• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic tensile properties and microstructural evolution of extruded EW75 magnesium alloy at high strain rates

    2020-12-18 11:31:06JinhngYuBoSongDabiaoXiaXunZngYuaningHuangNorbrtHortPingliMaoZhngLiu
    Journal of Magnesium and Alloys 2020年3期

    Jinhng Yu,Bo Song,Dabiao Xia,Xun Zng,Yuaning Huang,Norbrt Hort,Pingli Mao,Zhng Liu

    a School of Mechanical Technique,Wuxi Institute of Technology,Wuxi 214121,China

    b School of Materials and Energy,Southwest University,Chongqing 404100,China

    c National Engineering Research Center for Magnesium Alloys,Chongqing University,Chongqing 400044,China

    dMagIC-Magnesium Innovation Centre,Helmholtz-Zentrum Geesthacht,Geesthacht 21502,Germany

    eSchool of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China

    Received 27 June 2019;received in revised form 21 January 2020;accepted 12 February 2020 Available online 28 May 2020

    Abstract The dynamic tensile properties and microstructural evolution of an extruded EW75 magnesium alloy deformed at ambient temperature and different high strain rates(from 1000 to 3000 s-1)along extrusion direction(ED)were investigated by Split Hopkinson Tension Bar(SHTB).The corresponding deformation mechanisms,texture evolution and microstructure changes were analyzed by optical microscope(OM),electron backscatter diffraction(EBSD)and transmission electron microscope(TEM).The results show that the extruded EW75 magnesium alloy along ED exhibits a conventional positive strain rate sensitivity that the dynamic f ow stresses increase with increasing strain rate.Texture measurements show that after dynamic tension,the initial weak texture of extruded EW75 magnesium alloy tansforms to a relatively strong<10-10>//ED texture with increasing strain rates.The microstructural analysis demonstrates that dislocation motion are main deformatin mode to accommodate dynamic tensile deformation at high strain rates.In addition,the interactions of dislocation-dislocation and dislocation-second phase lead to the increase of f ow stress and strain hardening with increasing strain rate.? 2020 Published by Elsevier B.V.on behalf of Chongqing University.This is an open access article under the CC BY-NC-ND license.(http://creativecommons.org/licenses/by-nc-nd/4.0/)Peer review under responsibility of Chongqing University

    Keywords:EW75 magnesium alloy;High strain rates;Split Hopkinson test;Texture;Microstructure.

    1.Introduction

    Magnesium and its alloys are desirable structural materials for automotive,aerospace,defense and other energy intensive industries due to their low density(1.7g/cm)and high specifi strength[1-4].Automobile component is the one of the main applications for magnesium alloys to meet the stringent requirements for light weight design[5].In the last decades significan works have been performed in the investigation on mechanical properties of magnesium alloys,but most them have been focused under quasi-static loading[6-9].During service,magnesium alloys may be subjected to rigorous loading such as shock,impact and vibration,where high strain rates are commonly achieved.When the speed of vehicle crash reaches 60 km/h,the strain rate of the material exceeds 103s?1[10].The understanding on mechanical behavior at high strain rate is also very crucial to improve and optimize the manufacturing processes of magnesium alloys such as high-speed machining[11-12],high speed rolling[13-18]and high-speed extrusion[19-20].

    Fig.1.Extruded EW75 magnesium alloy bar and its specimen:(a)Square bar;(b)Schematic of dynamic specimen.

    Dynamic loading at high strain rates could exhibit remarkable influence on mechanical behavior and deformation mechanisms of materials comparing with quasi-static conditions.Previous researches on the dynamic tensile properties of Mg alloys mainly focus on Mg-Al alloys[10,21-27].Feng et al.[10]studied the dynamic tensile properties of AZ31B alloy with strain rates ranging from 700 s?1to 3×103s?1.They found that compared with the quasi static tension,the tensile strength and fracture elongation at high strain rates is larger.Zhou et al.[21]characterized the dynamic tensile properties of twin-roll cast-rolled and hot-rolled AZ31B alloy with strain rates ranging from 10?3s?1to 375 s?1.The results show that the yield strength and ultimate tensile strength monotonically increase with increasing strain rate,while the strain hardening exponent proportionally decreases with increasing strain rate.Kurukuri et al.[22-23]researched the dynamic tensile properties of a commercial rolled AZ31B alloy varying at the strain rates ranging from 10?3to 103s?1.Their results demonstrate that the dynamic tensile loading induced a positive strain rate sensitivity.

    The deformation mechanism of Mg alloys under dynamic loading was also investigated.Mao et al.[24]characterized the dynamic tensile properties of an extruded AM30 magnesium alloy with strain rates ranging from 102s?1to 103s?1.The results show that the dependence of yield strength on strain rate in tension along extrusion direction is considerably pronounced.Ulacia et al.[25-26]analyzed the dynamic tensile properties of AZ31 alloy sheet with strain rates varying between 10?3and 103s?1.During tension tests along the in-plane directions,the prismatic slip is the main deformation mechanism,leading to alignment of the<10-10>directions with the tensile axis and to a spread of the basal pole toward the in-plane direction perpendicular to the tensile axis.Kurukuri et al.[22]found that the yield strength with tensile loading along rolling direction is controlled by non-basal slip and strongly rate sensitive.While the yield strength under transversal direction tensile loading is controlled by twinning and rate insensitive.Magnesium alloys have a positive strain rate sensitivity and mainly behave with a non-basal slip under high strain rates.As known,Mg-RE(rare earths)alloys have been attracted more and more interesting owing to their high-performances,including high strength at high temperature,excellent creep resistance and good corrosion resistance,etc.However,the previous studies still focused on the dynamic deformation mechanism of non-rare earth(RE)containing magnesium alloys.High strain rate deformation of Mg-RE alloys has received relatively few attentions.Additionally,RE crystallographic texture could be formed in such alloys after thermomechanical processing through alloying RE elements[27],which can influenc the deformation mechanism largely.

