• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic recrystallization behavior and mechanical properties of bimodal scale Al2O3 reinforced AZ31 composites by soild state synthesis

    2020-12-18 11:30:42MolingHuShuihuWeiQinShiZeshengJiHongyuXuYeWng
    Journal of Magnesium and Alloys 2020年3期

    Moling Hu,Shuihu Wei,Qin Shi,Zesheng Ji,Hongyu Xu,Ye Wng

    aSchool of Materials Science and Engineering,Harbin University of Science and Technlolgy,Harbin 150040,China

    b School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150000,China

    Received 6 June 2019;received in revised form 22 February 2020;accepted 23 February 2020 Available online 30 May 2020

    Abstract In this paper,(500nm 1%+5μm 3%)bimodal scale Al2O3p/AZ31 composites was fabricated by solid state synthesis and the effect of bimodal scale Al2O3 particulates on its dynamic recrystallization behavior and mechanical properties was investigated.The optical microscopy,scanning electron microscopy,transmission electron microscopy and electron universal strength tester composites were used to characterize the composites.The results indicate that the grains size of the composites are significantl refine and the mechanical properties are obviously improved.Due to the presence of the bimodal scale Al2O3 particulates,the high-density dislocation zone is formed around nano-Al2O3p and the particle deformation zone is formed near micron-Al2O3p.These zones are ideal sites for the formation of recrystallization nucleus.Meanwhile,the addition of the bimodal scale Al2O3 particulates may delay or hinder the growth of matrix grain through the pining effect on the grain boundaries,resulting in significantl improving the yield strength and tensile strength of Al2O3p/AZ31 composites.? 2020 Published by Elsevier B.V.on behalf of Chongqing University.This is an open access article under the CC BY-NC-ND license.(http://creativecommons.org/licenses/by-nc-nd/4.0/)Peer review under responsibility of Chongqing University

    Keywords:AZ31 magnesium alloy;Solid state synthesis;Dynamic recrystallization behavior;Mechanical property;Al2O3 particulate.

    1.Introduction

    As a light metal material with excellent properties such as low density,high specifi stiffness and specifi strength,magnesium alloy has broad application prospects in the field of automobile and aerospace[1-3].However,since magnesium and its alloy is hexagonal closed packed(HCP)structure with limited slip systems,resulting in its have relatively low strength and poor formability[4].Magnesium and its alloy is able to overcome their demerit and lead to a significan increase in strength and micro-hardness due to the addition of reinforcement phase,for instance ceramic particulates,whiskers or fibre[5-9].Furthermore,compared to fibe or whisker reinforced magnesium matrix composites,particulate reinforced magnesium matrix composites(PMMCs)show the unique advantages of lower cost and easier fabricability[10,11].

    In fact,for particulate reinforced magnesium matrix composites,the particulate size of the reinforcement phase has a significan effect on the microstructure and mechanical properties of the composite.When the particulate size is micron size,the yield strength and tensile strength of the magnesium matrix composites are significantl improved,but the plasticity is lowered[12].Compared to micron particulates,nano particulate reinforcements efficientl enhance the mechanical properties of the magnesium matrix composites by promoting more effective particulate hardening mechanisms[13].In recent years,some researches have focused on the effect of the addition of micron and nano particulates reinforcements on the mechanical properties and the microstructure of PMMCs.Hu et al.[14]studied the effect of submicron size Al2O3particulates on the microstructure stability,it found that submicron size Al2O3particulates could increase the dislocation density by pinning the dislocation motion of the matrix and promoting the dynamic recrystallization nucleation.Wang et al.[15]have reported that the dynamic recrystallization(DRX)of 10μm SiC/AZ91 composite compressed at different strains and strain rates,revealing that the particle deformation zone(PDZ)was formed near 10μm SiC particle and the PDZ was considered as an ideal site for DRX.Hassan et al.[16]added 50 nm to 1μm size of Al2O3particulates to synthesize the Mg/Al2O3composite.Nano particulates were the most effective in increasing the combination of ductility and strength.Significan increase in ductility and work of fracture was attained by adding nano and submicron particulates simultaneously.However,few researchers have studied the bimodal scale Al2O3reinforced AZ31 composites using solid state synthesis,especially the effect of bimodal scale Al2O3particulate on dynamic recrystallization behavior and mechanical properties.

    Accordingly,the primary aim of this paper is to prepare the bimodal scale Al2O3reinforced AZ31 composites using solid state synthesis,research the microstructure evolution of bimodal scale Al2O3reinforced AZ31 composites,and then reveal the effect of bimodal scale Al2O3particulates on the dynamic recrystallization behavior and mechanical properties.

    2.Experimental

    2.1.Raw material

    Commercial AZ31 alloy was used as the matrix alloy and its chemical composition(wt%)was 0.28Al,1.00Zn,0.25Mn,0.06Si,0.01Cu,0.01Fe and balance Mg.Two kinds of Al2O3particulates with the average diameter of 5μm and 500nm were used as reinforcement.For simplification 1wt%(500nm)Al2O3/AZ31 composite is denoted as N-1,4wt%(5μm)Al2O3/AZ31 composite is denoted as M-4,and the(1wt%(500nm)+3wt%(5μm))Al2O3/AZ31 composite is denoted as N-1+M-3.

