• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The transformation of LPSO type in Mg-4Y-2Er-2Zn-0.6Zr and its response to the mechanical properties and damping capacities

    2020-12-18 11:28:16DnWngHujiWuRuizhiWuYngWngJinghuiZhngSrgyBtsofnBorisKritLgnHouTurhojyvNoir
    Journal of Magnesium and Alloys 2020年3期

    Dn Wng,Huji Wu,Ruizhi Wu,c,?,Yng Wng,Jinghui Zhng,Srgy Btsofn,Boris Krit,Lgn Hou,Turhojyv Noir

    aKey Laboratory of Superlight Materials and Surface Technology,Ministry of Education,College of Materials Science and Chemical Engineering,Harbin Engineering University,Harbin 150001,PR China

    b Key Laboratory of New Carbon-based Functional and Super-hard Materials of Heilongjiang Province,School of Physics and Electronic Engineering,Mudanjiang normal university,Mudanjiang 157011,PR China

    c College of Science,Heihe University,Heihe 164300,PR China

    d Coscow Aviation Institute,National Research University,Moscow 109383,Russia

    e Department of Machine-Building Technology,Tashkent State Technical University,Tashkent 100106,Uzbekistan

    Received 3 May 2019;received in revised form 13 October 2019;accepted 22 October 2019 Available online 25 June 2020

    Abstract The transformation of LPSO type in Mg-4Y-2Er-2Zn-0.6Zr during heat treatment and its influenc on damping and mechanical properties are reported in this work.Prior to heat treatment,the alloy consisted ofα-Mg matrix and lamellar 14H LPSO phases.After 510 °C heat treatment,lamellae shortened,and their content decreased.Upon 8h heat treatment,block 18R LPSO phases formed at the grain boundaries while 14H LPSO lamellae disappeared.Presence of block 18R LPSO phases improved mechanical and damping properties of the alloy.The corresponding mechanisms of the influenc of LPSO type and morphology on mechanical and damping capacities are discussed.? 2020 Published by Elsevier B.V.on behalf of Chongqing University.This is an open access article under the CC BY-NC-ND license.(http://creativecommons.org/licenses/by-nc-nd/4.0/)Peer review under responsibility of Chongqing University

    Keywords:Heat treatment;LPSO phases;Mechanical properties;Damping capacities.

    1.Introduction

    Mg-based alloys attract significan attention from the research groups because of their low density,high specifi strength and excellent electromagnetic shielding[1-3].Meanwhile,research on the inferiority of magnesium alloys such as poor corrosion resistance and low fatigue resistance has made great progress,which makes its application prospects more extensive[4-6].With vibration control becoming severe issue in the fiel of automotive,electronics industries,modern aircraft and aerospace fields an increasing number of researchers have attached great importance to them,because of their excellent damping capacity of magnesium alloys[7-10].However,generally,magnesium alloys with favourable mechanical properties always exhibit poor damping capacities.Thus,findin a balance between mechanical and damping properties of Mg-based alloys is very important.

    Mg-REE(rare earth)-Zn alloys with long period stacking ordered(LPSO)structure attract significan attention because of their promising mechanical properties at both room and high temperatures[[11],[12]].The types of LPSO structures in Mg-Zn-REE systems commonly include 6H,14H and 18R[13-15].Several research groups studied how LPSO structures improve mechanical or damping properties of Mg-based alloys[16-19].However,influenc of morphology and type of the LPSO structures on both mechanical and damping properties of Mg-based alloys is still lacking.

    Fig.1.SEM images of Mg-4Y-2Er-2Zn-0.6Zr alloys obtained under different conditions:(a)alloy A,as-cast alloy,(b)local enlarged image of Fig.1a,(c)alloy B,heat treatment at 510 °C for 2h,(d)alloy C,heat treatment at 510 °C for 8h.

    The previous works indicated that Y forms solid solutions with Mg alloys,improving its mechanical properties.Zr addition refine Mg alloy grains.LPSO structure formation can been promoted by adding Zn into Mg alloy already containing Y and Er.Based on the above points,the Mg-4Y-2Er-2Zn-0.6Zr alloy containing various LPSO phases were developed.We also studied how morphology and type of LPSO affects damping and mechanical properties of the alloy.

    2.Experimental procedures

    Mg-4Y-2Er-2Zn-0.6Zr alloy was prepared from Mg and Zn ingots(both with purity>99.9wt.%)as well as from Mg-20%Y,Mg-15%Er and Mg-30%Zr master alloys.A vacuum induction furnace was used to melt the materials under the protection of pure Ar gas.The chemical composition of the alloy was confirme by inductively coupled plasma(ICP).After preparation,alloys were heated at 510 °C for 2 and 8 h,followed by water quenching.