    This paper is aimed at investigating the dynamic tensile deformation mechanism and microstructural evolution of extruded EW75 magnesium alloy at high strain rates.Split-Hopkinson tension bar(SHTB)apparatus,a very useful and widely used tool to study the dynamic behavior of various engineering materials[28-30],was utilized to characterize the dynamic tensile properties of an extruded rare earth magnesium alloy EW75 at ambient temperature.The detailed microstructure and texture evolution were analyzed by optical microscope(OM),electron back-scatter diffraction(EBSD)and transmission electron microscope(TEM).

    2.Experimental procedures

    A square bar of extruded EW75(Mg-5.0Y-7.0Gd-1.3Nd-0.5Zr)alloy was used as shown in Fig.1(a)which was provided by Beijing General Research Institute for Non-ferrous Metals.After being heat treated at 535 °C for 24 hours,the extrusion was carried out at 400 °C and with an extrusion rate of 1~2 m/min to produce square bars with a size of 17 mm×20 mm.The corresponding extrusion ratio is 20.Specimens for dynamic tensile tests were machined using electrical discharge machining(EDM)from square bars along the extrusion direction(ED).The size of dynamic tensile specimens is shown in Fig.1(b).

    The Split-Hopkinson Tensile Bar(SHTB)was utilized to perform dynamic tension experiments at ambient temperature with strain rates from 1000 to 3000 s?1.SHTB system is shown in Fig.2.During the dynamic tensile test,the specimen was put between the incident bar and transmitter bar.Lubrication was used to reduce friction effects.Standard GB/T 30069.1-2013(Metallic Materials-Tensile testing at high strain rates-Part 1:Elastic-bar-type systems)was used for dynamic tensile testing.Three specimens were tested for each data point.True stress,true strain and strain rate of each impact can be calculated according to the one-dimensional stress wave theory.More details of experimental device and methods have been described in the literatures[31-32].

    Fig.2.Schematic diagram of SHTB system.

    Metallographic microstructural analysis was conducted using a Leica DM/LM optical microscope(OM).The OM samples were firs polished to 2000 grit,followed by polishing with a 0.5 mm diamond paste.The samples were then chemically etched for 30~40 s with a mixed solution that consisted of 4 g picric acid((NO2)3C6H2OH),2mL nitric acid(HNO3),25 mL acetic acid(CH3COOH),50 mL anhydrous ethanol(CH3CH2OH),60 mL ethylene glycol(CH2OH)2and 25 mL water(H2O).

    Electron Back Scattered Diffraction(EBSD)analysis was conducted using the EDAX-OIMTMsoftware in a Zeiss Ultra 55TMFEG-SEM scanning electron microscope to measure the microstructure and texture evolution.The EBSD samples were firs grinded with 4000 SiC paper,then mechanically polished with a 0.05μm silica suspension and fina electro-chemically polishing for 30 s at 33V using the AC2TMcommercial electrolyte.The measure area was~30000μm with a step of 0.3μm for each sample.

    Transmission electron microscope(TEM)analysis was conducted with Electron Microscope JEM-2100.The TEM samples were cut along the tensile plane of the test specimens using a cutting machine.These sections were ground to a thickness of 50~60μm using SiC paper,with 3 mm disks punched from the foils.The foils were electropolished using a twin-jet polisher to perforation using a solution of 3 vol%perchloric acid in ethanol.The samples were then cleaned by ion milling for 1 hour,with liquid nitrogen applied during the milling.

    3.Results and discussion

    3.1.Dynamic tensile properties

    The dynamic tensile true stress-true strain curves of extruded EW75 alloy at ambient temperature with different strain rates are shown in Fig.3(a).The dynamic tensile true stress-true strain curves are all concave-down shape which are like those observed at low strain rates[33-34].Such a shape may indicate that the dominated deformation mechanism is slip in tension[35].The dynamic deformation mechanisms based on the microstructural evolution will be discussed in the following section.

    In dynamic tests,it is difficul to measure the true yield stress,since at the early stage of deformation the strain rate increases gradually[21].σ0.005is used in this study as approximation to the dynamic yield property.Variations of the true stress atε=0.005(σ0.005)and dynamic maximum f ow stress(σmax)of EW75 alloy are shown in Fig.3(b).The extruded EW75 alloy obviously exhibits a conventional positive strain rate sensitivity in dynamic tension.σmaxincreases with increasing the strain rate resulting in an increase in energy absorption[36].As shown in Fig.3(b),σ0.005is nearly unchanged when the strain rate varies.At the strain rate of 3010 s?1,the extruded EW75 alloy has the relative highest dynamic ultimate tensile strength(DUTS)with a value of 271 MPa.

    Both the strain hardening rate and strain rate sensitivity were analyzed as a function of true strain to further understand the dynamic tensile properties of extruded EW75 alloy,as shown in Fig.4.The strain hardening rate(dσ/dε)is define as the change rate of true stress vs true strain[37].It is calculated by the numerical differentiation of the true stress-true strain data in Fig.3(a).The strain hardening rate(dσ/dε)of extruded EW75 alloy at dynamic tension is shown in Fig.4(a).It is indicated that the strain hardening rate is rate insensitive in the strain rate range from 1406 to 3010 s?1.All strain hardening rate curves decrease rapidly from the very beginning of deformation withε<0.01 due to the occurrence of dynamic adiabatic softening.Subsequently they reduce gradually withε>0.01 due to plastic deformation and dislocation multiplication.