    2.2.Solid state synthesis

    The commercial AZ31 magnesium ingot was machined into chips,which had a length of 3.65-5.25mm,a width of 1.65-2.85mm,and a thickness of 0.15-0.85mm.The AZ31 alloy chips were placed in a mechanical mixer with the calculated Al2O3particulates at a speed of 200r/min for 240min,then a mixture was obtained.The mixture was placed in a 40-mm diameter cylindrical container and cold pressed into a cylinder,and then the cyliner was heated to 633K and held for 30 min.After that,it is hot extruded into a bar of 8mm in diameter,which is extrusion rate of 0.2mm/s and an extrusion ratio of 25:1.The experimental parameters of Al2O3/AZ31 composite are shown in Table 1.

    2.3.Microstructural characterization

    The microstructure of Al2O3/AZ31 composite was characterized by optical microscopy(OM),scanning electron microscopy(SEM)and transmission electron microscopy(TEM).After being etched with an acetic picric solution(5ml nitric acid+100ml ethanol(95%)),the samples were used for OM,SEM and TEM analysis.2D image-pro analysis software was used to analyze the grain size distribution.

    Table 1The experimental parameters of Al2O3/AZ31 composite.

    2.4.Tensile testing

    Tensile testing is performed on a WDW-200 electronic universal tensile testing machine at room temperature.According to the GB/T228.1-2010 standard,the extruded bar was machined into tensile specimens of 5mm in gauge diameter and 25mm in gauge length.For each parameter,six samples were used for the tensile tests in order to ensure the accuracy of the experimental results.

    3.Results

    3.1.Microstructures

    Fig.1 shows the optical microstructures of AZ31 alloy and Al2O3/AZ31 composites with different scales of Al2O3particulates parallel to the extrusion direction.The addition of Al2O3particulates has significan effect on refinin the grain size.A large number of the Al2O3particulates are scattered at the grain boundaries,and a few of Al2O3particulates are scattered inside the grains,as shown in Fig.1bd).Fig.1a)shows the optical microstructure of monolithic AZ31 alloy.The grains of monolithic AZ31 alloy are coarse,dynamic recrystallization(DRX)has occurred,but not completely.Compared with the grain size of monolithic AZ31 alloy,the grain size of the Al2O3p/AZ31/N-1 composite is significantl refined as shown in Fig.1b).Many fin recrystallized grains are observed around the large deformed grains and this phenomenon fully validates the dynamic recrystallization behavior.Due to the presence of nano-Al2O3particulates,the particulates are fin hard ones.The dislocations movement cannot be transferred through the particulates.The dislocations tend to pile-up around the particulates.The dislocation movement of the Al2O3p/AZ31/N-1 composite is easy to be pinned and the dislocation density near the particultes is obviously increased[17,18].The DRXed nucleuses preferentially occurred at these zones,and finall leads to grains refinemen of the Al2O3p/AZ31/N-1 composite.Previous studies by Humphrey's[19]have also confirme this phenomenon.When the particulate size is less than 1μm,it could promote recrystallization of Al alloy by the pining effect on grain boundaries.The average grain sizes of Al2O3p/AZ31/N-1 and Al2O3p/AZ31/M-4 were 28.37μm and 24.33μm.The grain of Al2O3p/AZ31/M-4 was fine than that of Al2O3p/AZ31/N-1,as shown in Fig.1c).Particle deformation zone(PDZ)can be formed in the vicinity of micron-Al2O3particulates during hot extrusion of AZ31 alloy containing micron-Al2O3particulates.The PDZ made for the recrystallization nucleation at the interface between Al2O3particulates and AZ31 alloy due to its high dislocation density,resulting in the refine grain of Al2O3p/AZ31/M-4 composite.Deng's[20,21]investigation also have shown that the micron-SiC particulates have a significan refinemen effect on the grain of the magnesium alloy by promoting DRX nucleation.Fig.1d)shows that the bimodal scale particulates are homogeneous distributed in AZ31 magnesium matrix.The average grain size of Al2O3p/AZ31/N-1+M-3 composite was 18.76μm.The grains of Al2O3p/AZ31/N-1+M-3 composite are further refined the necklace structure grains are observed around the grain boundaries and DRX is more sufficient The Al2O3particulate bonds are paralleling to the extrusion direction,as indicated by yellow dotted box in Fig.1d).In fact,micron-Al2O3particulates can effectively promote dynamic recrystallization nucleation,while nano-Al2O3particulates may have the pining effect.Two scale particulates work together,as a result,the Al2O3p/AZ31/N-1+M-3 composite grain were refine significantl.

    Fig.1.Optical microstructures:a)AZ31 alloy;b)Al2O3p/AZ31/N-1composite;c)Al2O3p/AZ31/M-4 composite;d)Al2O3p/AZ31/N-1+M-3 composite.

    Fig.2.The statistical grain size distributions:a)AZ31 alloy;b)Al2O3p/AZ31/N-1 composite;c)Al2O3p/AZ31/M-4 composite;d)Al2O3p/AZ31/N-1+M-3 composite.

    Fig.3.SEM micrographs and EDS results of Al2O3p/AZ31/N-1+M-3 composite:a)distribution of bimodal scale Al2O3 particulates;b)Al2O3 particulates;c)DRX grains;d)EDS results of point A in c);e)element distribution of Mg,Al,O,Zn in b).

