• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructure and texture evolution of f ne-grained Mg-Zn-Y-Nd alloy micro-tubes for biodegradable vascular stents processed by hot extrusion and rapid cooling

    2020-12-18 11:31:40KikiGuoMengyoLiuJinfengWngYufengSunWeiqingLiShijieZhuLiguoWngShokngGun
    Journal of Magnesium and Alloys 2020年3期

    Kiki Guo,Mengyo Liu,Jinfeng Wng,b,Yufeng Sun,b,Weiqing Li,Shijie Zhu,b,c,?,Liguo Wng,b,c,Shokng Gun,b,c,?

    aSchool of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,Chinab Henan Key Laboratory of Advanced Magnesium Alloys,Zhengzhou 450002,Chinac Key Laboratory of Advanced Materials Processing & Mold Ministry of Education,Zhengzhou 450002,ChinaReceived 21 May 2019;received in revised form 17 July 2019;accepted 17 September 2019 Available online 6 August 2020

    Abstract Magnesium alloys have narrow available slip result from close-packed hexagonal structure that limit their processing properties.In the recent work,the Mg-2Zn-0.46Y-0.5Nd,as materials for degradable stents,was applied to produce as-extruded micro-tube with an outer diameter of 3.0mm and a wall thickness of 0.35mm by hot extrusion with an extrusion ratio of 105:1 at 653K and rapid cooling.The fin microstructure of the dynamic recrystallization of as-extruded micro-tube could be preserved by rapid cooling such as water-cooled,resulting in more excellent mechanical properties relative to air-cooled micro-tube.The addition of rare earth elements Y and Nd results in continuous dynamic recrystallization dominated the dynamic recrystallization mechanism.During the hot extrusion process,the activation of the non-basal slip system,especially the pyramidal〈c+a〉slip,could significantl weaken the texture strength,and the as-extruded micro-tube exhibits weak“RE”texture components〈01ˉ11〉‖ED and〈ˉ12ˉ11〉‖ED.Hence,the magnesium alloy micro-tube prepared by the rapid cooling has f ne microstructure and weak texture,which is favorable for further process and governance.? 2020 Published by Elsevier B.V.on behalf of Chongqing University.This is an open access article under the CC BY-NC-ND license.(http://creativecommons.org/licenses/by-nc-nd/4.0/)Peer review under responsibility of Chongqing University

    Keywords:Magnesium alloy;Micro-tube;Microstructure;Rapid cooling;Texture.

    1.Introduction

    In general,the traditional permanent vascular stent is made of 316L stainless steel,Ni-Ti and Co-Cr alloy materials,which have excellent corrosion resistance and high mechanical properties[1].However,this permanent stent requires secondary removal surgery to avoid intimal hyperplasia and thrombosis[1,2].

    In last decade,degradable stents have received much attention[3-5].Degradable stents are generally divided into two categories:(1)polymeric degradable stents[6,7];(2)metallic degradable stents,such as Mg-based[8-11],Fe-based[12-14]and Zn-based[15-17].Among these biodegradable metallic materials,magnesium and its alloys have attracted much attention due to their excellent degradability,biocompatibility and suitable bearing capacity[18-24].However,several limitations,like poor corrosion resistance and insufficien formability,restrict the development of Mg stents[25,26].Recent years,a number of published works investigated the corrosion behavior of Mg[27-29]and introduced many effective coating methods to improve the corrosion resistance of Mg[30-32].Besides the poor corrosion resistance,the insufficien formability of Mg,owing to its close-packed hexagonal structure,is another problem that have to be settled urgently.In order to solve this problem,several high performance alloys has been designed[33-35].In addition,a number of proper deformation methods have been applied for the Mg processing.This work will focus on the microstructure and texture evolution of Mg during the common used fabrication method for the vascular stents.

    In recent years,a series of major breakthroughs have been made in the processing methods of magnesium alloy microtubes,including dieless drawing[36,37],severe plastic deformation(SPD)combined with cold rolling or cold drawing[37-41],and fluid-mandre drawing[42],and so on[43,44].Furushima et al.[37]obtained fine-graine AZ31 alloy rod by equal-channel angular extrusion(ECAE),and then produced fine-graine magnesium alloy micro-tube by hot extrusion combined with dieless drawing.Ge et al.[38]also successfully fabricated ZM21 alloy micro-tube with outer diameter 4mm and inner diameter 2mm by equal-channel angular pressing(ECAP)and hot extrusion.Faraji et al.[39]successfully produced ultra-fin grained AZ91 alloy tube with a mean grain size of?500nm by multi-pass tubular channel angular pressing(TCAP)from as-cast AZ91 alloy.Amani et al.[41]obtained high-strength and high-ductility WE43 alloy micro-tube by a new method combined with cyclic expansion extrusion(CEE),direct extrusion and micro-tube extrusion.These ultrafine-graine alloy billets exhibit excellent ductility and formability at low-temperature due to the activation of the grain boundary slip,and then the ultrafine-graine microstructure was reserved during the production of micro-tube.