    The strain rate sensitivity(β)can be determined as follows[37-38]:

    Whereσis the f ow stress,˙εis the strain rate.βvalues were calculated at different true strains with each 2.5% increment in dynamic tension up to onset of plastic instability[38].The strain rate sensitivities of extruded EW75 alloy are shown in Fig.4(b).They increase with increasing the plastic strain,but decrease with increasing the strain rate.It was reported that the strain rate sensitivity for pure Mg and Mg-Al alloy increased with increasing deformation temperature[39].The dynamic adiabatic softening becomes stronger when strain rate is higher,resulting in a decrease in the strain rate sensitivity.

    Fig.3.(a)Dynamic tensile true stress-true strain curves of extruded EW75 alloy along ED at different strain rates;(b)variations of the true stress atε=0.005(σ0.005)and maximum f ow stress(σmax)with the strain rate for extruded EW75 alloy.

    Fig.4.(a)Strain hardening rate and(b)strain rate sensitivity of extruded EW75 alloy along ED at ambient temperature and different strain rates.

    3.2.Microstructure and texture evolution

    Microstructural evolution analysis can help to investigate the dynamic tensile deformation mechanisms for the extruded EW75 alloy.The initial microstructure along ED is shown in Fig.5.It is composed of two kinds of grains.The large grains elongate along ED and the small equiaxed grains distribute among the former,with average sizes of 10~15μm and 1~2 μm,respectively.

    It is well known that slipping and twinning are the predominant deformation mechanisms for magnesium and its alloys.The dominant slip systems are{0001}<11-20>basal slip system,{10-10}<11-20>prismatic slip system and{11-22}<11-23>pyramidal slip system[40-41].The basal and prismatic slip systems have the<a>type Burger's vector.They are not able to accommodate general plastic deformations along c-axis.The pyramidal slip system has Burger'svector containing both<c>and<a>components,so it can accommodate plastic deformations along c-axis.The activation of a specifi slip system is dependent on deformation temperature and crystallographic texture[26].Three types of deformation twinning in magnesium alloys are{10-12}tensile,{10-11}compression and{10-11}-{10-12}secondary twinning[41].Tensile twinning supplies extension along c-axis,whereas compression and double twinning supply contraction along c-axis.To analyze the dynamic tensile deformation mechanism,EBSD technique was used to investigate the microstructure and texture.Fig.6 shows the inverse pole figur(IPF)maps and pole figure of extruded EW75 alloy before and after dynamic tension.The true strains after dynamic tension at the strain rate of 1406 s?1,2187 s?1and 3010 s?1are 4.3%,4.5% and 4.7%,respectively,as shown in Fig.3(a).The grain colors correspond to their orientations.Unlike quasi-static deformation,dynamic deformation heat is hard to be released in a very short time like an adiabatic condition.After certain plastic deformation,deformation localization occurs on the microscopic level.Thus,the grain size in dynamic tensile tested specimens has changed compared to that in the initial specimens as observed.

    Fig.5.Initial microstructure of extruded EW75 magnesium alloy along ED.

    Fig.6.IPF maps,inverse pole f gure,{0001}pole f gure and{10-10}pole f gure of extruded EW75 alloy:(a)initial microstructures;(b)after dynamic tension at the strain rate of 1406 s?1;(c)after dynamic tension at the strain rate of 2187 s?1;(d)after dynamic tension at the strain rate of 3010 s?1.

    {0001}pole figure show that all EW75 alloys have fibe texture components,as shown in Fig.6.The extruded EW75 alloy has a weak initial texture and the c-axis of texture mainly gathers at 60°~90° away from ED direction.The extrusion texture of EW75 alloy is very different from that of AZ31 alloy.It can be mainly attributed to the addition of Y,Gd and Nd,which changes the balance of the various deformation mechanisms and dynamic recrystallization behavior[42-45].For extruded EW75 alloys,the angle between c-axis of basal pole peak and ED direction(e.g.,loading direction)is approx.60 degree.A main texture component is<7-2-57>//ED texture in extruded EW75 alloy.Dynamic tension causes the c-axis of texture rotate towards the direction perpendicular to the ED.The extruded EW75 alloy has a favorable orientation for the activation of basal slip when stretched along the ED.This will responsible for the formation of c-axis⊥ED texture[46-48].Both inverse pole figure and{10-10}pole figure indicate that a strong<10-10>//ED texture is formed after dynamic tension,as shown in Fig.6(b)-(d).Formation of<10-10>//ED texture during tension along the ED is usually attributed to the activity of prismatic slip[35,43,49].It indicates that both basal slip and prismatic slip have large contribution for dynamic tension.Moreover,dynamic tension can also enhance the fibe texture intensity.

    A very small number of twins are also observed in some grains for all samples,as shown in Fig.6.To identify the type and distribution of deformation twins in the extruded EW75 alloy along ED,the EBSD orientation maps(OM)before and after dynamic tension are shown Fig.7.The{10-12}twinboundary(86°±5°<1-210>),{10-11}twin boundary(56°±5°<1-210>)and{10-11}-{10-12}secondary twin boundary(38°±5°<1-210>are highlighted by blue,red and yellow lines,respectively.The max deviation is for identifying twin boundaries is±5.Fig.7 shows all samples contains small number of{10ˉ12}tensile twins,and thus a distinct peak at a misorientation angle of about 86° can be found in all samples.Based on EBSD data,the fraction of{10-12}twin boundaries(fTTB)is also calculated and also shown in Fig.7.It indicates that dynamic tension has little influenc on the amount of{10-12}twins.The amount of{10-12}twins is still very low for all samples.This is different from previous research on dynamic deformation of AZ31 alloys.Previous investigations on AZ31 have revealed that the{10-12}tensile twins were developed at the early stage of deformation[23,25-26].Additionally,Dudamell et al.[50]reported that increasing the strain rate(~103s?1)enhanced the activation of{10ˉ12}tensile twinning dramatically.