    Fig.2 shows the statistical grain size distributions of bimodal scale Al2O3p/AZ31 composite.It can be found that the average grain size decreased significantl with the addition of different scale Al2O3particulates.In the monolithic AZ31 alloy microstructure,the grain size is uniform and the peak of grain size distribution mainly concentrates at 25-45μm,as shown in Fig.2a).This peak is transferred to 20-40μm and 15-35μm as adding to 1% nano-Al2O3particulates and 4% micron-Al2O3particulates,respectively,as shown in Fig.2b)and c).Due to the presence of Al2O3particulates,the high-angle and low-angle grain boundaries of the magnesium matrix are pinned and the grain boundary movement is hindered,resulting in promoting to DRX nucleation and refinin the average grain of Al2O3p/AZ31 composite.By comparing with Fig.2b)and c),it can be found the grain size of Al2O3p/AZ31/M-4 composite are smaller than the grain size of Al2O3p/AZ31/N-1 composite.Compared to nano-Al2O3particulates,micron-Al2O3particulates have a more pronounced grain refinemen effect on the composite.Fig.2d)shows that the fin grains of 0-10μm increase significantl,the peak is mainly concentrated in 15-25μm,and the average grain size is decreased by 42.12% compared to monolithic AZ31 alloy.The phenomena illustrates that the existence of bimodal scale Al2O3particulates,significantl refine the grain size compared to the addition of single scale Al2O3particulates.

    Fig.4.TEM microstructure of AZ31/Al2O3p/N-1+M-3 composite:a)microstructure near Al2O3 particulates;b)high-density dislocations near Al2O3 particulates;c)high magnificatio of microcrack near Al2O3 particulates;d)electron diffraction pattern of Al2O3 particulates.

    Fig.3 shows SEM micrographs and EDS results of AZ31/Al2O3p/N-1+M-3 composite.The distribution of bimodal scale Al2O3particulates is nearly homogeneous in Al2O3p/AZ31 composites,as shown in Fig.3a).Some nano-Al2O3particulates were homogeneously distributed around micron-Al2O3particulates,and the interface between the Al2O3particulates and AZ31 magnesium matrix is intact,as shown in Fig.3b).The DRX grains are observed around the Al2O3particulates,as shown in the Fig.3c).Due to the bimodal scale Al2O3particulates scattered at the grain boundary,the movement of the grain boundary is validly restricted by micron-Al2O3particulates and the pining effect on the grain boundary is restricted by nano-Al2O3particulates,resulting in promoting to the DRX nucleation.The energy dispersive analysis(EDS)results of point A and element distribution further demonstrate that bimodal scale Al2O3particulates were homogeneously scattered at AZ31 magnesium matrix,as shown in Fig.3d)and e).

    Fig.4 shows the TEM microstructure of AZ31/Al2O3p/N-1+M-3 composite after solid state synthesis.The high-density dislocations appear near Al2O3particulates and microcracks can also be seen in Fig.4a).During the hot extrusion process,due to the difference in thermal expansion coefficien between the Al2O3particulates and the magnesium matrix,the particulates can both hinder the movement of dislocations and induce deformation mismatch between matrix and particulates.The dislocations tend to pile-up around the particulates[17].Therefore,the high-density dislocation zones are formed,as shown in Fig.4b).The high-density dislocation zones surrounding the Al2O3particulates can effectively promote its dynamic recrystallization nucleation,and finall the grain size of the Al2O3p/AZ31 composite is remarkably refined When the stress becomes greater than its interfacial bonding force,microcracks might take shape in the interface between AZ31 matrix and Al2O3particulates,as shown in Fig.4c).The electron diffraction pattern of Al2O3particulates is shown in Fig.4d).It demonstrates that the reinforcement is Al2O3particulates.

    3.2.Mechanical properties

    Fig.5.Mechanical properties of AZ31 alloy and Al2O3p/AZ31 composites.

    Fig.5 shows the mechanical properties of AZ31 alloy and Al2O3p/AZ31 composites.Due to the addition of Al2O3particulates,the yield strength(YS),ultimate tensile strength(UTS)and elongation of AZ31 matrix are significantl improved.The bimodal scale Al2O3p/AZ31composite has higher tensile properties than single scale particulates reinforced composites.In comparison to single scale Al2O3p/AZ31/N-1 composite,bimodal scale Al2O3particulates improve the YS and UTS of AZ31 matrix as well as heighten the elongation of AZ31 matrix obviously.Compared with single scale Al2O3p/AZ31/M-4 composite,the YS and UTS of bimodal scale Al2O3p/AZ31 composite increased to 11.83%and 5.86%,respectively.Compared with nano-sized particulates,the elongation of Al2O3p/AZ31/M-4 composite slightly decreased.Due to the fact that the deformation mismatch between AZ31 matrix and micron-sized particulates in the tensile tests,it is prone to form the micropores and cracks,which ultimately leads to a decrease in elongation.