    Scanning electron microscopy and transmission electron microscopy(SEM and TEM,respectively)were performed using JEOL JSM-7800F and JEM-2100 instruments,respectively.Tensile testing was performed on Instron 5869 machine at 1mm/min tensile rate.Damping capacity was measured by a dynamic mechanical analyzer(TA-DMAQ800)using a single-cantilever vibration mode.We usedQ?1=tanΦformula to calculate damping capacities,whereΦis the lag angle between the applied strain and the response stress.

    3.Results and discussion

    3.1.Microstructure

    Microstructures of alloys obtained under different conditions are shown in Fig.1.The alloys consisted mainly ofα-Mg matrix and of evenly distributed lamellar phases.The direction of the lamellar phase kept in one direction within one grain,but the directions within different grains were random.A large amount of the lamellar phases covered almost the wholeα-Mg matrix(see Fig.1a,1b).After annealing at 510 °C for 2h,lamellae became shorter,and their volume content decreased(see Fig.1c).Further prolonging the heat treatment duration to 8h,only the block phases existed at grain boundaries,the lamellar phases disappeared almost completely,as displayed in Fig.1d.In addition,the grain size almost remained unchanged in the different states.It can be inferred that the effective pinning of the grain boundaries by lamellar phases inside the grains can sharply restrict grain growth during heat treatment.

    Fig.2.TEM images of alloy A.(a)TEM image of lamellar LPSO in alloy A.Inset:corresponding diffraction pattern with the beam direction of[1120],(b)HRTEM images of the lamellar LPSO phase.(c)TEM image of the SFs in alloy A.Inset:corresponding diffraction pattern.

    Fig.3.TEM images of alloy C obtained under heat treatment at 510 °C for 8h.(a)TEM image of block LPSO in alloy C.Inset:corresponding diffraction pattern with the beam direction of[11ˉ20],(b)HRTEM images of the block LPSO phase.

    According to previous literature,it can be speculated that the lamellar phases within grains in Fig.1a and block phases at grain boundaries in Fig.1d should be LPSO phases[15].Fig.2a shows the TEM micrographs and corresponding selected area electron diffraction(SAED)pattern of the lamellae.The incident beam direction was parallel to theFig.2a shows typical characteristics of LPSO structure.Thirteen extra diffraction spots were visible between reflection corresponding to(0001)α?Mgand(0002)α?Mgplanes,which indicates presence of 14H LPSO structures[20].High resolution TEM(HRTEM)micrograph(shown in Fig.2b)demonstrated uniformly distributed lattice fringes~1.8nm apart,which corresponds to the characteristics observed for the 14H LPSO structures[21].Thinner lamellae inα-Mg matrix were also observed by TEM(see Fig.2c),which were basal plane stacking faults(SFs)based on SEAD.Therefore,the alloy A contained not only lamellar 14H LPSO phase,but also stacking faults.

    The microstructure of block LPSO is also characterized,as shown in Fig.3.Insert shown in Fig.3a shows SAED pattern containing fi e additional diffraction spots at the positions of n/6(0002)αspots(where n is an interval).Such spots are indicative the presence of 18R LPSO structure[22].Spacing between uniformly distributed lamellae was~1.6nm(see Fig.3b),which was very similar to characteristics of 18R structures[23].Therefore,this block LPSO phases were different from lamellar LPSO phases.

    The as-cast alloy included only lamellar 14H LPSO andα-Mg phases.During the heat treatment,phase morphology changed from lamellar to block,and 14H LPSO structures transformed into 18R LPSO ones.Other reports assumed that 18R LPSO is more unstable than 14H LPSO.As a result,18R LPSO structures can transform into 14H LPSO by minimizing shear strain energy[24].However,our results disagree with the previous literature.

    The lamellar 14H LPSO phases within the grains nearly disappeared during heat treatment.Thus,lamellar 14H LPSO phases were probably transformed into another phases.We attributed absence of lamellar 14H LPSO phases to dissolution of REE and Zn[25-27].14H LPSO to 18R LPSO transformation involves long-range diffusion of the REE and Zn,which results in formation of an additional atomic planes of the 18R LPSO structures.As we increased heat treatment duration,some REE and Zn atoms dissolved in theα-Mg matrix while some participated in a long-range diffusion,causing the transformation from 14H LPSO to 18R LPSO structures.

    Fig.4.Tensile stress-strain curves of Mg-4Y-2Er-2Zn-0.6Zr alloys obtained at room temperature and 120 °C.

