高清| 美女主播在线视频| 成人影院久久| 美女cb高潮喷水在线观看| 直男gayav资源| 国产精品人妻久久久久久| 午夜福利在线观看免费完整高清在| 色婷婷av一区二区三区视频| 国模一区二区三区四区视频| 建设人人有责人人尽责人人享有的 | 极品教师在线视频| 国产伦理片在线播放av一区| 国产爱豆传媒在线观看| 99热国产这里只有精品6| 亚洲av电影在线观看一区二区三区| 亚洲欧美清纯卡通| 久久久久久久久久久丰满| 国产精品99久久久久久久久| 男女免费视频国产| 久久久久久久久大av| 日本av手机在线免费观看| 欧美极品一区二区三区四区| 一个人看的www免费观看视频| 亚洲综合色惰| 精品久久久久久久末码| 亚洲不卡免费看| 尾随美女入室| 日韩人妻高清精品专区| 少妇的逼好多水| 国产中年淑女户外野战色| 中文字幕人妻熟人妻熟丝袜美| 十八禁网站网址无遮挡 | 免费观看av网站的网址| 亚洲美女视频黄频| 美女福利国产在线 | 伊人久久精品亚洲午夜| 边亲边吃奶的免费视频| 免费不卡的大黄色大毛片视频在线观看| 免费观看的影片在线观看| videos熟女内射| 国产淫语在线视频| 人体艺术视频欧美日本| 婷婷色麻豆天堂久久| 免费人妻精品一区二区三区视频| 久久99热这里只有精品18| 嫩草影院新地址| 久久久久性生活片| 久久久久久久久久成人| 2022亚洲国产成人精品| 免费大片18禁| 高清毛片免费看| 亚洲电影在线观看av| 午夜激情久久久久久久| av女优亚洲男人天堂| 在线观看一区二区三区激情| 天天躁夜夜躁狠狠久久av| 美女xxoo啪啪120秒动态图| 国产91av在线免费观看| .国产精品久久| 免费不卡的大黄色大毛片视频在线观看| 国内精品宾馆在线| 久久国产精品男人的天堂亚洲 | 亚洲成人中文字幕在线播放| 夫妻午夜视频| 在线免费十八禁| 成人无遮挡网站| 亚洲国产精品成人久久小说| 午夜免费观看性视频| 国产永久视频网站| 777米奇影视久久| 午夜老司机福利剧场| 免费黄网站久久成人精品| 小蜜桃在线观看免费完整版高清| 女人久久www免费人成看片| 国产精品无大码| 免费大片18禁| 黄色视频在线播放观看不卡| 国产一区有黄有色的免费视频| 午夜免费男女啪啪视频观看| 日产精品乱码卡一卡2卡三| a级毛片免费高清观看在线播放| 亚洲高清免费不卡视频| 欧美丝袜亚洲另类| 蜜桃在线观看..| 免费高清在线观看视频在线观看| 日韩大片免费观看网站| 欧美一区二区亚洲| 午夜激情福利司机影院| 精品亚洲成国产av| 插逼视频在线观看| 爱豆传媒免费全集在线观看| 久久午夜福利片| 美女视频免费永久观看网站| 欧美人与善性xxx| av播播在线观看一区| 久久ye,这里只有精品| 欧美xxxx性猛交bbbb| 91精品一卡2卡3卡4卡| 国产免费福利视频在线观看| 免费观看a级毛片全部| 国国产精品蜜臀av免费| 亚洲va在线va天堂va国产| 久久精品国产a三级三级三级| 亚洲最大成人中文| 久久99热这里只有精品18| 18禁裸乳无遮挡免费网站照片| 亚洲三级黄色毛片| 自拍偷自拍亚洲精品老妇| 免费观看无遮挡的男女| 精品人妻一区二区三区麻豆| 精品国产一区二区三区久久久樱花 | 国产黄频视频在线观看| 亚洲av电影在线观看一区二区三区| 欧美日韩亚洲高清精品| 看十八女毛片水多多多| 色吧在线观看| 亚洲国产精品成人久久小说| 91精品一卡2卡3卡4卡| 男女下面进入的视频免费午夜| 