    Secondary phase plays an important role in the deformation.The fin and distributed uniform secondary phase can improve the formability of magnesium alloys.Minárik et al.[45]suggested that precipitates in Mg-4Y-3RE alloy have positive effect on the microstructure refinement And the dissolution of secondary phase at high temperature result in rapid increase of the grain size[46].Li et al.[47]observed that nanoscale secondary phase exists in ultrafine-graine Mg-2Zn-2Gd alloy with high strength and high ductility.Similarly,the texture component and texture intensity have a significan impact on the mechanical properties of the magnesium alloy micro-tubes as well.Hanada et al.[43]controlled the crystallographic orientation of the tube by changing the deformation amount in the cold drawing.Zhang et al.[44]reported that the type and proportion of twins have a significan effect on the properties of AZ31 alloy micro-tube.Liu et al.[48]successfully fabricated JDBM,AZ31 and WE43 alloy micro-tube with outer diameter of 3mm and wall thickness of 0.18mm by hot extrusion,cold rolling and cold drawing.And they show different texture component,texture intensity and fracture mechanism.Guo et al.[49]found a big difference in microstructure and texture between the fla and the oval regions of extruded magnesium alloy flats-val tube.In our recent work,hot extrusion and rapid cooling were employed to fabricate the fine-graine Mg-Zn-Y-Nd alloy micro-tube with excellent mechanical properties and corrosion resistance[50].However,among these published papers,the texture evolution and dynamic recrystallization mechanism from the billet to the as-extruded micro-tube have rarely been reported.

    In this study,the microstructure and texture evolution of fine-graine Mg-2Zn-0.46Y-0.5Nd alloy micro-tubes were evaluated.The effect of microstructure and texture on properties was discussed in detail.Besides,the dynamic recrystallization mechanism during the deformation process was also proposed.We believe that the obtained results will helpful for the optimization of the fabrication process of Mg micro-tubes.

    2.Experimental

    2.1.Sample preparation

    As-cast Mg-2Zn-0.46Y-0.5Nd(wt.%)alloy billet was preextruded.The extruded bar was machined into cylindrical billets with a diameter of 20mm and a height of 10mm by wire cutting.Then,solution treatment was implemented at 723K for 3 days in order to weaken the second particles distributed along the extrusion direction like continuous line.The center of the solid solution billet was drilled into a small hole of 3mm in diameter.The treated samples were extruded into micro-tube(outer diameter of 3.0mm,wall thickness of 0.35mm)at 653K-673K with the extrusion ratio of 105:1.During the extrude process,the extruded tube was directly cooled into the water tank.In addition,the remaining billet after pre-extruded tube was also cooled by water.Samples were cut from the extruded micro-tube or pre-extruded tube for the further analysis.

    2.2.Microstructure analysis

    For microstructure analysis,the samples of as-extruded,assolution treatment and as-extruded micro-tubes were cut from the longitudinal section and cross section.These specimens were ground with #200,#400,#600 and #800 SiC papers,polished with 0.25μm diamond polishing agent.And then chemically etched by a solution of 2.1g picric acid,10mL acetic acid,70mL ethanol,and 20mL distilled water.The microstructure was observed by an optical microscope(OM;Leica DM 4000M).

    Electron backscatter diffraction(EBSD)tests were performed on the remaining billet of pre-extruded 10cm microtube and as-extruded micro-tube by a Focused ion beam fiel emission scanning double beam electron microscopy(FIB;Zeiss Auriga).Specimens for EBSD test were electrolytic polished by a solution of 8.5ml perchloric acid(70%,99.999%metals basis)and 191.5ml ethanol,with a voltage of 15V and an electrolysis time of 12s.EBSD data analysis uses HKL technology.

    2.3.Mechanical property test

    The tensile test was carried out by a universal testing machine(Shimadzu AG-IC)at a displacement rate of 1mm/min at room temperature.The Specimens for tensile test with a total length of 80mm and a gauge length of 25mm were prepared according to the national standard(GB/T 228.1-2010).Magnesium alloy rods with a diameter 2.28mm were inserted into both end of the micro-tube to prevent the tensile chuck from damaging the tensile specimen.The tensile fracture morphology was observed by a scanning electron microscope(SEM;FEI Quanta 200).

    Fig.1.Microstructure of cross section and longitudinal section of different billets:(a)and(b)pre-extruded billet;(c)and(d)solution treated billet.

    3.Results

    3.1.Microstructure observation

    Fig.1(a)-(d)shows the microstructure of the as-extrusion billet and as-solution billet from cross and longitudinal section.It can be observed that grains of as-extrusion are equiaxed but not uniform enough.The grain size distributes in the range of 2.2-16.1μm with the average grain size of 6.7μm.The grain size is significantl decreased in the region where the second particles are concentrated,indicating that the second particles can reduce the mobility of the grain boundary(GB)and hinder the recrystallization grain growth,as shown in Fig.1(b).The second phases of the as-extrusion billet exhibit a continuous streamline distribution along the extrusion direction,mainly distributed in the GB and the crystal.After solid solution at 723K for 3 days,part of the second phases were dissolved into the matrix,but some big second phases with semi-continuous streamline distribution still could be found,as shown in Fig.1(d).

    Fig.2 depicts the microstructure of the air-cooled and water-cooled as-extruded micro-tubes from cross and longitudinal section.The completely dynamic recrystallized grains with uniformly distributed second particles were observed instead of the continuous and semi-continuous second par-ticles.The average grain size of the micro-tube increases with the extrusion temperature promoted,as shown in Fig.3.Water-cooled micro-tube has an average grain size reduced from 6.7-11.8μm to 3.2-5.6μm relative to air-cooled microtube,indicated that grain gradually grows in air-cooled.Fig.4 shows a columnar statistical diagram of the grain distribution of extruded micro-tubes.The grain size difference of air-cooled and water-cooled micro-tube is 4.7μm and 15.6μm,respectively.Water-cooled micro-tube displays a more uniform and refine grain distribution.

    Table 1Tensile mechanical properties of micro-tubes.