    Fig.7.EBSD orientation maps and corresponding misorientation distribution profile of extruded EW75 alloy:(a)initial microstructures;(b)after dynamic tension at the strain rate of 1406 s?1;(c)after dynamic tension at the strain rate of 2187 s?1;(d)after dynamic tension at the strain rate of 3010 s?1.The fraction of tensile twin boundaries(fTTB)is the ratio of the length of tensile twin boundaries to the length of high-angle grain boundaries(>15°).

    Fig.8.KAM maps of extruded EW75 alloy:(a)initial microstructure;(b)after dynamic tension at the strain rate of 1406 s?1;(c)after dynamic tension at the strain rate of 2187 s?1;(d)after dynamic tension at the strain rate of 3010 s?1.

    Schmid factor is one parameter to be considered when the deformation modes are predicted.Besides,the critical resolved shear stress(CRSS)should also be concerned.It is generally accepted that at ambient temperature CRSSbasal<CRSStensiletwinning<CRSSprismatic<CRSSpyramidal<CRSScompressiontwinning<CRSSsecondarytwinning[41,51].Normally,basal slip and tensile twinning are the most easily activated mechanisms during deformation.This can explain why only{10-12}twins are easily activated.However,present results indicate that the contribution of tensile twinning to plastic deformation of extruded EW75 alloy is not so significant Firstly,the weak texture in extruded EW75 alloyis conducive to the activation of the base slip,as shown in Fig.6a.Secondarily,it has been reported that the addition of rare earth elements will greatly increase the active stress of{10-12}twinning[42,44,49,52].Thirdly,the CRSS for prismatic and pyramidal(non-basal)slips decrease with the increase of temperature[13].The dynamic deformation process is assumed to be adiabatic,with most of the strain energy(about 90%)transformed into heat.The deformation induced temperature rise(ΔT)is due to both rapid mechanical deformation and lack of time to dissipate heat through the material[37].These are the reasons for the low amount of{10-12}twins in deformed EW75 alloys.Thus,dislocation slip will be the main deformation mechanism to accommodate plastic strains at such high strain rates for extruded EW75 alloy.

    3.3.Analysis of dislocation substructure

    To evaluate the density of dislocation,Kernel average misorientation(KAM)is calculated by the average misorientation.The distributions of KAM value and average KAM values are illustrated in Fig.8.As a rule,Kernel average misorientation is high(>1°)in the deformed grains due to high density of dislocation.In contrast,Kernel average misorientation is low(<1°)in the recrystallized grains[53].In Fig.8,the blue color shows the lower dislocation density areas and the green color shows the higher dislocation density areas.It is clear that before dynamic tension,most grains have a high density of dislocations as shown in Fig.8(a).

    With increasing the strain rate,low dislocation density(the blue color)can be clearly observed throughout the dynamic tensile microstructures as shown from Fig.8(b)to Fig.8(d).It results in that the average KAM value is reduced by dynamic tension.The evolution of dislocation density indicates the occurrence of dynamic recovery during dynamic tension.The lower dislocation density is the consequence of dynamic recovery caused by adiabatic process during high strain rate tensile deformation.The dynamic recovery is related with the thermal effect via dynamic deformation.The temperature rise(ΔT)can be determined as follows[54]:

    Whereρand Cp are the density and the specifi heat capacity at constant pressure of EW75 alloy which are 1820 kg/m3and 9830 J/(kg·K),respectively.ηis the proportion of work converted to heat which is 0.9.TheΔT results after dynamic tension at the strain rate of 1406 s?1,2187 s?1and 3010 s?1are 37 K,42 K and 53 K,respectively.AlthoughΔT results indicate that they are relatively small to affect the mechanical properties,they are very significan in some regions that undergo a strong degree of deformation with the localization process[55].Therefore,the activity of non-basal slip systems and dynamic recovery may be enhanced by dynamic tension.The occurrence of recovery can also explain that the strain hardening rate reduce rapidly due to the dynamic adiabatic softening in Fig.4(a).

    TEM analysis was conducted on the extruded EW75 magnesium alloy specimens after dynamic tension at high strain rates to gain further insight into the deformation mechanism.Bright fiel TEM micrographs for the specimens after the dynamic tension along ED at the strain rate of 3010 s?1are shown in Fig.9.High-density dislocations were produced and tangled with each other after dynamic tension as shown in Fig.9(a).Although the dislocation density is difficul to be accurately measured because of serious dislocation-dislocation entanglement,the dislocation density of Mg and its alloys after high strain rate deformation was estimated to be around 1014m?2[37].Pan et al.[56]suggest that the high-density dislocations are non-basal dislocations which results in the positive strain rate sensitivity of ultimate tensile strength.In the present work,no compressive twins were observed.Thus,the very high strain hardening rates in Fig.4 are as a result of non-basal dislocation activation and the formation of dislocation tangles by dislocation-dislocation interactions.

    A typical dislocation cell formed due to dislocationdislocation interactions is shown in Fig.9(b).Normally,the dislocation cell structure is difficul to form and to be observed at low strain rate[45].However,high-density dislocations could be produced at high strain rate(>103s?1).The enhanced dislocation-dislocation interactions result in the formation of the dislocation cell as an evidence of dynamic recovery.It is also observed that there are pile-ups of dislocations around a second phase and the second phase acted as a barrier to dislocation motion in Fig.9(c).

    The selected area diffraction pattern(SAED)of the second phase shown in Fig.9(d)is a typical fin particle identifie as the Mg5RE phase[57].The TEM results indicate that the interactions of dislocation-dislocation and dislocation-second phase lead to that both the fl w stress and strain hardening increase with increasing strain rate.