色婷婷久久久亚洲欧美| 秋霞伦理黄片| 亚洲国产高清在线一区二区三| 五月玫瑰六月丁香| 五月天丁香电影| 男女无遮挡免费网站观看| 身体一侧抽搐| 有码 亚洲区| 男人和女人高潮做爰伦理| 中文字幕人妻熟人妻熟丝袜美| 91狼人影院| av网站免费在线观看视频| 伦理电影免费视频| 国产视频内射| 人人妻人人爽人人添夜夜欢视频 | 最近中文字幕2019免费版| 菩萨蛮人人尽说江南好唐韦庄| 久久青草综合色| 国产色爽女视频免费观看| 国产成人精品久久久久久| 91久久精品国产一区二区三区| 国产淫片久久久久久久久| 欧美日本视频| 免费播放大片免费观看视频在线观看| 黄色怎么调成土黄色| 水蜜桃什么品种好| 久久久久久久久久成人| 久久久午夜欧美精品| 久久精品久久精品一区二区三区| 又黄又爽又刺激的免费视频.| 男人舔奶头视频| 日日摸夜夜添夜夜爱| 又黄又爽又刺激的免费视频.| freevideosex欧美| 黄色怎么调成土黄色| 青春草国产在线视频| 精品视频人人做人人爽| 熟女电影av网| xxx大片免费视频| 最近的中文字幕免费完整| 内地一区二区视频在线| 成人毛片60女人毛片免费| 我的女老师完整版在线观看| 久久 成人 亚洲| 国产爽快片一区二区三区| 成人高潮视频无遮挡免费网站| 久久99精品国语久久久| 久久精品久久精品一区二区三区| 亚洲国产成人一精品久久久| 国产在线视频一区二区| av在线播放精品| 久久久国产一区二区| 精品熟女少妇av免费看| a级一级毛片免费在线观看| 18禁裸乳无遮挡免费网站照片| 天天躁日日操中文字幕| 国产精品爽爽va在线观看网站| 日韩大片免费观看网站| 久久久久久伊人网av| 麻豆国产97在线/欧美| 欧美国产精品一级二级三级 | 菩萨蛮人人尽说江南好唐韦庄| 高清日韩中文字幕在线| 黑人猛操日本美女一级片| 久久6这里有精品| 欧美高清性xxxxhd video| 欧美日韩一区二区视频在线观看视频在线| 成人国产av品久久久| 精品人妻一区二区三区麻豆| 国产精品99久久久久久久久| 午夜福利在线观看免费完整高清在| 精华霜和精华液先用哪个| av一本久久久久| 夜夜骑夜夜射夜夜干| 亚洲精品第二区| 中文字幕久久专区| av福利片在线观看| 国产精品偷伦视频观看了| 有码 亚洲区| 国产精品熟女久久久久浪| 国产乱来视频区| 中文字幕久久专区| 欧美精品一区二区大全| 中国三级夫妇交换| 建设人人有责人人尽责人人享有的 | 国产亚洲最大av| 色婷婷久久久亚洲欧美| 中文在线观看免费www的网站| 人妻制服诱惑在线中文字幕| 天天躁夜夜躁狠狠久久av| 日韩三级伦理在线观看| 99久久综合免费| 国产v大片淫在线免费观看| 91精品一卡2卡3卡4卡| 亚洲av欧美aⅴ国产| 国产成人91sexporn| 日本爱情动作片www.在线观看| 少妇 在线观看| 日韩电影二区| 亚洲欧美精品自产自拍| 视频区图区小说| 久久97久久精品| 直男gayav资源| 亚洲av二区三区四区| av免费观看日本| 久久久久久久精品精品| 国产日韩欧美亚洲二区| 波野结衣二区三区在线| 美女主播在线视频| 久久97久久精品| 欧美日韩亚洲高清精品| 黄色配什么色好看| 久久精品人妻少妇| 有码 亚洲区| 国产成人aa在线观看| a级一级毛片免费在线观看| 久久久久久九九精品二区国产| 亚州av有码| 最近手机中文字幕大全| 新久久久久国产一级毛片| 久久女婷五月综合色啪小说| 在线观看一区二区三区| 亚洲色图综合在线观看| 三级国产精品片| 蜜桃在线观看..