    3.2.Tensile mechanical properties

    Fig.5 shows the stress-strain curves of air-cooled and water-cooled as-extruded micro-tubes.For comparison,the yield strength(YS)at 0.2% residual strain,ultimate tensile strength(UTS),and breaking elongation(ε)are summarized in Table 1.The values of YS,UTS andεfor air-cooled micro-tubes were 129.3±5.0MPa,193.6±4.1MPa and 9.6±1.2%,respectively.However,the mechanical properties of water-cooled micro-tubes were significantl improved,which were increased to 139.4±8.5MPa,249.4±9.2MPa and 21.1±0.5%,respectively.

    Fig.2.Microstructure of different micro-tubes along the longitudinal section:(a)air-cooling at 653K;(b)air-cooling at 673K;(c)water-cooling at 653K;(d)water-cooling at 673K.

    Fig.3.Histogram of average grain size of extruded micro-tubes.

    3.3.Tensile fracture surface

    Fig.6(a)-(d)shows the SEM images of the tensile fracture surface of extruded micro-tube.It can be found that there are significan differences in the way the two pipes are broken.Air-cooled micro-tube exhibits the mixed fracture characteristics,as shown in Fig.6(a)and(c).A large number of cleavage steps,cleavage planes and a small number of shallow dimples could be observed.However,for the water-cooled micro-tube,it shows the ductile fracture characteristics.A large number of dimples are distributed throughout the fracture surface,and the deep dimples respond to high breaking elongation for water-cooled micro-tube.

    3.4.EBSD analysis for extruded micro-tubes

    Fig.7(a)-(d)shows the inverse pole figur maps(IPF maps)and inverse pole figur(IPFs)on the longitudinal section of the air-cooled and water-cooled extruded micro-tubes in the extrusion direction.The maximum texture intensities are 2.90 and 2.66,respectively,which are much lower than the extruded micro-tube with the texture intensity of 8.97 in our previous study[50].On the one hand,the change of the dynamic recrystallization(DRX)mechanism caused by the addition of rare earth(RE)elements weaken the sharp texture in the non-RE magnesium alloy.On the other hand,elevated temperature and a large extrusion ratio result in the activation of non-basal slip.In general,extruded magnesium alloy containing non-RE elements tend to form two stable texture components ofIn this work,the water-cooled micro-tube retains the fin uniform DRX microstructure,as shown in Fig.2.Fig.7(d)is the IPF of the water-cooled micro-tube,shown a texture component of〈01ˉ11〉‖ED,and it also can be seen a slightly weaker texture component at〈ˉ12ˉ11〉.The dispersed texture peaks are caused by the activation of pyramidal〈c+a〉with similar Schmid factors at the same time.These special texture components,dubbed“RE texture,”associate with texture weakening[53-56].For air-cooled micro-tube,the texture component of〈ˉ12ˉ11〉‖ED disappears,while the texture component of〈01ˉ11〉‖ED is relatively enhanced,and a weak one appears atas shown in Fig.7(c).It is probably due to the slight difference of grain with different orientations in growth rate.

    Fig.4.Histogram of grain size distribution of hot extruded micro-tubes at 653K(a)air-cooling;(b)water-cooling.

    Fig.5.Stress-strain curve of hot extruded micro-tubes.

    4.Discussion

    4.1.Microstructure and mechanical properties

    The microstructure evolution from billet to as-extruded micro-tube,shown in Figs.1,2 and 8,revealing the uniform and fin regularity of microstructure in micro-tube processing.The grain size of the micro-tube grows up by air-cooled,while the completely DRX microstructure with fin uniform grains was retained by water-cooled.Generally,the mechanical properties of the fine-graine micro-tube processed by water-cooled are better,exhibiting higher strength and ductility as shown in Fig.5.In addition,the texture type and texture intensity also have effect on the mechanical properties of micro-tube.According to the EBSD analysis,the watercooled extruded micro-tube has a weaker texture intensity of 2.66,showing“RE”texture components,which are consistent with the excellent ductility.The Schmid factor of the watercooled micro-tube is 2.7,which is very close to the Schmid factor of the air-cooled micro-tube,as shown in Fig.9.Here,the high strength for the water-cooled extruded micro-tube is considered to be mainly due to the influenc of grain refinement The estimation of YS of a polycrystalline material based on grain size reduction is usually predicted according to Hall-Petch equation[57]:

    Whereσy,σo,kanddis the YS,the YS of single crystal,the material constant and the average grain size,respectively.The water-cooled micro-tube has an average grain size reduced from 6.7-11.8μm to 3.2-5.6μm relative to air-cooled micro-tube.The yield strength of the corresponding microtube increased from 129.3±5.0MPa to 139.4±8.5MPa,and the tensile strength increased from 193.6±4.1MPa to 249.4±9.2MPa.Therefore,it can be concluded that the reduction in grain size plays a dominant role in the strength increase.

    4.2.Dynamic recrystallization mechanism

    Generally,dynamic recrystallization is mainly classifie into discontinuous dynamic recrystallization(DDRX)and continuous dynamic recrystallization(CDRX).For DDRX,the original grain boundary frst bulge,and sub-grain take place once the radius reaches the critical nucleation radius,transformed into high-angle grain boundaries(HAGBs)by absorbing dislocations[58].CDRX is the formation of the progressive accumulation of dislocations into low-angle grain boundaries(LAGBs),and then these LAGBs are gradually transformed into HAGBs by absorbing dislocations and rotation.Magnesium alloy typically undergo DDRX at temperatures above 523K.However,Beer et al.[59]observed the evidence of the existence of CDRX when the AZ31 alloy was hot pressed at 623K with a strain of 0.6.Similarly,Wu et al.[60]reported that CDRX also exists in the hot compression study of GW83K alloy at 673K.