    We assumed two possibilities for the transformation from 14H LPSO to 18R LPSO.The firs possibility is that the transformation from 14H to 18R is related not only to the solid solution and diffusion of REE and Zn atoms,but also to generation of stacking faults.The stacking faults accompanied by lamellar 14H LPSO phase were observed in the as-cast Mg-4Y-2Er-2Zn-0.6Zr alloy(see Fig.2c).The stacking faults played a determinative role in formation of blocklike 18R LPSO phases.Nucleation from stacking faults would happen more easily at low energy of the alloy stacking fault.Yttrium addition decreased stacking fault energy of the Mg-4Y-2Er-2Zn-0.6Zr alloy,promoting formation of the stacking faults.After heat treatment,REE and Zn,dissolved inα-Mg,might diffuse to these stacking faults.As a result,the block-like 18R LPSO phases may nucleate through stacking faults and grows at 510°C during heat treatment.Therefore,from the thermodynamics point of view,the stacking fault is in favor of the formation of the block-like 18R LPSO phases[28].

    The second possibility is that the 18R LPSO has been nucleated in the as-cast alloy,but it was very small and has not been observed.When the heat treatment time was prolonged,the atoms of REE and Zn were dissolved and diffused inα-Mg,the 18R LPSO phases grows.

    3.2.Mechanical properties

    Room temperature(RT)and 120 °C tensile stress data plotted as function of strain curves are presented in Fig.4 and the main values of mechanical properties are listed in Table 1.After heat treatment,lamellar 14H LPSO phase was almost completely transformed into block-like 18R LPSO phase.The best ultimate tensile strength(UTS)and elongation(EL)values were obtained after 8h heat treatment at 510°C:they increased from 183MPa and 16% to 215MPa and 22%,respectively.

    Table 1Ultimate tensile strength(UTS)and elongation(EL)values of Mg-4Y-2Er-2Zn-0.6Zr alloys tested at room temperature and at 120 °C.

    The strengthening of alloys can be mainly attributed to solid solution atoms,grain size,texture,secondary phase and morphology[29].Grain sizes of all alloys barely changed(see Fig.1).At the same time,the alloys have not been deformed and the grains did not demonstrate preferred orientation.After heat treatment,only the morphology and type of LPSO phase and solid solution content in the alloy changed signifi cantly.Therefore,the presence of secondary phase and solid solution might be the critical factors for the improvement of mechanical properties.The results in Table 1 can represent the effects of different morphology and types of LPSO phase and the number of solid solution atoms on mechanical alloy properties.

    Morphology and formation mechanism of 14H and 18R LPSO phases are quite different,causing different strengthening effects.In the as-cast alloy,during the tensile testing,micro-cracks were inclined to nucleate and propagate at the lamellar 14H LPSO/α-Mg interface.Thus,presence of high amount of lamellar phases prior to the heat treatment would impair strength and elongation.On the other hand,one possibility is that the 18R LPSO phase possessed high hardness and modulus,which creates a high potential for dislocation movement suppression and even prevention[30],[31].Second,block 18R LPSO phases located at the grain boundaries(as shown in Fig.1d)minimized grain boundary mobility,which typically causes accumulation of dislocations.Additionally,18R LPSO/α-Mg interface was coherent,which can provide a strong barrier for the basal gliding dislocations,causing strengthening[32].Formation of block 18R LPSO phase increased critical resolved shear stress(CRSS)of the basal plane so that the non-basal<c+a>slip was activated during the strain.This phenomenon was responsible for improved ductility of alloy C.Presence of the block-like 18R LPSO phases greatly improved strength and plasticity.Therefore,the 18R LPSO phase was responsible for improved strengthening and toughening phase of alloy C.In addition,after heat treatment,some of RE and Zn atoms were solid dissolved into theα-Mg matrix,the presence of solid solution atoms restricted dislocation mobility,and plays an important role of solid-solution strengthening.The dominant strengthening mechanisms of alloy C can be also attributed to the solid solution presence in the alloy.

    Fig.5.Dependence of the damping capacity of Mg-4Y-2Er-2Zn-0.6Zr alloys on strain amplitude at room temperature.

    Fig.4 also presents 120°C tensile stress data as function of strain.Compared to the room temperature data,alloy C possessed a lower UTS by approximately 9% and a higher EL by approximately 12.5% at 120 °C.Since the LPSO phases possess excellent thermal stability,even at elevated temperature,they can slow down or even stop dislocation propagation and inhibit grain boundary sliding[33].This explains better mechanical properties of alloy C at elevated temperature.Therefore,magnesium alloys with block-like 18R LPSO phases may be one potential structural material for elevated temperature applications.Thus,presence of block 18R LPSO phases was critical for improvement of alloy mechanical properties.