| 日本与韩国留学比较| 国产精品女同一区二区软件| 青春草国产在线视频| 日韩,欧美,国产一区二区三区| 黑人高潮一二区| 中文字幕精品免费在线观看视频 | 国产爽快片一区二区三区| 亚洲色图av天堂| 亚洲国产精品专区欧美| 最后的刺客免费高清国语| 亚洲国产精品国产精品| 国产黄片美女视频| 26uuu在线亚洲综合色| 亚洲欧美日韩卡通动漫| 久久久久久人妻| 三级经典国产精品| 免费播放大片免费观看视频在线观看| 啦啦啦视频在线资源免费观看| 国产欧美日韩一区二区三区在线 | 久久精品久久精品一区二区三区| 午夜福利在线观看免费完整高清在| 99热网站在线观看| videossex国产| 日日啪夜夜爽| 成年美女黄网站色视频大全免费 | 亚洲精品乱码久久久v下载方式| 久久久久久久久久久免费av| 国产精品秋霞免费鲁丝片| 最近手机中文字幕大全| 大又大粗又爽又黄少妇毛片口| 中文天堂在线官网| 91久久精品国产一区二区三区| 一级黄片播放器| 国产伦在线观看视频一区| 最黄视频免费看| 国产高清有码在线观看视频| 狠狠精品人妻久久久久久综合| av福利片在线观看| 五月玫瑰六月丁香| 欧美精品亚洲一区二区| 久久av网站| 亚洲欧洲国产日韩| 美女cb高潮喷水在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲国产av新网站| 亚洲va在线va天堂va国产| 男女无遮挡免费网站观看| 欧美亚洲 丝袜 人妻 在线| 成人漫画全彩无遮挡| 欧美成人精品欧美一级黄| .国产精品久久| 高清av免费在线| 三级国产精品片| 国产白丝娇喘喷水9色精品| 亚洲国产av新网站| 国产淫片久久久久久久久| 在线播放无遮挡| 免费高清在线观看视频在线观看| 亚洲,一卡二卡三卡| 涩涩av久久男人的天堂| 久久热精品热| 国产高清有码在线观看视频| 新久久久久国产一级毛片| 男的添女的下面高潮视频| 久久人人爽av亚洲精品天堂 | av在线观看视频网站免费| 最近中文字幕高清免费大全6| 午夜免费男女啪啪视频观看| 成人黄色视频免费在线看| 人人妻人人添人人爽欧美一区卜 | 亚洲在久久综合| 制服丝袜香蕉在线| 99久久中文字幕三级久久日本| 日韩 亚洲 欧美在线| 国产伦在线观看视频一区| 菩萨蛮人人尽说江南好唐韦庄| av女优亚洲男人天堂| 亚洲性久久影院| 我的女老师完整版在线观看| 国产精品一区www在线观看| 精品少妇黑人巨大在线播放| 国国产精品蜜臀av免费| 美女中出高潮动态图| 国产一区二区三区av在线| 欧美日韩国产mv在线观看视频 | 草草在线视频免费看| 日韩亚洲欧美综合| 国产毛片在线视频| 最近最新中文字幕免费大全7| 久久久久国产精品人妻一区二区| 国产成人freesex在线| 久久99热这里只有精品18| 黄色视频在线播放观看不卡| 亚洲,欧美,日韩| 国产精品一及| 国产精品国产三级国产专区5o| 久久国产精品大桥未久av | 黑人高潮一二区| 欧美3d第一页| 日本-黄色视频高清免费观看| 亚洲精品国产色婷婷电影| 亚洲精品乱码久久久v下载方式| 国产爱豆传媒在线观看| 久久韩国三级中文字幕| 美女中出高潮动态图| 精品国产乱码久久久久久小说| 婷婷色综合www| 欧美日韩综合久久久久久| 狂野欧美激情性xxxx在线观看| 直男gayav资源| 免费高清在线观看视频在线观看| 