    Fig.6.SEM images of the tensile fracture surfaces of(a)air-cooling micro-tube;(b)water-cooling micro-tube;(c)is magnifie image of(a);(d)is magnifie image of(b).

    Fig.7.EBSD analysis along the extrusion direction of different hot extruded micro-tubes:IPF maps of(a)air-cooling tube and(b)water-cooling tube;IPFs of(c)air-cooling tube and(d)water-cooling tube.

    Fig.8.IPF maps along the extrusion direction of the remaining billet after pre-extruded 10cm at different position:(a)position A;(b)position B;(c)position C;(d)position D.

    Fig.9.Schmid Factor of extruded microtubes:(a)water-cooling;(b)air-cooling.

    Fig.10.EBSD analysis revealing evidence of CDRX.(a)the cumulative misorientation along the dotted line from A to the grain boundary in Fig.8(a);(b)the SEM image;(c)the counts of Y and Nd along line1;(d)the counts of Y and Nd along line2.

    In this work,the sample of the remaining billet after preextruded 10cm tube at 653K was observed by EBSD analysis.Fig.8(a)-(d)shows the IPF maps of the position A,B,C and D,respectively.A dotted line was drawn from the center to the grain boundary of a parent grain,as shown in Fig.8(a).The cumulative misorientation increasing along the dotted line reveals that CDRX dominates dynamic recrystallization mechanism during hot extrusion micro-tube,as shown in Fig.10.This is consistent with the results of previous works[59-62].It may be due to the addition of Nd,which are segregated at the grain boundary and retard the mobility of the grain boundary[63].This is supported by corresponding SEM image,as shown in Fig.10(b).Along the line1,Nd is segregated at the grain boundary.The grain boundary bulging mechanism of DDRX is retarded.However,the Y has no obviously change,indicating that Y plays a different role in DRX.The addition of Y leads to the activation of〈c+a〉slip,which may be another reason for the changing of DRX mechanism.The weak“RE”texture components of as-extruded micro-tubes could prove this point,as shown in Fig.7(c)and(d).Hence,the CDRX mechanism plays a dominate role in the hot extrusion process.

    4.3.Texture evolution

    Fig.11.IPFs along the extrusion direction of the remaining billet after pre-extruded 10cm tube:(a)position C;(b)position D in Fig.8.

    The IPF maps of each position on the remaining billet after pre-extruded 10cm tube are indicated in Fig.8(a)-(d).It can be clearly seen that fin dynamic recrystallized grains have begun to appear at the parent grain boundary at position A.The fraction of recrystallization is rising with the increasing strain.When the billet is extruded into the micro-tube,the original deformed microstructure has been completely dynamic recrystallized,as shown in Fig.8(c)and(d),which is consistent with the microstructure of water-cooled micro-tube.Interestingly,the color of the recrystallized grains is different from that of the original deformed grains,and exhibits more colorful,indicating that the orientation of the dynamic recrystallized grains is significantl different.It is proposed that the change in the dynamic recrystallization mechanism and the addition of the RE elements Y and Nd are responsible for the significan effect.Several papers[53-56,61,63-65]have reported that Y,Ce,La,Nd,Zr and Gd as texture modifier for magnesium alloy significantl affect the texture component and intensity.Sandl?bes et al.[66]reported that the addition of Y can increase the activity of compression twinning,secondary twinning and pyramidal〈c+a〉slip.These additional deformation modes result in more uniform deformation with weaker basal texture.Cottam et al.[61]and Agnew et al.[67]also found that various deformation modes were activated in Mg-Y alloys.Hantzsche et al.[68]reported that the texture weakening with the increasing content of RE elements in magnesium alloy is connected to the solid solubility of respective element,existing a critical value for the significan texture weakening.

    Fig.11(a)and(b)is the IPF of the position C and position D,respectively.In Fig.11(a),it can be seen that the strongest texture peak is concentrated at〈0001〉,and a diffused texture peak between at〈01ˉ10〉and〈ˉ12ˉ10〉also can be observed,indicating that basal slip,prismatic slips and pyramidal slips are all activated during the hot extrusion process,which greatly improves the formability of magnesium alloy.Besides the texture distributed between〈01ˉ10〉and〈ˉ12ˉ10〉,the texture component of〈01ˉ11〉‖ED can also be found in the IPF of position D,indicating that the pyramidal slip〈c+a〉is also activated during the extrusion process.With the disappearing of〈0001〉‖ED texture,multiple deformation modes dominate the deformation with a weak texture.

    5.Conclusions

    The fine-graine Mg-2Zn-0.46Y-0.5Nd alloy micro-tube with an outer diameter of 3.0mm and a wall thickness of 0.35mm was successfully fabricated by hot extrusion and rapid cooling at 653K with an extrusion ratio of 105:1.Further investigation was carried out on the properties of the extrude micro-tube and dynamic recrystallization mechanism during hot extrusion process with the main conclusions as follows:

    (1)The fin and uniform microstructure of completely dynamic recrystallization could be achieved by rapid cooling.The average grain size of the micro-tube is decreased from 6.7-11.8μm to 3.2-5.6μm,exhibiting excellent mechanical properties and weak texture components.