    3.3.Damping capacities

    Damping capacities of Mg-4Y-2Er-2Zn-0.6Zr alloys obtained under different conditions plotted as function of the strain had two distinct regions(see Fig.5).In the frst part,the damping value almost did not depend on the strain amplitude when the strain was below a critical value.Under different heat treatment conditions,damping values of the alloys were similar.However,at strain amplitude in the second part above the critical value,the damping values increased as strain increased.In the region with high strain values,alloy heated at 510 °C for 8h showed the best damping capacity,while as-cast sample demonstrated the worst one.Metals with high damping ability are expected to have damping values above 0.01 in the low-strain regions[34].Damping capacities of all our alloys were above 0.01(see Fig.5),implying that all the studied alloys were high damping alloys.

    Generally,damping of magnesium alloys is related to dislocations.Alloy damping mechanism is described by the Granato-Lücke(G-L)dislocation movement theory as shown below[35]:

    whereρis dislocation density,FBis binding force between dislocations and the weak pinning points,LNandLCare average distanced between strong and weak pinning points,respectively;bis the Burgers vector andEis elastic modulus.

    Therefore,damping capacity of alloy is mainly attributed to solid solution atoms,grain size,texture,secondary phase and morphology.The main variables in this study are the morphology and type of LPSO phases,as well as the number of solid solution atoms.Based on the G-L theory,at a low strain-amplitude stage,energy dissipation is caused by the dislocation propagation between the weak pinning points.In this work,as heat treatment time increased,more solid solution formed,which became a source of weak pin-points on dislocation.Additionally,average dislocation lengths became shorter because of atoms participating in solid solution formation.Thus,as a result,damping capacity decreases at low strain regions.According to this theory,damping capacity of alloy C should be the lowest.But the fact is contradictory.As number of atoms participating in solid solution formation increased,the damping capacity did not decline.Therefore,damping capacity values were almost the same for all alloy samples.In the heat treatment process,not only the amount of solid solution atoms increased,but also the LPSO phase changed from the lamellar 14H to the block 18R.Thus,presence of block 18R LPSO phase improved alloy C damping capacity at low strain-amplitude stage,which balanced out negative effects of higher solid solution content.

    At strain amplitude being just above the critical value,the dislocation loops detach from the weak pinning points but remain attached by the strong pinning points.Thus,in our samples,LPSO phase acted as strong pinning points hindering dislocation movement.In the as-cast alloy,very dense lamellar 14H LPSO phases covered the whole matrix.At high strain amplitudes,lamellar phases can efficientl hinder dislocation movement,resulting in a low damping capacity.After the heat treatment,lamellar 14H LPSO phases transformed into block-like 18R LPSO phases,which reduced amount of strong pinning points and resulted in higher damping capacity.

    According to previous study[13],the unit cell of 14H has hexagonal structure with the lattice parameters a and c of 1.11 and 3.65nm,respectively.It also contains two twinned building blocks stacked in ABCA sequence.Orientation of the 14H phase relative to theα-Mg matrix can be described as 000114H/(0001)αand[0ˉ110]14H/[11ˉ20]α.Each building blocks has a shear component with respect to the alloy matrix phase.Arrangement of all building blocks is opposite to the shear direction.Hence,relative to theα-Mg matrix,14H generates no shear.However,the 18R LPSO phase has a monoclinic structure with lattice parameters a,b and c of 1.112nm,1.926nm and 4.689nm,respectively.Thus,coherent relationship of 18R phase and alloy matrix can be expressed as(001)18R/(0001)αand[010]18R/[11ˉ20]α.18R unit contains three building blocks,each with a shear component with respect to the matrix.All blocks are positioned in the same shear direction.Therefore,formation of 18R generates shear strain in the a-Mg matrix[36].The high shear strain between LPSO structures and theα-Mg matrix increases the damping capacities.It can be concluded that block 18R LPSO phases improved damping properties of Mg-alloy,while presence of lamellar 14H LPSO phases was not beneficia to their damping capacities.

    4.Conclusions

    (1)LPSO phases with various morphologies were obtained in Mg-4Y-2Er-2Zn-0.6Zr alloy,which initially consisted ofα-Mg and lamellar-like 14H LPSO phases.After being heated at 510 °C,these lamellar-like 14H LPSO phases gradually transferred into block-like 18R LPSO phases.

    (2)Structural transformation from 14H to 18R LPSO phases involved stacking fault formation in the as-cast alloy.Additionally,REE and Zn long-range diffusion occurred during heat treatment,which provided an additional atomic plane for formation of 18R phase.The block-like 18R LPSO phases can enhance mechanical and damping properties of the alloy.

    (3)After being heated at 510°C for 8h,alloy demonstrated the best damping capacity as well as mechanical properties at both room and elevated temperatures.

    Acknowledgments

    This paper was supported by National Natural Science Foundation of China(51671063,51771060,51871068,51971071),Domain Foundation of Equipment Advance Research of 13th Five-year Plan(61409220118)Heilongjiang Province Natural Science Foundation(LH2019E081,E2017030),the Fundamental Research Funds for the Central Universities(HEUCFG201834),Harbin City Application Technology Research and Development Project(2017RAQXJ032),Project of Mudanjiang normal university(GP2020004).