    4.Discussion

    4.1.Schematic diagram of DRX grains formation process

    Fig.6 shows the schematic diagram of DRX grains formation process in Al2O3p/AZ31/N-1+M-3 composite during solid state synthesis.After mechanical mixing,the bimodal scale Al2O3particulates are decentralized at the surfaces and gaps of AZ31 alloy chips,as shown in Fig.6a).During hot extrusion,most of the micron-Al2O3p and nano-Al2O3p are dispersed at the grain boundaries and a few of nano-Al2O3p is dispersed in the grains due to difference in plastic deformation between Al2O3particulates and AZ31 alloy,as shown in Fig.6b).During the hot extrusion,PDZ is easily formed around the micron-Al2O3p,and high-density dislocation zones are generated in the vicinity of the nano-Al2O3p.Nano-Al2O3p can pin the movement of grains boundaries,while micron-Al2O3p not only impede the movement of dislocations but also induce the deformation mismatch between AZ31 matrix and Al2O3particulates.Hence,the dislocation density near nano-Al2O3particulates increases obviously and the PDZ is easy to be formed,as shown in Fig.6c).In general,the PDZ size rests with particulate size,which minishs with falloff in particulate size[22].As the particulate size is smaller than 1μm,the size of PDZ around them is too small to be considered[23].The DRX grains were observed in Fig.6d).Due to the presence of high-density dislocation zone and PDZ,the DRX nucleuses were easy to happen at these zones,resulting in forming the DRX grains.

    4.2.Strengthening mechanisms

    For Al2O3p reinforced magnesium matrix composites,the Al2O3particulates belong to ceramic particulates and have high strength and hardness,which can effectively transfer loads and have a certain effect on improving the yield strength(YS)of composite.The increment of YS caused by the effect of load transfer(Δσload)can by estimated by the following equation[24]:Whereσmis the YS of monolithic AZ31 alloy andVpis the volume fraction of Al2O3particulate in AZ31 matrix given by Table 2[25,26].

    Owing to the mismatch of the coefficien of thermal expansion(CTE)between Al2O3p and AZ31 matrix,highdislocation density can be generated around Al2O3p,which has a positive effect on the improvement of YS.The increment in YS can be estimated by following equation[27]:

    where,ωis regarded as constant 1,andρis the dislocation density given as[28]:

    where,Δβis the coefficien of thermal expansion(CTE)different of the AZ31 matrix and Al2O3particulates,ΔTis the temperature change from solid state synthesis temperature to room temperature.Gis the shear modulus of AZ31 alloy;bis the burgers vector of Mg(HCP),andcVpare the average diameter and volume fraction of Al2O3particulates,respectively.The parameter values are given in Table 2.As mentioned above,the addition of Al2O3particulates leads to the decrease of grain size,which causes the increase of YS according to Hall-Patch relationship[29].The Grain refine ment improves the YS of composites can be calculated by the equation:

    wheredCompositeanddAZ31are the average grain size of composite and monolithic AZ31 alloy,respectively.Qis the Hall-Patch coefficien which is given as 0.13Mpa·m1/2[30].

    For the particulates fine than 1μm,Orowan strengthening mechanism exists in the composite due to the interaction of dislocations with nano-Al2O3p[31],thus,it can be computed by equation[32]:

    Fig.6.Schematic diagram of DRX grains formation process in Al2O3p/AZ31/N-1+M-3 composite during solid state synthesis:a)Al2O3p distribution before extrusion;b)Al2O3p distribution after extrusion;c)high-density dislocations and PDZ around Al2O3p;d)DRX grains at the grain boundaries and near Al2O3p.

    Table 2The parameter values for calculating the increased yield strength[25,26].

    Table 3Respective contributions from different mechanisms for bimodal scale Al2O3p/AZ31 composites.

    whereλindicates the average inter-particle spacing,andcNindicates the average diameter of nano particulates.The interparticle spacingλis estimated by following equation[33]:

    Based on the above analysis,the contribution of bimodal scale Al2O3p to improve the YS can be calculated by Eq(7).[34]:

    The theoretical yield strength of AZ31/Al2O3p/N-1+M-3 composite(σP)is calculated and compared with the experimental results(σexp),as shown in Table 3.The experimental value of yield strength is significantl higher than the theoretical value.The PDZ existed around micron particulates,which promoted to the DRX nucleation,and it might strengthen the effect ofΔσCT E,ΔσLoad,ΔσHall?PetchandΔσOrwan.So the difference between the experimental and theoretic value of yield strength appears in Table 3.Table 3 also shows that theΔσCT Eplays an important role in improving the YS of the composite.The effect of load transfer(ΔσLoad)on the YS of the composite is almost negligible compared to other mechanisms.

    5.Conclusions

    1)The Al2O3p/AZ31 composites with different scale Al2O3particulates was successfully fabricate by solid state synthesis.Micron-Al2O3particulates were mainly dispersed at the grain boundaries,while nano-Al2O3particulates were distributed on the grain boundaries and inside the grains.

    2)Due to the deformation mismatch between AZ31 matrix and Al2O3p,the dislocation density near nano-Al2O3p obviously increased and the PDZ around micron-Al2O3p was formed.It promoted to the DRX nucleation,resulting in the significan grain refinemen Al2O3p/AZ31 composites.

    3)Compared to single scale Al2O3p reinforced composites,the yield strength,ultimate tensile strength and elongation of bimodal scale Al2O3p/AZ31 composite is higher.On the one hand,bimodal scale Al2O3particulates have the synergistic mechanism effect on the dynamic recrystallization behavior of the Al2O3p/AZ31 composite.On the other hand,the mechanical properties of the Al2O3p/AZ31composite are improved by different strengthening mechanisms.