    (2)The additions of Y and Nd retard the mobility of the grain boundary and activate the non-basal slip,resulting in a change on the dynamic recrystallization mechanism during hot extrusion micro-tube.CDRX dominates the recrystallization mechanism.

    (3)The as-extruded micro-tube mainly shows two weak“RE”texture components of〈01ˉ11〉‖ED and〈ˉ12ˉ11〉‖ED.Compared with the air-cooled micro-tube,the texture intensity of the water cooled micro-tube is further decreased.

    Declaration of Competing Interest

    The authors declare that they have no known competing financia interests or personal relationships that could have appeared to influenc the work reported in this paper.

    Acknowledgments

    The authors are grateful for the financia support of Key Projects of the Joint Fund of the National Natural Science Foundation of China(U1804251),the National Key Research and Development Program of China(2018YFC1106703,2017YFB0702504 and 2016YFC1102403).

    国产精品亚洲av一区麻豆| 亚洲国产精品sss在线观看| 亚洲精品色激情综合| 91av网站免费观看| 久久精品国产99精品国产亚洲性色| 麻豆一二三区av精品| 夜夜看夜夜爽夜夜摸| 亚洲国产精品sss在线观看| 精品久久久久久久毛片微露脸| a级毛片在线看网站| 日韩一卡2卡3卡4卡2021年| 免费在线观看日本一区| 精品国产亚洲在线| 岛国视频午夜一区免费看| 成人午夜高清在线视频 | 欧美国产精品va在线观看不卡| 91字幕亚洲| 波多野结衣高清作品| 一级片免费观看大全| 国产v大片淫在线免费观看| 99久久99久久久精品蜜桃| 每晚都被弄得嗷嗷叫到高潮| 色综合站精品国产| 免费在线观看亚洲国产| 国产成+人综合+亚洲专区| www.自偷自拍.com| 国产精品日韩av在线免费观看| 国产欧美日韩一区二区精品| 精品久久久久久久人妻蜜臀av| 老汉色∧v一级毛片| 亚洲精品色激情综合| 日韩高清综合在线| 淫妇啪啪啪对白视频| 国产精品1区2区在线观看.| 亚洲第一av免费看| 久久中文字幕人妻熟女| 99久久综合精品五月天人人| 国产精品国产高清国产av| 欧美又色又爽又黄视频| 一个人免费在线观看的高清视频| 最新在线观看一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜两性在线视频| www.999成人在线观看| 禁无遮挡网站| 丁香六月欧美| 2021天堂中文幕一二区在线观 | 成人国产综合亚洲| 国产又色又爽无遮挡免费看| 免费看十八禁软件| 人人澡人人妻人| 夜夜看夜夜爽夜夜摸| 欧美激情 高清一区二区三区| 欧美成人一区二区免费高清观看 | 久久精品国产99精品国产亚洲性色| 国产伦一二天堂av在线观看| 一a级毛片在线观看| 狠狠狠狠99中文字幕| 国产单亲对白刺激| 成人国产综合亚洲| 岛国视频午夜一区免费看| 成人手机av| 最新美女视频免费是黄的| 一级黄色大片毛片| 久久99热这里只有精品18| 啪啪无遮挡十八禁网站| 91大片在线观看| 在线观看免费视频日本深夜| 一二三四社区在线视频社区8| 青草久久国产| 啦啦啦韩国在线观看视频| 12—13女人毛片做爰片一| 免费高清视频大片| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久人妻蜜臀av| 韩国精品一区二区三区| 日本免费a在线| 少妇的丰满在线观看| 国产精品乱码一区二三区的特点| 日韩欧美一区视频在线观看| 欧美黑人巨大hd| 国产久久久一区二区三区| 亚洲欧美精品综合一区二区三区| 国产成年人精品一区二区| 国产色视频综合| 黄色a级毛片大全视频| 老汉色∧v一级毛片| 亚洲精品国产精品久久久不卡| 操出白浆在线播放| 老司机深夜福利视频在线观看| 美女免费视频网站| 久久久久国内视频| 亚洲 欧美一区二区三区| 天天躁夜夜躁狠狠躁躁| 