    男人操女人黄网站| 老汉色av国产亚洲站长工具| 欧美激情久久久久久爽电影 | 一本色道久久久久久精品综合| 久久香蕉激情| 国产av精品麻豆| 人成视频在线观看免费观看| 天堂中文最新版在线下载| 最近最新中文字幕大全免费视频| 亚洲精品中文字幕一二三四区 | 国产在视频线精品| 国产精品99久久99久久久不卡| 建设人人有责人人尽责人人享有的| 丁香六月天网| 国产一区有黄有色的免费视频| 亚洲精品美女久久久久99蜜臀| 久久天躁狠狠躁夜夜2o2o| 精品久久蜜臀av无| 无限看片的www在线观看| 午夜精品国产一区二区电影| 人人妻人人澡人人爽人人夜夜| 别揉我奶头~嗯~啊~动态视频| 久久国产精品人妻蜜桃| 亚洲精品国产区一区二| 欧美黄色片欧美黄色片| 如日韩欧美国产精品一区二区三区| 国产亚洲午夜精品一区二区久久| 麻豆成人av在线观看| av欧美777| 亚洲七黄色美女视频| 黄色片一级片一级黄色片| 两个人看的免费小视频| 精品午夜福利视频在线观看一区 | av免费在线观看网站| 成年人午夜在线观看视频| 9热在线视频观看99| 亚洲专区字幕在线| 老司机在亚洲福利影院| 国产亚洲av高清不卡| 12—13女人毛片做爰片一| 999久久久国产精品视频| 亚洲伊人色综图| 久久精品国产亚洲av香蕉五月 | 亚洲精品粉嫩美女一区| 亚洲一区二区三区欧美精品| 人人澡人人妻人| 日韩一区二区三区影片| 欧美日本中文国产一区发布| 久久这里只有精品19| 丝袜美足系列| 久久久国产欧美日韩av| 亚洲九九香蕉| 欧美另类亚洲清纯唯美| 国产视频一区二区在线看| 一区福利在线观看| 91国产中文字幕| 欧美久久黑人一区二区| 国产欧美日韩一区二区三区在线| 成在线人永久免费视频| 亚洲国产欧美在线一区| 下体分泌物呈黄色| 国产精品二区激情视频| 亚洲国产av影院在线观看| 美女福利国产在线| 日韩欧美国产一区二区入口| 日本a在线网址| 久久精品国产99精品国产亚洲性色 | 国产在线精品亚洲第一网站| 在线观看免费视频日本深夜| 十八禁网站网址无遮挡| 精品国产一区二区久久| 在线十欧美十亚洲十日本专区| 在线观看一区二区三区激情| av超薄肉色丝袜交足视频| 熟女少妇亚洲综合色aaa.| 色婷婷久久久亚洲欧美| 一区二区日韩欧美中文字幕| 亚洲色图 男人天堂 中文字幕| 人人澡人人妻人| 免费在线观看影片大全网站| 亚洲性夜色夜夜综合| 18禁黄网站禁片午夜丰满| 男男h啪啪无遮挡| 男人舔女人的私密视频| 中文字幕另类日韩欧美亚洲嫩草| 丰满人妻熟妇乱又伦精品不卡| 欧美成人午夜精品| 在线天堂中文资源库| 99精品久久久久人妻精品| 中文字幕av电影在线播放| 亚洲 国产 在线| 久久精品人人爽人人爽视色| 国产单亲对白刺激| 女同久久另类99精品国产91| 女性生殖器流出的白浆| av网站在线播放免费| 成年版毛片免费区| 两个人免费观看高清视频| 99riav亚洲国产免费| 淫妇啪啪啪对白视频| 妹子高潮喷水视频| 女人久久www免费人成看片| 国产一区二区在线观看av| 日韩免费高清中文字幕av| 搡老岳熟女国产| 母亲3免费完整高清在线观看| 国产亚洲午夜精品一区二区久久| 一本色道久久久久久精品综合| 久久人人爽av亚洲精品天堂| 国产深夜福利视频在线观看| 人成视频在线观看免费观看| 精品少妇久久久久久888优播| 久久久久久久国产电影| 性色av乱码一区二区三区2| 人妻久久中文字幕网| 高潮久久久久久久久久久不卡| av网站在线播放免费| 久久久国产精品麻豆| 国产成人精品久久二区二区91| 精品一区二区三区四区五区乱码| 制服人妻中文乱码| 超碰成人久久| 国产无遮挡羞羞视频在线观看| 黄色 视频免费看| 日韩视频在线欧美| 国产精品自产拍在线观看55亚洲 | 国产欧美日韩一区二区三| 午夜福利,免费看| 亚洲欧美一区二区三区黑人| 波多野结衣一区麻豆| 美女扒开内裤让男人捅视频| 亚洲 欧美一区二区三区| a级毛片黄视频| 