    Acknowledgment

    The authors gratefully acknowledge the financia support by the National Key Research and Development Program(2019YFB2006500)and National Natural Science Foundation of China(51404082).

    久久久国产精品麻豆| 婷婷色av中文字幕| 美女脱内裤让男人舔精品视频| 一级毛片 在线播放| 亚洲欧美精品自产自拍| 人人妻人人爽人人添夜夜欢视频 | 美女cb高潮喷水在线观看| 久久国产乱子免费精品| 精品人妻一区二区三区麻豆| 国产精品国产三级专区第一集| 老司机影院成人| 黑丝袜美女国产一区| 色哟哟·www| 久久精品国产鲁丝片午夜精品| 观看av在线不卡| 人妻系列 视频| 高清午夜精品一区二区三区| 国产探花极品一区二区| 一级av片app| 在线观看美女被高潮喷水网站| 亚洲精品久久久久久婷婷小说| 人妻 亚洲 视频| 欧美成人精品欧美一级黄| 热99国产精品久久久久久7| av.在线天堂| 最后的刺客免费高清国语| 在线精品无人区一区二区三| 中国国产av一级| 日韩一区二区视频免费看| 18禁裸乳无遮挡动漫免费视频| 自线自在国产av| 久久精品国产自在天天线| 22中文网久久字幕| 亚洲四区av| 欧美日韩综合久久久久久| 美女xxoo啪啪120秒动态图| 午夜免费观看性视频| 久久久久人妻精品一区果冻| 伊人久久精品亚洲午夜| 中文字幕av电影在线播放| 99精国产麻豆久久婷婷| 在现免费观看毛片| 亚洲精品乱码久久久久久按摩| 韩国高清视频一区二区三区| 91aial.com中文字幕在线观看| 99久国产av精品国产电影| 纵有疾风起免费观看全集完整版| 久久精品国产亚洲网站| 欧美日韩精品成人综合77777| 日本与韩国留学比较| 狠狠精品人妻久久久久久综合| 国产真实伦视频高清在线观看| 国产黄色视频一区二区在线观看| 国产女主播在线喷水免费视频网站| 亚洲欧美清纯卡通| 中国国产av一级| 一个人免费看片子| 色婷婷av一区二区三区视频| 晚上一个人看的免费电影| 亚洲性久久影院| 亚洲精品,欧美精品| 黄片无遮挡物在线观看| 国产午夜精品久久久久久一区二区三区| 最近2019中文字幕mv第一页| 亚洲av日韩在线播放| 一级黄片播放器| 91精品伊人久久大香线蕉| 亚洲成色77777| av卡一久久| 性高湖久久久久久久久免费观看| 精品久久国产蜜桃| 两个人免费观看高清视频 | 五月玫瑰六月丁香| 大又大粗又爽又黄少妇毛片口| 国产成人精品婷婷| 一级毛片aaaaaa免费看小| 男女边吃奶边做爰视频| 亚洲人成网站在线观看播放| 亚洲精品国产色婷婷电影| 亚洲国产精品999| 日韩伦理黄色片| 日日啪夜夜爽| 一级毛片 在线播放| 久久国产精品男人的天堂亚洲 | 午夜精品国产一区二区电影| 亚洲精品日韩av片在线观看| 日韩av不卡免费在线播放| 少妇熟女欧美另类| 街头女战士在线观看网站| 亚洲精品456在线播放app| 一区二区av电影网| 国产亚洲av片在线观看秒播厂| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品久久久久久婷婷小说| 亚洲av欧美aⅴ国产| 国产伦理片在线播放av一区| 精品99又大又爽又粗少妇毛片| 中文字幕精品免费在线观看视频 | 美女视频免费永久观看网站| 亚洲熟女精品中文字幕| 国产在线一区二区三区精| 一级片'在线观看视频| 午夜免费男女啪啪视频观看| 嫩草影院新地址| av天堂中文字幕网| 精品久久久精品久久久| 3wmmmm亚洲av在线观看| 亚洲欧美精品专区久久| .国产精品久久| 美女中出高潮动态图| 人妻系列 视频| 插阴视频在线观看视频| 精品久久久精品久久久| 黄片无遮挡物在线观看| 成年av动漫网址| 亚洲欧洲精品一区二区精品久久久 | 中文字幕人妻熟人妻熟丝袜美| 久久97久久精品| 国产精品福利在线免费观看| 国产免费又黄又爽又色| 热re99久久国产66热| 精品少妇黑人巨大在线播放| 国产综合精华液| 91久久精品电影网| 久久久a久久爽久久v久久| 国产精品久久久久久av不卡| 一区在线观看完整版| 又黄又爽又刺激的免费视频.