51午夜福利影视在线观看| 老司机福利观看| 色老头精品视频在线观看| 久久精品国产亚洲av香蕉五月| 精品久久久久久久末码| 日韩大尺度精品在线看网址| 天天躁夜夜躁狠狠躁躁| 免费看美女性在线毛片视频| 国产片内射在线| 日本黄色视频三级网站网址| 亚洲无线在线观看| 国产单亲对白刺激| 久久香蕉精品热| 亚洲av成人av| 真人一进一出gif抽搐免费| 日韩大尺度精品在线看网址| 国产精品影院久久| 一个人观看的视频www高清免费观看 | 大型黄色视频在线免费观看| 亚洲精品在线观看二区| 国产亚洲精品久久久久5区| 日韩一卡2卡3卡4卡2021年| 中文字幕精品免费在线观看视频| 丰满的人妻完整版| 日本一区二区免费在线视频| 淫妇啪啪啪对白视频| 欧美精品亚洲一区二区| 久久天堂一区二区三区四区| 99国产综合亚洲精品| 国产国语露脸激情在线看| 黑人操中国人逼视频| 精品久久久久久,| 18禁美女被吸乳视频| 国产精品久久电影中文字幕| 激情在线观看视频在线高清| 亚洲国产欧洲综合997久久, | 每晚都被弄得嗷嗷叫到高潮| 国产高清有码在线观看视频 | 男男h啪啪无遮挡| 2021天堂中文幕一二区在线观 | 亚洲成人久久性| 国产亚洲欧美在线一区二区| 亚洲成a人片在线一区二区| 婷婷亚洲欧美| 哪里可以看免费的av片| 国产97色在线日韩免费| 日本黄色视频三级网站网址| 中文字幕另类日韩欧美亚洲嫩草| 黑人欧美特级aaaaaa片| 成人av一区二区三区在线看| 欧美性猛交╳xxx乱大交人| 婷婷丁香在线五月| 亚洲成人免费电影在线观看| 嫩草影院精品99| 欧美成人免费av一区二区三区| 午夜激情av网站| 亚洲,欧美精品.| 一进一出抽搐动态| 无限看片的www在线观看| 中文字幕人成人乱码亚洲影| 制服诱惑二区| 又黄又爽又免费观看的视频| АⅤ资源中文在线天堂| 色综合欧美亚洲国产小说| 国产精品1区2区在线观看.| 国产精品一区二区三区四区久久 | 亚洲五月色婷婷综合| 午夜福利一区二区在线看| 亚洲黑人精品在线| 免费在线观看日本一区| 国产精品香港三级国产av潘金莲| 久9热在线精品视频| 国产成+人综合+亚洲专区| 国产免费av片在线观看野外av| 在线观看日韩欧美| 日本熟妇午夜| 黄色视频不卡| 日本三级黄在线观看| 亚洲一区二区三区色噜噜| 成在线人永久免费视频| 最近最新中文字幕大全电影3 | 国产熟女午夜一区二区三区| 岛国在线观看网站| 久久香蕉国产精品| 欧美国产日韩亚洲一区| 2021天堂中文幕一二区在线观 | 97碰自拍视频| 久久久久九九精品影院| 午夜日韩欧美国产| 免费电影在线观看免费观看| 在线看三级毛片| 少妇 在线观看| 国产三级黄色录像| 中文在线观看免费www的网站 | 精品久久久久久久毛片微露脸| 欧美另类亚洲清纯唯美| 麻豆久久精品国产亚洲av| 国产精品av久久久久免费| 久久伊人香网站| 国产精品综合久久久久久久免费| 母亲3免费完整高清在线观看| 精品国产乱子伦一区二区三区| 久久国产乱子伦精品免费另类| 久久精品成人免费网站| 亚洲精品一区av在线观看| 国产精品自产拍在线观看55亚洲| 后天国语完整版免费观看| 香蕉丝袜av| 桃色一区二区三区在线观看| 成人国产综合亚洲| 美女高潮喷水抽搐中文字幕| 女警被强在线播放| 欧美日本视频| 日本五十路高清| 国内毛片毛片毛片毛片毛片| 日本一区二区免费在线视频| 国产亚洲精品av在线| www日本黄色视频网| 久久亚洲真实| 欧美大码av| 久久久久亚洲av毛片大全| 国内毛片毛片毛片毛片毛片| 亚洲男人的天堂狠狠| 久久国产精品影院| 少妇被粗大的猛进出69影院| 色精品久久人妻99蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 曰老女人黄片| 国产蜜桃级精品一区二区三区| 久久精品成人免费网站| 国产久久久一区二区三区| 99国产精品一区二区三区| 国产一区在线观看成人免费| 亚洲国产精品成人综合色| www国产在线视频色| 亚洲午夜精品一区,二区,三区| 国产又色又爽无遮挡免费看| 麻豆av在线久日| 高清在线国产一区| 女同久久另类99精品国产91| 日韩成人在线观看一区二区三区| 欧美亚洲日本最大视频资源| 日韩 欧美 亚洲 中文字幕| 大香蕉久久成人网| 国产激情偷乱视频一区二区| 伊人久久大香线蕉亚洲五| 嫩草影院精品99| 中出人妻视频一区二区| 美国免费a级毛片| 欧美在线黄色| 国产高清有码在线观看视频 | 91国产中文字幕| 国产高清videossex| 国产视频一区二区在线看| 久久精品影院6| 夜夜夜夜夜久久久久| 国产精品1区2区在线观看.| 亚洲第一青青草原| 国产亚洲av嫩草精品影院| 国产又黄又爽又无遮挡在线| 一级黄色大片毛片| 99精品欧美一区二区三区四区| 成人手机av| 久久久久久久久中文| 大型黄色视频在线免费观看| 日韩视频一区二区在线观看| 亚洲人成伊人成综合网2020| 国产免费男女视频| 巨乳人妻的诱惑在线观看| 亚洲欧美一区二区三区黑人| 熟女少妇亚洲综合色aaa.