老司机靠b影院| 久久精品熟女亚洲av麻豆精品| 国产午夜精品久久久久久| 这个男人来自地球电影免费观看| 日韩中文字幕视频在线看片| 亚洲av片天天在线观看| 久久久久久久大尺度免费视频| 精品人妻在线不人妻| 汤姆久久久久久久影院中文字幕| 咕卡用的链子| 久久中文看片网| 精品国产乱码久久久久久小说| 9191精品国产免费久久| 国产xxxxx性猛交| 最新的欧美精品一区二区| 国产在线精品亚洲第一网站| 午夜福利视频在线观看免费| 色精品久久人妻99蜜桃| 精品国产乱子伦一区二区三区| 男人舔女人的私密视频| 久久久水蜜桃国产精品网| 日本黄色日本黄色录像| 老司机深夜福利视频在线观看| 亚洲欧美一区二区三区久久| 老熟妇乱子伦视频在线观看| 狠狠精品人妻久久久久久综合| 久久精品国产亚洲av香蕉五月 | 岛国毛片在线播放| 色精品久久人妻99蜜桃| 亚洲人成电影免费在线| 久久ye,这里只有精品| 99国产精品一区二区三区| 12—13女人毛片做爰片一| 天堂动漫精品| 午夜精品久久久久久毛片777| av电影中文网址| 久久亚洲精品不卡| 亚洲国产av影院在线观看| 老熟妇乱子伦视频在线观看| 十八禁网站网址无遮挡| 亚洲欧洲日产国产| 成年版毛片免费区| 悠悠久久av| 怎么达到女性高潮| 香蕉久久夜色| 伊人久久大香线蕉亚洲五| 美女高潮喷水抽搐中文字幕| 亚洲色图 男人天堂 中文字幕| 看免费av毛片| av线在线观看网站| 肉色欧美久久久久久久蜜桃| 久久精品国产99精品国产亚洲性色 | 18禁国产床啪视频网站| 高清黄色对白视频在线免费看| 一本色道久久久久久精品综合| 丰满少妇做爰视频| 女人被躁到高潮嗷嗷叫费观| 国产伦理片在线播放av一区| 久久天躁狠狠躁夜夜2o2o| 午夜久久久在线观看| 一边摸一边抽搐一进一出视频| 97在线人人人人妻| 免费在线观看完整版高清| 成在线人永久免费视频| 少妇的丰满在线观看| 天堂俺去俺来也www色官网| 亚洲精品美女久久av网站| 亚洲成国产人片在线观看| 亚洲专区国产一区二区| 国产av精品麻豆| av天堂久久9| 老熟女久久久| 成年人黄色毛片网站| 中文字幕精品免费在线观看视频| 国产午夜精品久久久久久| 一级片'在线观看视频| 999久久久精品免费观看国产| 日韩视频一区二区在线观看| 亚洲国产av影院在线观看| 九色亚洲精品在线播放| 日韩熟女老妇一区二区性免费视频| 亚洲国产欧美在线一区| 午夜视频精品福利| 最新的欧美精品一区二区| 亚洲中文日韩欧美视频| 人妻一区二区av| 一本色道久久久久久精品综合| 一区二区三区激情视频| 中文字幕人妻丝袜制服| 日日爽夜夜爽网站| 欧美老熟妇乱子伦牲交| 国产男女内射视频| 极品少妇高潮喷水抽搐| 别揉我奶头~嗯~啊~动态视频| 手机成人av网站| 国产一区二区激情短视频| 国产在线免费精品| 欧美中文综合在线视频| 日本五十路高清| 亚洲一区二区三区欧美精品| 色婷婷久久久亚洲欧美| 俄罗斯特黄特色一大片| 国产av国产精品国产| 在线观看免费视频网站a站| 热99re8久久精品国产| 在线观看66精品国产| 亚洲精品国产精品久久久不卡| 欧美日韩福利视频一区二区| 精品午夜福利视频在线观看一区 | 男女下面插进去视频免费观看| 国产极品粉嫩免费观看在线| 日日爽夜夜爽网站| 大型黄色视频在线免费观看| 90打野战视频偷拍视频| 亚洲国产av影院在线观看| 一区二区三区乱码不卡18| 极品少妇高潮喷水抽搐| 黄频高清免费视频| 欧美成人免费av一区二区三区 | 亚洲精品久久午夜乱码| 亚洲中文日韩欧美视频| 国产精品电影一区二区三区 | 国产视频一区二区在线看| 啦啦啦免费观看视频1| 久久天躁狠狠躁夜夜2o2o| 青青草视频在线视频观看| 亚洲伊人色综图| 99精国产麻豆久久婷婷| 免费不卡黄色视频| 久热爱精品视频在线9| 亚洲成av片中文字幕在线观看| 成人手机av| 少妇猛男粗大的猛烈进出视频| 新久久久久国产一级毛片| 