    4.Conclusions

    In this work,the dynamic tensile properties and microstructural evolution of extruded EW75 alloy at high strain rates were investigated.The main conclusions are summarized as follows:

    1.Extruded EW75 alloy exhibits a conventional positive strain rate sensitivity in dynamic tension.At the strain rate of 3010 s?1,it has the relative highest dynamic ultimate tensile strength under the present testing strain rates,which is 271 MPa.

    2.Dynamic tension enhances the fibe texture intensity in the extruded EW75 alloy.After dynamic tension,a strong<10-10>//ED texture is formed.

    3.Only{10-12}tensile twins are mainly observed in the extruded EW75 alloy during dynamic tension process.However,dynamic tension cannot enhance the activity of{10-12}twinning.Both basal slip and non-basal slip are required to accommodate the dynamic tensile deformation at high strain rates.4.The interactions of dislocation-dislocation and dislocationsecond phase result in the increase in the fl w stress and strain hardening.

    Acknowledgements

    The authors would like to thank Professor Kui Zhang,Beijing General Research Institute for Nonferrous Metal,for providing EW75 magnesium alloy for this work and acknowledge the funding from the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.17KJD430006),Scientifi and Technological Innovation Team Foundation of Wuxi Institute of Technology(No.30593118001)and Scientifi Research Project of Wuxi Institute of Technology(No.ZK201901).The help of EBSD experiment provided by Yukyung Shin from Helmholtz-Zentrum Geesthacht is gratefully acknowledged.