| 日韩国内少妇激情av| 久久精品aⅴ一区二区三区四区| 国产成人影院久久av| 亚洲在线自拍视频| 人人妻,人人澡人人爽秒播| 亚洲aⅴ乱码一区二区在线播放 | 国产三级在线视频| 国产国语露脸激情在线看| 日韩中文字幕欧美一区二区| 午夜福利在线观看吧| 亚洲一区二区三区不卡视频| 午夜福利免费观看在线| 中文字幕av电影在线播放| av欧美777| 很黄的视频免费| 久久婷婷成人综合色麻豆| 99久久无色码亚洲精品果冻| 老司机深夜福利视频在线观看| 色综合站精品国产| 91老司机精品| 亚洲,欧美精品.| 欧美中文综合在线视频| 国产又爽黄色视频| 国产97色在线日韩免费| av中文乱码字幕在线| 精品欧美国产一区二区三| 日本熟妇午夜| 久久中文字幕人妻熟女| 在线观看舔阴道视频| 久久久水蜜桃国产精品网| 91大片在线观看| av欧美777| 国产精品亚洲av一区麻豆| 亚洲全国av大片| 亚洲成av人片免费观看| 一级a爱视频在线免费观看| 欧美日韩乱码在线| 国产免费男女视频| 免费女性裸体啪啪无遮挡网站| 成人精品一区二区免费| videosex国产| 99国产精品99久久久久| 亚洲av日韩精品久久久久久密| 50天的宝宝边吃奶边哭怎么回事| 日本精品一区二区三区蜜桃| 观看免费一级毛片| av欧美777| 可以免费在线观看a视频的电影网站| 日韩欧美国产一区二区入口| 精品无人区乱码1区二区| 999精品在线视频| 日韩大码丰满熟妇| 国产视频一区二区在线看| 啪啪无遮挡十八禁网站| 国产黄片美女视频| 两个人视频免费观看高清| 女人爽到高潮嗷嗷叫在线视频| 国产午夜精品久久久久久| 久久国产精品人妻蜜桃| 宅男免费午夜| 国产在线精品亚洲第一网站| 欧美黑人欧美精品刺激| 久久久久久久久免费视频了| 国产成年人精品一区二区| 欧美大码av| 日韩欧美一区二区三区在线观看| 成人18禁在线播放| 1024香蕉在线观看| 91大片在线观看| 在线永久观看黄色视频| 亚洲天堂国产精品一区在线| 日韩欧美三级三区| 黄片播放在线免费| 十八禁网站免费在线| xxx96com| 天堂√8在线中文| 夜夜躁狠狠躁天天躁| 久久久久久久久久黄片| 91老司机精品| 日韩三级视频一区二区三区| 看片在线看免费视频| 亚洲人成网站在线播放欧美日韩| 中亚洲国语对白在线视频| 女性被躁到高潮视频| 日本免费a在线| 成人永久免费在线观看视频| 免费观看人在逋| 亚洲国产日韩欧美精品在线观看 | 午夜激情av网站| 国产成人精品久久二区二区91| 国产精品亚洲美女久久久| 天天添夜夜摸| 国产亚洲精品av在线| or卡值多少钱| 欧美乱码精品一区二区三区| 国产伦人伦偷精品视频| 天天一区二区日本电影三级| 亚洲九九香蕉| 两个人看的免费小视频| 久久人人精品亚洲av| 最近在线观看免费完整版| 亚洲国产精品合色在线| 亚洲av成人av| 精品日产1卡2卡| 久久久久久人人人人人| 久久久久久久精品吃奶| 久久久久久久久免费视频了| 色在线成人网| 久久久久九九精品影院| 国产伦一二天堂av在线观看| 亚洲av美国av| 久久久久国产一级毛片高清牌| 精品一区二区三区视频在线观看免费| 黑丝袜美女国产一区| 亚洲人成网站高清观看| 国产精品久久久久久亚洲av鲁大| 中亚洲国语对白在线视频| 日韩大尺度精品在线看网址| 欧美日本亚洲视频在线播放| 久久久久国内视频| 国产亚洲精品一区二区www| 在线免费观看的www视频| x7x7x7水蜜桃| 精品国产超薄肉色丝袜足j| 亚洲精品中文字幕一二三四区| 久久青草综合色| 久久精品aⅴ一区二区三区四区| 欧美一级毛片孕妇| 久久精品国产亚洲av香蕉五月| 少妇的丰满在线观看| 欧美日本亚洲视频在线播放| 成熟少妇高潮喷水视频| 午夜福利欧美成人| 黄色丝袜av网址大全| 欧美黑人精品巨大| 中文字幕最新亚洲高清| 日本精品一区二区三区蜜桃| 麻豆一二三区av精品| 亚洲人成77777在线视频| 久久久久免费精品人妻一区二区 | 麻豆一二三区av精品| 日韩视频一区二区在线观看| 久久久久久久久中文| 欧美性猛交黑人性爽| 搡老熟女国产l中国老女人| 国产精品国产高清国产av| 俄罗斯特黄特色一大片| 亚洲最大成人中文| 一边摸一边抽搐一进一小说| 亚洲成人久久性| 无人区码免费观看不卡| 亚洲精品一区av在线观看| 十分钟在线观看高清视频www| 18禁黄网站禁片免费观看直播| 99热这里只有精品一区 | 侵犯人妻中文字幕一二三四区| 亚洲精品久久国产高清桃花| 亚洲成人久久性| 精品无人区乱码1区二区| 精品久久久久久,| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美一区视频在线观看| 国产成人av激情在线播放| 亚洲中文av在线| 好看av亚洲va欧美ⅴa在| 男女之事视频高清在线观看| 亚洲专区国产一区二区| 久久久国产成人免费| 亚洲av成人不卡在线观看播放网| 91麻豆av在线| 欧美午夜高清在线| 99精品在免费线老司机午夜| 精品国产乱码久久久久久男人| 国产精品国产高清国产av| 又大又爽又粗| 91字幕亚洲| 国产单亲对白刺激| 精品国产美女av久久久久小说| 精品久久久久久久久久免费视频| 