国模一区二区三区四区视频| 免费少妇av软件| 国产亚洲5aaaaa淫片| 丰满少妇做爰视频| 成年女人在线观看亚洲视频| 日本午夜av视频| 在现免费观看毛片| 欧美激情极品国产一区二区三区 | 九色成人免费人妻av| 亚洲人成网站在线播| 男女边摸边吃奶| 天天躁日日操中文字幕| 97超碰精品成人国产| 各种免费的搞黄视频| 国产v大片淫在线免费观看| 午夜福利高清视频| 天天躁日日操中文字幕| 国产精品不卡视频一区二区| 高清日韩中文字幕在线| 妹子高潮喷水视频| 欧美日韩在线观看h| 亚洲精品日本国产第一区| 看十八女毛片水多多多| 97在线视频观看| 久久久a久久爽久久v久久| 观看av在线不卡| 97精品久久久久久久久久精品| 亚洲成人av在线免费| 美女xxoo啪啪120秒动态图| 老女人水多毛片| 亚洲天堂av无毛| 在线 av 中文字幕| 亚洲性久久影院| 国产亚洲午夜精品一区二区久久| 国产在线一区二区三区精| 自拍偷自拍亚洲精品老妇| 亚洲国产色片| 国产av精品麻豆| 日本爱情动作片www.在线观看| av视频免费观看在线观看| 97超视频在线观看视频| 亚洲av不卡在线观看| 日日啪夜夜撸| 97热精品久久久久久| 国产在线视频一区二区| 欧美少妇被猛烈插入视频| 国产日韩欧美在线精品| 中文字幕av成人在线电影| 能在线免费看毛片的网站| 亚洲经典国产精华液单| 国产亚洲精品久久久com| 日本黄大片高清| 国产精品一区www在线观看| 欧美三级亚洲精品| 王馨瑶露胸无遮挡在线观看| 亚洲,欧美,日韩| 国产精品爽爽va在线观看网站| 青春草视频在线免费观看| 少妇人妻久久综合中文| 晚上一个人看的免费电影| 久久精品人妻少妇| 女性被躁到高潮视频| 在线精品无人区一区二区三 | av在线老鸭窝| 色婷婷av一区二区三区视频| 精品99又大又爽又粗少妇毛片| 久久国产乱子免费精品| 国产精品一区www在线观看| 国产免费福利视频在线观看| 国产成人a∨麻豆精品| 日本黄色日本黄色录像| 欧美一区二区亚洲| 久久毛片免费看一区二区三区| 九色成人免费人妻av| 黄色欧美视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 99久久人妻综合| 国产精品国产三级专区第一集| 日韩 亚洲 欧美在线| 中文天堂在线官网| 国产淫片久久久久久久久| 永久网站在线| 久久精品国产亚洲网站| 深夜a级毛片| 国产一区有黄有色的免费视频| 亚洲综合色惰| 国产爽快片一区二区三区| 久久精品国产自在天天线| 国产精品久久久久久久久免| 日本av免费视频播放| 干丝袜人妻中文字幕| 中文欧美无线码| 超碰97精品在线观看| 亚洲真实伦在线观看| 99热全是精品| 在线观看免费日韩欧美大片 | 亚洲精品自拍成人| 午夜激情福利司机影院| 亚洲精品视频女| 麻豆乱淫一区二区| 欧美亚洲 丝袜 人妻 在线| 三级国产精品片| 亚洲欧美日韩无卡精品| 18禁裸乳无遮挡免费网站照片| 成人高潮视频无遮挡免费网站| 国产av国产精品国产| 亚洲最大成人中文| av国产精品久久久久影院| 岛国毛片在线播放| 欧美日韩视频高清一区二区三区二| 国产又色又爽无遮挡免| 99久久中文字幕三级久久日本| 国产色爽女视频免费观看| 亚洲欧洲国产日韩| 国产精品一二三区在线看| 日本黄大片高清| 国产精品99久久99久久久不卡 | 国内少妇人妻偷人精品xxx网站| 欧美精品亚洲一区二区|