| 成年av动漫网址| 日本av手机在线免费观看| 亚洲精品亚洲一区二区| 久久国产精品男人的天堂亚洲 | 十八禁高潮呻吟视频 | 久久狼人影院| 看免费成人av毛片| 免费看av在线观看网站| 我要看日韩黄色一级片| 你懂的网址亚洲精品在线观看| 特大巨黑吊av在线直播| 在线观看美女被高潮喷水网站| 男人舔奶头视频| 久热这里只有精品99| av不卡在线播放| 七月丁香在线播放| 最近中文字幕2019免费版| 九九在线视频观看精品| 国产免费视频播放在线视频| 日日啪夜夜撸| 午夜视频国产福利| 国产老妇伦熟女老妇高清| 99热网站在线观看| .国产精品久久| 久久精品国产a三级三级三级| 日日摸夜夜添夜夜爱| 观看av在线不卡| 人妻制服诱惑在线中文字幕| 欧美成人精品欧美一级黄| 9色porny在线观看| av在线观看视频网站免费| 国产精品人妻久久久久久| 免费黄色在线免费观看| 一级毛片电影观看| 这个男人来自地球电影免费观看 | 你懂的网址亚洲精品在线观看| 精品亚洲成a人片在线观看| 一本久久精品| 免费不卡的大黄色大毛片视频在线观看| 成人免费观看视频高清| 久久精品国产a三级三级三级| 丰满少妇做爰视频| 最近最新中文字幕免费大全7| 国产熟女欧美一区二区| 777米奇影视久久| 波野结衣二区三区在线| 日日啪夜夜爽| 2021少妇久久久久久久久久久| 成人国产av品久久久| 狂野欧美激情性xxxx在线观看| 久久免费观看电影| 亚洲精华国产精华液的使用体验| 建设人人有责人人尽责人人享有的| 偷拍熟女少妇极品色| 精华霜和精华液先用哪个| 青春草亚洲视频在线观看| 黄色毛片三级朝国网站 | 国产精品99久久久久久久久| 国产成人一区二区在线| 99re6热这里在线精品视频| 日本黄色日本黄色录像| 伊人久久国产一区二区| 国产精品久久久久久精品电影小说| 男女国产视频网站| 日本色播在线视频| 精品久久国产蜜桃| 久久久久精品性色| 观看免费一级毛片| 人妻夜夜爽99麻豆av| 亚洲欧美精品专区久久| 九草在线视频观看| 国产高清三级在线| 久久人人爽人人片av| 嫩草影院新地址| 我的女老师完整版在线观看| 91久久精品电影网| 成人黄色视频免费在线看| 亚洲精品国产成人久久av| 一级二级三级毛片免费看| 青青草视频在线视频观看| 久久6这里有精品| 好男人视频免费观看在线| 美女cb高潮喷水在线观看| 国产精品久久久久久久久免| 日韩亚洲欧美综合| 最近中文字幕高清免费大全6| av免费在线看不卡| 蜜臀久久99精品久久宅男| 久久久久久久久久人人人人人人| 日韩一区二区视频免费看| 女的被弄到高潮叫床怎么办| 大香蕉97超碰在线| 青青草视频在线视频观看| 七月丁香在线播放| 亚洲精品久久久久久婷婷小说| 性高湖久久久久久久久免费观看| 国产日韩欧美在线精品| 久久人人爽人人片av| 精品国产国语对白av| 欧美少妇被猛烈插入视频| 国产极品粉嫩免费观看在线 | 亚洲国产色片| 国产高清有码在线观看视频| 亚洲一级一片aⅴ在线观看| 亚洲激情五月婷婷啪啪| 岛国毛片在线播放| 免费人成在线观看视频色| 国产精品久久久久久精品古装| 一区二区三区乱码不卡18| 亚洲精品国产成人久久av| 日本wwww免费看| 国产女主播在线喷水免费视频网站| 日韩在线高清观看一区二区三区| av线在线观看网站| 人妻系列 视频| 美女cb高潮喷水在线观看| 在线观看美女被高潮喷水网站| 97超视频在线观看视频| 如日韩欧美国产精品一区二区三区 | 亚洲美女视频黄频| 日韩av不卡免费在线播放| 亚洲经典国产精华液单| 欧美高清成人免费视频www| 高清在线视频一区二区三区| 免费观看在线日韩| av有码第一页| 国产精品国产av在线观看| 99久久人妻综合| 精品一区二区三区视频在线| 少妇裸体淫交视频免费看高清| 亚洲自偷自拍三级| 最黄视频免费看| 一级,二级,三级黄色视频| 成人亚洲欧美一区二区av| 高清视频免费观看一区二区| 成人综合一区亚洲| 国产深夜福利视频在线观看| 国产日韩欧美视频二区| 久久影院123| 久久精品国产自在天天线| 午夜日本视频在线| 成年美女黄网站色视频大全免费 | av在线app专区| 久热久热在线精品观看| 狂野欧美激情性bbbbbb| 2021少妇久久久久久久久久久| 日日爽夜夜爽网站| 99九九线精品视频在线观看视频| 中文精品一卡2卡3卡4更新| 少妇人妻 视频| 黄片无遮挡物在线观看| 成人毛片a级毛片在线播放| 亚洲成色77777| 不卡视频在线观看欧美| 日韩在线高清观看一区二区三区| 国产免费又黄又爽又色| 中文字幕人妻熟人妻熟丝袜美| 中文字幕亚洲精品专区| 久久久久国产精品人妻一区二区| 一本大道久久a久久精品| 热re99久久国产66热| 91在线精品国自产拍蜜月| 国产高清国产精品国产三级| 久久人人爽人人爽人人片va| 七月丁香在线播放| 九九久久精品国产亚洲av麻豆| 