国产精品爽爽va在线观看网站 | 久久久国产精品麻豆| av电影中文网址| 免费人成视频x8x8入口观看| 999久久久精品免费观看国产| 免费在线观看黄色视频的| 人人妻人人澡欧美一区二区| 欧美另类亚洲清纯唯美| 一本精品99久久精品77| 亚洲久久久国产精品| 亚洲中文日韩欧美视频| 国产成人精品久久二区二区91| 精品不卡国产一区二区三区| 别揉我奶头~嗯~啊~动态视频| av中文乱码字幕在线| 一卡2卡三卡四卡精品乱码亚洲| 宅男免费午夜| 在线国产一区二区在线| 国产成人精品久久二区二区91| 久久香蕉精品热| 精品熟女少妇八av免费久了| 美女大奶头视频| 精品久久久久久久久久久久久 | 九色国产91popny在线| 美女高潮到喷水免费观看| 一本大道久久a久久精品| 日本 欧美在线| 老司机靠b影院| aaaaa片日本免费| 日韩 欧美 亚洲 中文字幕| 观看免费一级毛片| 天天添夜夜摸| 变态另类成人亚洲欧美熟女| 国产熟女午夜一区二区三区| 美女大奶头视频| 最近最新中文字幕大全电影3 | 亚洲欧美日韩高清在线视频| 听说在线观看完整版免费高清| www日本在线高清视频| 亚洲五月婷婷丁香| 亚洲真实伦在线观看| √禁漫天堂资源中文www| 国产欧美日韩精品亚洲av| 国产伦一二天堂av在线观看| 日韩大码丰满熟妇| 欧美又色又爽又黄视频| 日本在线视频免费播放| av有码第一页| 手机成人av网站| 国产欧美日韩一区二区精品| 97人妻精品一区二区三区麻豆 | 国产主播在线观看一区二区| 99精品在免费线老司机午夜| 日日干狠狠操夜夜爽| 动漫黄色视频在线观看| aaaaa片日本免费| 久久精品国产亚洲av香蕉五月| 国产激情欧美一区二区| 国产成人精品无人区| 亚洲 欧美 日韩 在线 免费| 国产97色在线日韩免费| 国产精品,欧美在线| 波多野结衣巨乳人妻| 人成视频在线观看免费观看| 一进一出抽搐gif免费好疼| 老司机午夜福利在线观看视频| 99热只有精品国产| 好看av亚洲va欧美ⅴa在| 久久久久国内视频| av天堂在线播放| 国产片内射在线| 淫秽高清视频在线观看| 变态另类成人亚洲欧美熟女| 久久久精品国产亚洲av高清涩受| 黄色女人牲交| 国产亚洲精品综合一区在线观看 | 黄色丝袜av网址大全| 亚洲av日韩精品久久久久久密| 手机成人av网站| 欧美日韩一级在线毛片| 国产不卡一卡二| 九色国产91popny在线| 久久中文字幕一级| 亚洲人成网站在线播放欧美日韩| 97超级碰碰碰精品色视频在线观看| 午夜福利一区二区在线看| 男男h啪啪无遮挡| 亚洲精华国产精华精| www.自偷自拍.com| 亚洲国产精品久久男人天堂| 淫秽高清视频在线观看| 日本成人三级电影网站| 免费在线观看亚洲国产| 国产91精品成人一区二区三区| 91九色精品人成在线观看| 日韩高清综合在线| 91成人精品电影| 最新美女视频免费是黄的| 欧美日韩亚洲综合一区二区三区_| 日韩中文字幕欧美一区二区| 亚洲成国产人片在线观看| 国产成年人精品一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 精品熟女少妇八av免费久了| av欧美777| 一级毛片高清免费大全| 久久精品91无色码中文字幕| 亚洲真实伦在线观看| 九色国产91popny在线| 日本免费a在线| 国产成人欧美| 成人亚洲精品av一区二区| 美女高潮到喷水免费观看| av免费在线观看网站| 免费在线观看成人毛片| 国产真人三级小视频在线观看| 日韩欧美在线二视频| 18禁国产床啪视频网站| 日韩大尺度精品在线看网址| 一二三四社区在线视频社区8| 成人精品一区二区免费| 精品久久久久久久毛片微露脸| 亚洲国产欧美网| 国产精品精品国产色婷婷| 欧美性长视频在线观看| 99国产精品一区二区蜜桃av| 亚洲精品一卡2卡三卡4卡5卡| 大香蕉久久成人网| 国产爱豆传媒在线观看 | 亚洲精品国产一区二区精华液| 国产一卡二卡三卡精品| 一级毛片女人18水好多| 成在线人永久免费视频| 亚洲午夜精品一区,二区,三区| 一本久久中文字幕| ponron亚洲| 国产单亲对白刺激| 男女做爰动态图高潮gif福利片| 91大片在线观看| 久久久久久久午夜电影| 日韩国内少妇激情av| 亚洲精品久久国产高清桃花| 国产一区二区三区视频了| 久久久精品国产亚洲av高清涩受| 精华霜和精华液先用哪个| 日韩欧美国产在线观看| 国产午夜精品久久久久久| 无限看片的www在线观看| 18美女黄网站色大片免费观看| av天堂在线播放| 亚洲人成网站高清观看| 人成视频在线观看免费观看| 99国产极品粉嫩在线观看| 国产精品一区二区免费欧美| 亚洲一码二码三码区别大吗| 亚洲全国av大片| 欧美大码av| 大型av网站在线播放| 此物有八面人人有两片| 亚洲在线自拍视频| 欧美黑人巨大hd| 亚洲成人精品中文字幕电影| 人妻丰满熟妇av一区二区三区| 亚洲国产欧美一区二区综合| 亚洲真实伦在线观看| 看免费av毛片| 久久精品91无色码中文字幕| 亚洲欧美日韩无卡精品| 波多野结衣巨乳人妻| 亚洲成av人片免费观看| 一区二区日韩欧美中文字幕|