    欧美97在线视频| 国产免费一区二区三区四区乱码| 久久精品国产亚洲av高清一级| 日日啪夜夜爽| 午夜91福利影院| 亚洲一区中文字幕在线| 欧美激情极品国产一区二区三区| 18禁观看日本| 在线观看免费高清a一片| 少妇人妻 视频| 午夜福利免费观看在线| av在线老鸭窝| 狂野欧美激情性bbbbbb| 欧美日韩视频高清一区二区三区二| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机影院毛片| 欧美变态另类bdsm刘玥| 秋霞在线观看毛片| 国产成人免费无遮挡视频| 亚洲美女视频黄频| 久久国产精品大桥未久av| 日韩视频在线欧美| 老司机靠b影院| 亚洲av电影在线观看一区二区三区| 日本午夜av视频| 久久久久久久久久久免费av| 一级爰片在线观看| 丰满饥渴人妻一区二区三| 青春草亚洲视频在线观看| 国产极品粉嫩免费观看在线| 在线天堂最新版资源| 男女无遮挡免费网站观看| 热re99久久精品国产66热6| 91精品伊人久久大香线蕉| 亚洲国产中文字幕在线视频| 两性夫妻黄色片| 精品国产露脸久久av麻豆| 美女午夜性视频免费| 久久久久久免费高清国产稀缺| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产中文字幕在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 肉色欧美久久久久久久蜜桃| 亚洲,欧美精品.| www.自偷自拍.com| 欧美日韩精品网址| 国产av国产精品国产| 最新在线观看一区二区三区 | 国产一区亚洲一区在线观看| 一级片免费观看大全| 亚洲人成网站在线观看播放| 久久久久久人妻| 男人爽女人下面视频在线观看| 青青草视频在线视频观看| 亚洲av成人精品一二三区| 亚洲精品一二三| 国产精品久久久久久精品古装| 91精品伊人久久大香线蕉| 国产激情久久老熟女| 日韩伦理黄色片| 狠狠婷婷综合久久久久久88av| 蜜桃在线观看..| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美中文字幕日韩二区| 国产99久久九九免费精品| 亚洲成国产人片在线观看| 91国产中文字幕| 亚洲精品aⅴ在线观看| 国产一区二区三区综合在线观看| 一个人免费看片子| 亚洲精品成人av观看孕妇| 欧美乱码精品一区二区三区| 91精品伊人久久大香线蕉| 中文精品一卡2卡3卡4更新| 欧美人与性动交α欧美精品济南到| 欧美在线一区亚洲| 老汉色av国产亚洲站长工具| 巨乳人妻的诱惑在线观看| 超碰97精品在线观看| 我要看黄色一级片免费的| 久久影院123| 亚洲av男天堂| 亚洲精品久久久久久婷婷小说| 大香蕉久久网| 少妇精品久久久久久久| 亚洲av综合色区一区| 欧美国产精品va在线观看不卡| 久久久久久久久免费视频了| 国产精品欧美亚洲77777| 精品国产乱码久久久久久小说| 久久久亚洲精品成人影院| 免费观看人在逋| 国产成人午夜福利电影在线观看| 少妇精品久久久久久久| 中文字幕亚洲精品专区| 久久人人爽人人片av| netflix在线观看网站| 人人澡人人妻人| 一边亲一边摸免费视频| 亚洲美女视频黄频| 国产极品天堂在线| 黄频高清免费视频| 日韩熟女老妇一区二区性免费视频| 赤兔流量卡办理| 在线亚洲精品国产二区图片欧美| 久热爱精品视频在线9| 夜夜骑夜夜射夜夜干| 最近中文字幕高清免费大全6| 最新在线观看一区二区三区 | 蜜桃国产av成人99| 亚洲精品日本国产第一区| 中文字幕av电影在线播放| 多毛熟女@视频| 国产97色在线日韩免费| 别揉我奶头~嗯~啊~动态视频 | 王馨瑶露胸无遮挡在线观看| 久久人人爽av亚洲精品天堂| 18禁裸乳无遮挡动漫免费视频| 日韩一卡2卡3卡4卡2021年| 男的添女的下面高潮视频| 男女下面插进去视频免费观看| 国产精品av久久久久免费| 欧美黑人精品巨大| av在线老鸭窝| 999久久久国产精品视频| 建设人人有责人人尽责人人享有的| 亚洲综合精品二区| 国产成人av激情在线播放| 国产精品免费大片| 十分钟在线观看高清视频www| 久久天躁狠狠躁夜夜2o2o | 亚洲精华国产精华液的使用体验| 国产免费又黄又爽又色| 亚洲av在线观看美女高潮| 精品国产超薄肉色丝袜足j| 一级毛片我不卡| 亚洲av电影在线观看一区二区三区| 亚洲成国产人片在线观看| 操出白浆在线播放| 欧美日韩成人在线一区二区| 中文字幕人妻丝袜制服| 国产一区二区激情短视频 | 色吧在线观看| 69精品国产乱码久久久| 欧美亚洲 丝袜 人妻 在线| 国产女主播在线喷水免费视频网站| 老汉色av国产亚洲站长工具| 999久久久国产精品视频| 青春草国产在线视频| 在线 av 中文字幕| 免费在线观看视频国产中文字幕亚洲 | 最新的欧美精品一区二区| 男女之事视频高清在线观看 | 国产成人免费无遮挡视频| av国产精品久久久久影院| 久久99热这里只频精品6学生| 中国国产av一级| 国产日韩一区二区三区精品不卡| 99热网站在线观看| 最近最新中文字幕免费大全7| 日本一区二区免费在线视频| 久久性视频一级片| 亚洲av国产av综合av卡| 国产伦人伦偷精品视频| av有码第一页| 成人免费观看视频高清| 亚洲中文av在线| 亚洲国产日韩一区二区| 国产成人精品福利久久| 成年人免费黄色播放视频| 亚洲精品美女久久久久99蜜臀 | 国产精品久久久av美女十八| 亚洲av成人不卡在线观看播放网 | 人成视频在线观看免费观看| 国产成人精品久久二区二区91 | 日韩精品有码人妻一区| 日韩不卡一区二区三区视频在线| 欧美人与性动交α欧美精品济南到| av在线观看视频网站免费| 亚洲精品,欧美精品| 中文欧美无线码| 亚洲精品自拍成人| 欧美精品一区二区免费开放| av免费观看日本| 久久久久精品久久久久真实原创| 国产熟女午夜一区二区三区| 最黄视频免费看| 亚洲av成人精品一二三区| 精品久久久久久电影网| 亚洲国产av影院在线观看| 最黄视频免费看| 别揉我奶头~嗯~啊~动态视频 | 美女福利国产在线| 热re99久久国产66热| 99九九在线精品视频| 国产免费一区二区三区四区乱码| 无限看片的www在线观看| 国产在视频线精品| www日本在线高清视频| 亚洲欧美精品综合一区二区三区| 在线免费观看不下载黄p国产| 国产精品一区二区精品视频观看| 麻豆乱淫一区二区| 999精品在线视频| 秋霞伦理黄片| 人成视频在线观看免费观看| 欧美精品av麻豆av| 久热爱精品视频在线9| 国产精品香港三级国产av潘金莲 | www.av在线官网国产| 一区二区av电影网| xxxhd国产人妻xxx| 熟妇人妻不卡中文字幕| 国产高清不卡午夜福利| 最新在线观看一区二区三区 | 黄色怎么调成土黄色| 建设人人有责人人尽责人人享有的| 久久久久久免费高清国产稀缺| 亚洲熟女毛片儿| 丝袜在线中文字幕| 极品少妇高潮喷水抽搐| 80岁老熟妇乱子伦牲交| 亚洲,欧美精品.