欧美激情高清一区二区三区| 精品久久蜜臀av无| 亚洲色图av天堂| 久久精品aⅴ一区二区三区四区| 免费观看人在逋| 欧美另类亚洲清纯唯美| 麻豆乱淫一区二区| 国产精品二区激情视频| 亚洲一区二区三区欧美精品| 国产人伦9x9x在线观看| 亚洲精品国产区一区二| 日韩熟女老妇一区二区性免费视频| 亚洲成a人片在线一区二区| 亚洲专区字幕在线| 国产男女超爽视频在线观看| 人人澡人人妻人| 精品一品国产午夜福利视频| 91麻豆av在线| 国产野战对白在线观看| 精品久久久久久电影网| 三上悠亚av全集在线观看| 麻豆av在线久日| 免费日韩欧美在线观看| 男女之事视频高清在线观看| 香蕉久久夜色| 叶爱在线成人免费视频播放| 黑人操中国人逼视频| 99在线人妻在线中文字幕 | 侵犯人妻中文字幕一二三四区| 欧美激情高清一区二区三区| 美国免费a级毛片| 国产精品.久久久| 精品一区二区三区av网在线观看 | 亚洲精品乱久久久久久| 精品亚洲成国产av| 国产一区二区在线观看av| 黄色 视频免费看| 亚洲人成电影观看| 亚洲精品成人av观看孕妇| 国产福利在线免费观看视频| 欧美性长视频在线观看| 精品免费久久久久久久清纯 | 亚洲成人免费av在线播放| av福利片在线| 狠狠精品人妻久久久久久综合| 国产色视频综合| 欧美精品亚洲一区二区| 国产精品久久久久久人妻精品电影 | 国产欧美日韩一区二区三| 久久久国产一区二区| 日韩成人在线观看一区二区三区| 操美女的视频在线观看| 一级黄色大片毛片| 久久久精品免费免费高清| 日本欧美视频一区| 国产91精品成人一区二区三区 | 欧美性长视频在线观看| 日本精品一区二区三区蜜桃| 午夜精品久久久久久毛片777| 国产精品熟女久久久久浪| 日韩欧美一区二区三区在线观看 | 一区二区三区精品91| 超碰成人久久| 成年人免费黄色播放视频| 人人妻人人澡人人看| a级毛片黄视频| 一二三四社区在线视频社区8| 青草久久国产| 日韩免费高清中文字幕av| 精品一区二区三卡| 欧美成狂野欧美在线观看| 757午夜福利合集在线观看| 国产精品九九99| 免费久久久久久久精品成人欧美视频| 91字幕亚洲| 91国产中文字幕| www日本在线高清视频| 国产在线免费精品| 色尼玛亚洲综合影院| 老汉色∧v一级毛片| 久久人妻熟女aⅴ| 成人精品一区二区免费| av视频免费观看在线观看| 一本色道久久久久久精品综合| 蜜桃国产av成人99| 99国产精品一区二区蜜桃av | 黑人操中国人逼视频| 欧美老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 亚洲三区欧美一区| 亚洲欧美一区二区三区黑人| 看免费av毛片| av视频免费观看在线观看| 免费不卡黄色视频| 超碰97精品在线观看| 日本a在线网址| 成人精品一区二区免费| 1024香蕉在线观看| 久久久久久亚洲精品国产蜜桃av| 精品少妇一区二区三区视频日本电影| 日韩熟女老妇一区二区性免费视频| av天堂久久9| 国产日韩欧美在线精品| 高清视频免费观看一区二区| 欧美成狂野欧美在线观看| 国产精品久久久久久精品电影小说| 国产成人精品在线电影| 黑人欧美特级aaaaaa片| 丝袜喷水一区| 青草久久国产| 搡老熟女国产l中国老女人| 一本一本久久a久久精品综合妖精| 最新在线观看一区二区三区| 精品一区二区三区视频在线观看免费 | 热99久久久久精品小说推荐| 精品久久久久久电影网| 一二三四在线观看免费中文在| 国产一区二区激情短视频| 精品第一国产精品| 亚洲国产看品久久| 一进一出抽搐动态| 成年版毛片免费区| 视频区欧美日本亚洲| 女人精品久久久久毛片| 国产亚洲av高清不卡| 大陆偷拍与自拍| 啦啦啦在线免费观看视频4| 欧美变态另类bdsm刘玥| 在线av久久热| 日韩中文字幕欧美一区二区| 日韩视频一区二区在线观看| 丰满人妻熟妇乱又伦精品不卡| av线在线观看网站| 