亚洲天堂av无毛| 久久99精品国语久久久| 天天躁夜夜躁狠狠久久av| 三级国产精品欧美在线观看| 久久国产精品大桥未久av | 精品久久国产蜜桃| 在线观看三级黄色| 日韩中文字幕视频在线看片| 七月丁香在线播放| 美女国产视频在线观看| 青青草视频在线视频观看| 久久精品久久久久久久性| 欧美一级a爱片免费观看看| 日韩熟女老妇一区二区性免费视频| 91午夜精品亚洲一区二区三区| 丰满人妻一区二区三区视频av| 最近中文字幕高清免费大全6| 91在线精品国自产拍蜜月| 亚洲欧美日韩卡通动漫| av在线播放精品| 啦啦啦视频在线资源免费观看| 91久久精品国产一区二区成人| 午夜福利视频精品| 美女内射精品一级片tv| 亚洲高清免费不卡视频| 欧美日韩国产mv在线观看视频| 亚洲国产最新在线播放| 午夜福利影视在线免费观看| 欧美日韩国产mv在线观看视频| 国模一区二区三区四区视频| 国语对白做爰xxxⅹ性视频网站| 国产精品人妻久久久久久| 一级毛片 在线播放| 国产亚洲一区二区精品| 肉色欧美久久久久久久蜜桃| 有码 亚洲区| 亚洲国产成人一精品久久久| 国产高清不卡午夜福利| 多毛熟女@视频| 欧美 日韩 精品 国产| 国产av码专区亚洲av| a级毛片免费高清观看在线播放| 水蜜桃什么品种好| 十八禁网站网址无遮挡 | 中文在线观看免费www的网站| 在线观看免费日韩欧美大片 | av国产久精品久网站免费入址| 国产伦精品一区二区三区四那| 看非洲黑人一级黄片| 在线 av 中文字幕| 亚洲国产日韩一区二区| 欧美国产精品一级二级三级 | 国产精品国产三级国产av玫瑰| 国产亚洲一区二区精品| 欧美激情国产日韩精品一区| 成人国产av品久久久| 国产免费一级a男人的天堂| 久久影院123| 欧美精品高潮呻吟av久久| 亚洲人成网站在线观看播放| 22中文网久久字幕| 日日摸夜夜添夜夜爱| 极品少妇高潮喷水抽搐| 插逼视频在线观看| 一级a做视频免费观看| 亚洲不卡免费看| 午夜日本视频在线| 日韩免费高清中文字幕av| 麻豆成人av视频| 国产精品免费大片| 自线自在国产av| 男女免费视频国产| 国产黄片视频在线免费观看| 黄色欧美视频在线观看| 观看av在线不卡| 国产老妇伦熟女老妇高清| 久久久久久久久久人人人人人人| av天堂久久9| 黄色欧美视频在线观看| 亚洲国产精品专区欧美| 免费黄色在线免费观看| 日本黄大片高清| 王馨瑶露胸无遮挡在线观看| 日韩成人伦理影院| 色哟哟·www| 亚洲精品一区蜜桃| 欧美日韩精品成人综合77777| 秋霞在线观看毛片| 欧美日韩一区二区视频在线观看视频在线| 18禁在线播放成人免费| 欧美97在线视频| 欧美日韩视频精品一区| 最近的中文字幕免费完整| 免费观看在线日韩| 久久97久久精品| 国产成人午夜福利电影在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品第二区| 最近中文字幕2019免费版| 观看美女的网站| 人妻 亚洲 视频| 美女国产视频在线观看| 色视频www国产| 国产黄色免费在线视频| 男人狂女人下面高潮的视频| 国内揄拍国产精品人妻在线| 中文字幕制服av| 久久99精品国语久久久| 国内精品宾馆在线| 国产白丝娇喘喷水9色精品| 偷拍熟女少妇极品色| 99re6热这里在线精品视频| 日日爽夜夜爽网站| 老司机影院毛片| 一本大道久久a久久精品| 肉色欧美久久久久久久蜜桃| 精品人妻熟女av久视频| 国产精品国产三级专区第一集| 欧美3d第一页| 少妇人妻 视频| 精品亚洲成国产av| 亚洲欧洲日产国产| 18+在线观看网站| 欧美日韩视频高清一区二区三区二| 久久久久国产网址| 能在线免费看毛片的网站| 精品熟女少妇av免费看| 欧美xxxx性猛交bbbb| 蜜臀久久99精品久久宅男| 欧美丝袜亚洲另类| 最黄视频免费看| 亚洲精品乱码久久久v下载方式| av免费在线看不卡| 久久狼人影院| 搡老乐熟女国产| 国产在线视频一区二区| 亚洲av中文av极速乱| 在线观看免费视频网站a站| 国产精品福利在线免费观看| av不卡在线播放| 水蜜桃什么品种好| 熟女电影av网| 啦啦啦中文免费视频观看日本| 一级av片app| 欧美亚洲 丝袜 人妻 在线| a 毛片基地| 夜夜看夜夜爽夜夜摸| 美女内射精品一级片tv| 国产精品一区二区三区四区免费观看| 欧美少妇被猛烈插入视频| 男人添女人高潮全过程视频| 少妇人妻久久综合中文| 亚洲四区av| av天堂中文字幕网| av国产精品久久久久影院| 97超碰精品成人国产| 国国产精品蜜臀av免费| 久久狼人影院| 18禁裸乳无遮挡动漫免费视频| 