| 亚洲久久久国产精品| 老司机影院毛片| 黄色视频不卡| 最近最新中文字幕大全免费视频 | 日韩,欧美,国产一区二区三区| 熟女av电影| 五月开心婷婷网| 老鸭窝网址在线观看| 老司机深夜福利视频在线观看 | 午夜免费观看性视频| a级片在线免费高清观看视频| 99re6热这里在线精品视频| 男女床上黄色一级片免费看| av有码第一页| 纵有疾风起免费观看全集完整版| 国产精品 国内视频| 少妇被粗大猛烈的视频| 一本—道久久a久久精品蜜桃钙片| 午夜久久久在线观看| 校园人妻丝袜中文字幕| 精品卡一卡二卡四卡免费| 亚洲欧美清纯卡通| 亚洲欧美激情在线| 丝袜在线中文字幕| 99久久人妻综合| 国产午夜精品一二区理论片| 日韩,欧美,国产一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 男女边摸边吃奶| bbb黄色大片| 一级毛片电影观看| 国精品久久久久久国模美| 亚洲综合精品二区| 亚洲精品成人av观看孕妇| 中文字幕亚洲精品专区| 国产xxxxx性猛交| 国产在线视频一区二区| 欧美激情极品国产一区二区三区| av.在线天堂| 两性夫妻黄色片| 国产一区亚洲一区在线观看| 国产精品一区二区在线不卡| 热re99久久国产66热| 亚洲精品第二区| 十八禁高潮呻吟视频| 久久久欧美国产精品| av有码第一页| 天天操日日干夜夜撸| 在线观看免费午夜福利视频| 狂野欧美激情性xxxx| 免费观看性生交大片5| 夜夜骑夜夜射夜夜干| 最近的中文字幕免费完整| 嫩草影视91久久| 亚洲欧美成人精品一区二区| 成人免费观看视频高清| 日韩av不卡免费在线播放| 日本一区二区免费在线视频| 久久综合国产亚洲精品| 99久久99久久久精品蜜桃| 久久人人爽人人片av| 精品亚洲成国产av| 欧美老熟妇乱子伦牲交| 99精国产麻豆久久婷婷| 亚洲色图 男人天堂 中文字幕| 爱豆传媒免费全集在线观看| 国产一区二区 视频在线| 欧美人与性动交α欧美软件| 啦啦啦啦在线视频资源| 巨乳人妻的诱惑在线观看| 亚洲欧美成人精品一区二区| 人体艺术视频欧美日本| 香蕉国产在线看| 亚洲精品国产一区二区精华液| 久久97久久精品| www日本在线高清视频| 亚洲专区中文字幕在线 | 在线观看免费日韩欧美大片| 99久久精品国产亚洲精品| 国产人伦9x9x在线观看| 热re99久久国产66热| 国产精品一区二区精品视频观看| 亚洲美女搞黄在线观看| 久久久精品免费免费高清| 天天添夜夜摸| 亚洲色图 男人天堂 中文字幕| 少妇的丰满在线观看| 啦啦啦中文免费视频观看日本| 热99国产精品久久久久久7| 三上悠亚av全集在线观看| 亚洲av成人不卡在线观看播放网 | 日韩av不卡免费在线播放| 亚洲免费av在线视频| 我的亚洲天堂| 亚洲国产精品成人久久小说| 亚洲av成人不卡在线观看播放网 | 又大又黄又爽视频免费| www.熟女人妻精品国产| 欧美人与性动交α欧美软件| 午夜精品国产一区二区电影| 男女无遮挡免费网站观看| 国产精品一区二区在线观看99| av在线观看视频网站免费| 一级片'在线观看视频| 人妻人人澡人人爽人人| 如何舔出高潮| 亚洲男人天堂网一区| 日韩人妻精品一区2区三区| 各种免费的搞黄视频| 国产成人免费无遮挡视频| 秋霞在线观看毛片| 一级爰片在线观看| 亚洲av电影在线进入| 观看av在线不卡| 伦理电影免费视频| 男女午夜视频在线观看| 久久婷婷青草| 国产男女超爽视频在线观看| 美女主播在线视频| 久久久久人妻精品一区果冻| 日本欧美国产在线视频| 熟妇人妻不卡中文字幕| 亚洲,欧美,日韩| 日韩人妻精品一区2区三区| 各种免费的搞黄视频| 国产免费视频播放在线视频| 韩国高清视频一区二区三区| h视频一区二区三区| 伦理电影大哥的女人| 国产 一区精品| 国产男人的电影天堂91| 在现免费观看毛片| 精品亚洲成国产av| 人体艺术视频欧美日本| 在线观看免费午夜福利视频| 天堂8中文在线网| 最近的中文字幕免费完整| 日韩 欧美 亚洲 中文字幕| 人体艺术视频欧美日本| 国产一区二区在线观看av| 一二三四中文在线观看免费高清| 超碰97精品在线观看| 亚洲成人国产一区在线观看 | 亚洲精品美女久久久久99蜜臀 | 在线天堂最新版资源| 日日撸夜夜添| 精品少妇内射三级| 黑人巨大精品欧美一区二区蜜桃| 欧美激情极品国产一区二区三区| 欧美人与性动交α欧美精品济南到| 国产精品一区二区在线不卡| 秋霞在线观看毛片| 另类亚洲欧美激情| 婷婷色麻豆天堂久久| 国产亚洲午夜精品一区二区久久| 久久久久网色| 国产日韩欧美在线精品| 亚洲国产精品一区二区三区在线| 中国三级夫妇交换| 国产在视频线精品| 丁香六月天网| 中文字幕另类日韩欧美亚洲嫩草| av片东京热男人的天堂| 一区二区三区乱码不卡18| 精品亚洲成a人片在线观看| 人体艺术视频欧美日本| 成人国语在线视频| 热99国产精品久久久久久7| 久久国产精品男人的天堂亚洲| 国产成人精品久久久久久| 最近最新中文字幕免费大全7| 亚洲精品国产av成人精品| 亚洲av在线观看美女高潮| 欧美黄色片欧美黄色片| 又大又爽又粗| 精品一区在线观看国产| 97精品久久久久久久久久精品| 久久毛片免费看一区二区三区| 欧美日韩成人在线一区二区| av天堂久久9| 美女视频免费永久观看网站| 久久久久精品人妻al黑| 视频区图区小说| 少妇猛男粗大的猛烈进出视频| 老熟女久久久| 最近中文字幕2019免费版| 亚洲精品乱久久久久久| 久久人人爽人人片av| 美女中出高潮动态图| 伊人亚洲综合成人网| 国产视频首页在线观看| 亚洲精品国产区一区二| 国产欧美亚洲国产| 国产一区二区在线观看av| 一本久久精品| 欧美在线黄色| 一级片免费观看大全| av天堂久久9| 老汉色∧v一级毛片| 亚洲精品美女久久久久99蜜臀 | 男女之事视频高清在线观看 | 欧美日本中文国产一区发布| 我要看黄色一级片免费的| 色视频在线一区二区三区| 国产老妇伦熟女老妇高清| 美女午夜性视频免费| 一级片免费观看大全| 国产成人啪精品午夜网站| 欧美日韩精品网址| 宅男免费午夜| 精品国产乱码久久久久久小说| 男男h啪啪无遮挡| 国产在线一区二区三区精| 夫妻性生交免费视频一级片| e午夜精品久久久久久久| 亚洲自偷自拍图片 自拍| 欧美97在线视频| 亚洲一区中文字幕在线| 在线观看免费视频网站a站| 久久天躁狠狠躁夜夜2o2o | 大陆偷拍与自拍| 国产精品一国产av| 亚洲精品久久午夜乱码| 国产欧美日韩一区二区三区在线| 19禁男女啪啪无遮挡网站| 又大又黄又爽视频免费| 丰满少妇做爰视频| 蜜桃国产av成人99| 久久精品人人爽人人爽视色| 日韩制服骚丝袜av| 欧美国产精品va在线观看不卡| 在线观看免费视频网站a站| 又大又爽又粗| 日韩成人av中文字幕在线观看| 亚洲伊人色综图| 天天操日日干夜夜撸| av天堂久久9| 国产一级毛片在线| 伦理电影大哥的女人| 日本午夜av视频| 亚洲色图综合在线观看| 精品亚洲成a人片在线观看| 制服丝袜香蕉在线| 国产一区二区 视频在线| 亚洲专区中文字幕在线 | 国产亚洲最大av| 亚洲精品中文字幕在线视频| 美女高潮到喷水免费观看| 国产精品亚洲av一区麻豆 | 看十八女毛片水多多多| 亚洲成国产人片在线观看| av电影中文网址| 男人添女人高潮全过程视频| 日韩av不卡免费在线播放| 精品少妇久久久久久888优播| 亚洲图色成人| 国产女主播在线喷水免费视频网站| 黑人猛操日本美女一级片| 欧美日韩亚洲高清精品| 免费观看av网站的网址| 精品一区在线观看国产| 熟妇人妻不卡中文字幕| 老鸭窝网址在线观看| 在线观看免费高清a一片| 欧美97在线视频| 99精品久久久久人妻精品| 国产av国产精品国产| 国产xxxxx性猛交| 国产熟女午夜一区二区三区| 不卡av一区二区三区| 精品人妻熟女毛片av久久网站| 日韩制服骚丝袜av| 亚洲一区中文字幕在线| 久久亚洲国产成人精品v| 国产成人免费观看mmmm| 欧美日韩精品网址| www.av在线官网国产| 国产激情久久老熟女| 天天躁夜夜躁狠狠躁躁| 久久99一区二区三区| 亚洲国产精品一区三区| 91成人精品电影| 老鸭窝网址在线观看| 99久久综合免费| 国产xxxxx性猛交| 亚洲色图 男人天堂 中文字幕| 国产在视频线精品| 国产av一区二区精品久久| 91aial.com中文字幕在线观看| 国语对白做爰xxxⅹ性视频网站| 久久天堂一区二区三区四区| 久久性视频一级片| 在现免费观看毛片| 女人久久www免费人成看片| 美女扒开内裤让男人捅视频| 国产爽快片一区二区三区| 久久精品国产亚洲av高清一级| 免费观看性生交大片5| 国产xxxxx性猛交| 美女主播在线视频| www日本在线高清视频| 亚洲精品一二三| 一边亲一边摸免费视频| 欧美成人精品欧美一级黄| 男女免费视频国产| xxxhd国产人妻xxx| 午夜福利一区二区在线看| 69精品国产乱码久久久| 国产片特级美女逼逼视频| 久久久国产精品麻豆| 久久久久久久久免费视频了| 亚洲少妇的诱惑av| 免费观看a级毛片全部| 男人爽女人下面视频在线观看| 高清视频免费观看一区二区| 午夜久久久在线观看| 黑人巨大精品欧美一区二区蜜桃| 男女边摸边吃奶| 老司机影院成人| 国产男女超爽视频在线观看| 日韩成人av中文字幕在线观看| 日本欧美视频一区| 婷婷色综合大香蕉| 国产精品免费视频内射| 欧美日韩综合久久久久久| 观看美女的网站| 成人午夜精彩视频在线观看| 操美女的视频在线观看| 国产精品国产三级国产专区5o| 香蕉丝袜av| 啦啦啦视频在线资源免费观看| 欧美老熟妇乱子伦牲交| 免费久久久久久久精品成人欧美视频| 精品亚洲成a人片在线观看| 婷婷色综合大香蕉| 国产精品一二三区在线看| 欧美精品人与动牲交sv欧美| 美国免费a级毛片| 国产在线免费精品| 我的亚洲天堂| 1024香蕉在线观看| 国产成人啪精品午夜网站| 午夜影院在线不卡| 日韩一卡2卡3卡4卡2021年| 午夜精品国产一区二区电影| 久久精品亚洲av国产电影网| 国产精品免费视频内射| 成人毛片60女人毛片免费| 99九九在线精品视频| 久久久久久久久久久免费av| 亚洲精品久久午夜乱码| 亚洲第一青青草原| 丰满乱子伦码专区| 国产淫语在线视频| 国产一区亚洲一区在线观看| 涩涩av久久男人的天堂| 国产 一区精品| 性色av一级| 在线观看免费日韩欧美大片| 国产精品免费视频内射| 天天操日日干夜夜撸| av女优亚洲男人天堂| 成年美女黄网站色视频大全免费| 王馨瑶露胸无遮挡在线观看| 成人亚洲精品一区在线观看| 色视频在线一区二区三区| 欧美激情 高清一区二区三区| 精品一区在线观看国产| 精品视频人人做人人爽| 中文精品一卡2卡3卡4更新| 国产一区有黄有色的免费视频| 99久久精品国产亚洲精品| 国产爽快片一区二区三区| 亚洲国产av新网站| 三上悠亚av全集在线观看| 99香蕉大伊视频| 飞空精品影院首页| 午夜av观看不卡| 美女视频免费永久观看网站| 成人手机av| 婷婷色av中文字幕| 波多野结衣一区麻豆| 久久久久久免费高清国产稀缺| 汤姆久久久久久久影院中文字幕| 免费黄色在线免费观看| 国产黄色免费在线视频| 韩国av在线不卡| 在线观看免费日韩欧美大片| 久久久精品区二区三区| 亚洲精品,欧美精品| 国产亚洲一区二区精品| 中文欧美无线码|