久热久热在线精品观看| 亚洲精品日韩在线中文字幕| 日本欧美国产在线视频| 尾随美女入室| 亚洲av成人精品一二三区| 亚洲av不卡在线观看| 看非洲黑人一级黄片| 97精品久久久久久久久久精品| 国产精品一区二区性色av| 老司机亚洲免费影院| 日本免费在线观看一区| 亚洲va在线va天堂va国产| 性高湖久久久久久久久免费观看| 欧美少妇被猛烈插入视频| 国产又色又爽无遮挡免| 成人特级av手机在线观看| 久久狼人影院| 在线观看三级黄色| 国产免费又黄又爽又色| 久久久久视频综合| 精品亚洲成a人片在线观看| 国产成人91sexporn| 欧美日韩亚洲高清精品| av播播在线观看一区| 熟女人妻精品中文字幕| 午夜福利网站1000一区二区三区| 美女内射精品一级片tv| 国产成人午夜福利电影在线观看| 亚洲内射少妇av| 久久久欧美国产精品| 又粗又硬又长又爽又黄的视频| 日本欧美视频一区| 2018国产大陆天天弄谢| 黄片无遮挡物在线观看| 如何舔出高潮| 草草在线视频免费看| 国产亚洲av片在线观看秒播厂| 欧美bdsm另类| 欧美 日韩 精品 国产| 日韩一本色道免费dvd| 五月天丁香电影| 边亲边吃奶的免费视频| 最近2019中文字幕mv第一页| 亚洲精品aⅴ在线观看| 下体分泌物呈黄色| 寂寞人妻少妇视频99o| 日本欧美国产在线视频| 色网站视频免费| 一本久久精品| 人体艺术视频欧美日本| 亚洲欧美清纯卡通| 黑丝袜美女国产一区| av卡一久久| av福利片在线观看| 欧美日韩国产mv在线观看视频| 久久久久国产网址| 人人妻人人添人人爽欧美一区卜| 亚洲,欧美,日韩| 人人澡人人妻人| 男女无遮挡免费网站观看| 亚洲自偷自拍三级| 一级爰片在线观看| 久久久久视频综合| 又黄又爽又刺激的免费视频.| 高清av免费在线| 国产精品人妻久久久久久| 一级毛片久久久久久久久女| 久久久久久久久久成人| 国产av国产精品国产| 国产一区二区三区综合在线观看 | 久久久a久久爽久久v久久| xxx大片免费视频| 丝袜喷水一区| 欧美精品国产亚洲| 国产色爽女视频免费观看| av又黄又爽大尺度在线免费看| 又爽又黄a免费视频| www.色视频.com| 极品少妇高潮喷水抽搐| 草草在线视频免费看| 99久久人妻综合| 十分钟在线观看高清视频www | 纵有疾风起免费观看全集完整版| 女性被躁到高潮视频| 亚洲欧美精品自产自拍| 男人和女人高潮做爰伦理| 亚洲经典国产精华液单| 美女内射精品一级片tv| 最近中文字幕2019免费版| 五月天丁香电影| 天天躁夜夜躁狠狠久久av| 日韩一区二区三区影片| 欧美精品一区二区免费开放| 中文字幕制服av| 我的女老师完整版在线观看| 精品亚洲乱码少妇综合久久| 亚洲一级一片aⅴ在线观看| 精品一区二区三卡| 偷拍熟女少妇极品色| 三级经典国产精品| 国产亚洲精品久久久com| 熟女电影av网| 婷婷色综合www| 欧美日韩一区二区视频在线观看视频在线| 老司机影院成人| 22中文网久久字幕| 男人狂女人下面高潮的视频| 精品久久久久久电影网| 日韩视频在线欧美| 国产男人的电影天堂91| 少妇精品久久久久久久| 午夜激情久久久久久久| 国产午夜精品一二区理论片| 噜噜噜噜噜久久久久久91| 国产成人一区二区在线| 91精品伊人久久大香线蕉| 在线天堂最新版资源| 国产成人aa在线观看| 蜜臀久久99精品久久宅男| 极品教师在线视频| 一本色道久久久久久精品综合| 精品视频人人做人人爽| 亚洲av福利一区| 国产欧美日韩精品一区二区| 国产精品三级大全| a级片在线免费高清观看视频| 国产av国产精品国产| 天堂中文最新版在线下载| 熟女人妻精品中文字幕| 伊人亚洲综合成人网| 少妇熟女欧美另类| 精华霜和精华液先用哪个| 亚洲精品一区蜜桃| 国产亚洲91精品色在线| 另类亚洲欧美激情| 一二三四中文在线观看免费高清| 久久国产精品大桥未久av | 久久久久久久久久人人人人人人| 国产在视频线精品| 夜夜看夜夜爽夜夜摸| 狂野欧美激情性bbbbbb| 国产极品粉嫩免费观看在线 | 在线观看www视频免费| 如日韩欧美国产精品一区二区三区 | 久久久久久久久大av| 精品视频人人做人人爽| 精品少妇久久久久久888优播| 国产有黄有色有爽视频| 亚洲欧美一区二区三区国产| 欧美日韩在线观看h| 涩涩av久久男人的天堂| 日韩强制内射视频| 人妻制服诱惑在线中文字幕| 日本欧美国产在线视频| 午夜日本视频在线| 熟妇人妻不卡中文字幕| 日韩三级伦理在线观看| 国产成人一区二区在线| 六月丁香七月| 亚洲精品视频女| 自线自在国产av| 免费不卡的大黄色大毛片视频在线观看|