18在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 亚洲成人国产一区在线观看| 国产精品亚洲av一区麻豆| 婷婷成人精品国产| 高清黄色对白视频在线免费看| 亚洲精品久久午夜乱码| 久久精品aⅴ一区二区三区四区| 久久久国产成人免费| 欧美国产精品va在线观看不卡| 19禁男女啪啪无遮挡网站| 色尼玛亚洲综合影院| 天天躁夜夜躁狠狠躁躁| 18禁美女被吸乳视频| 99国产精品99久久久久| 国产精品久久久av美女十八| 性少妇av在线| 纯流量卡能插随身wifi吗| 嫁个100分男人电影在线观看| 免费日韩欧美在线观看| a级毛片在线看网站| 少妇 在线观看| 91国产中文字幕| 一区二区三区激情视频| 久久久久久久久久久久大奶| 12—13女人毛片做爰片一| 亚洲精品一卡2卡三卡4卡5卡| 啦啦啦 在线观看视频| 正在播放国产对白刺激| 亚洲第一av免费看| 最黄视频免费看| 亚洲熟女毛片儿| 69av精品久久久久久 | 国产免费av片在线观看野外av| 亚洲国产av新网站| 不卡一级毛片| 一级片免费观看大全| 国产精品久久久久成人av| 国产精品一区二区在线观看99| 淫妇啪啪啪对白视频| 精品乱码久久久久久99久播| 日日摸夜夜添夜夜添小说| 精品久久久久久久毛片微露脸| 欧美人与性动交α欧美软件| 1024视频免费在线观看| 欧美日韩亚洲高清精品| 免费不卡黄色视频| av欧美777| 久久国产精品人妻蜜桃| 久久久国产精品麻豆| 中文字幕精品免费在线观看视频| 一级,二级,三级黄色视频| 999久久久精品免费观看国产| 一进一出抽搐动态| 啦啦啦免费观看视频1| 丰满人妻熟妇乱又伦精品不卡| 高清视频免费观看一区二区| 9191精品国产免费久久| 欧美精品一区二区大全| 丰满饥渴人妻一区二区三| 美女主播在线视频| 免费黄频网站在线观看国产| √禁漫天堂资源中文www| 男女床上黄色一级片免费看| 黑人操中国人逼视频| 大型av网站在线播放| 国产视频一区二区在线看| 中文字幕人妻熟女乱码| 91成人精品电影| 亚洲欧洲日产国产| 国产在线视频一区二区| 欧美日韩国产mv在线观看视频| 男女下面插进去视频免费观看| 亚洲熟女毛片儿| 国产国语露脸激情在线看| 天天躁狠狠躁夜夜躁狠狠躁| 国产高清国产精品国产三级| 在线天堂中文资源库| netflix在线观看网站| 纵有疾风起免费观看全集完整版| 久久久久久免费高清国产稀缺| 日本wwww免费看| 国产日韩欧美在线精品| 9色porny在线观看| 国产av精品麻豆| 97人妻天天添夜夜摸| 超色免费av| 自线自在国产av| 国产亚洲欧美精品永久| 亚洲精品美女久久久久99蜜臀| 久久精品国产综合久久久| 久久亚洲真实| 日韩免费av在线播放| 大码成人一级视频| 日本精品一区二区三区蜜桃| 一本久久精品| 国产黄色免费在线视频| 日韩制服丝袜自拍偷拍| 国产男女内射视频| 国产欧美亚洲国产| 757午夜福利合集在线观看| 成人手机av| 国产男靠女视频免费网站| 多毛熟女@视频| 成年人免费黄色播放视频| 亚洲专区字幕在线| 亚洲五月婷婷丁香| 国产男靠女视频免费网站| 性少妇av在线| 91成人精品电影| 两人在一起打扑克的视频| 国产野战对白在线观看| 免费观看av网站的网址| 久久精品亚洲精品国产色婷小说| 免费观看人在逋| 免费日韩欧美在线观看| 久久99一区二区三区| 搡老熟女国产l中国老女人| 国产精品av久久久久免费| 亚洲欧美一区二区三区久久| 国产成人精品久久二区二区91| 超碰97精品在线观看| 欧美黄色淫秽网站| 人妻一区二区av| 午夜福利影视在线免费观看| 桃红色精品国产亚洲av| 人人妻,人人澡人人爽秒播| 国产激情久久老熟女| 19禁男女啪啪无遮挡网站| 久久久久网色| 美女主播在线视频| 国产真人三级小视频在线观看| 黄色怎么调成土黄色| 天堂中文最新版在线下载| 国产无遮挡羞羞视频在线观看| 一本色道久久久久久精品综合| 免费在线观看完整版高清| 午夜福利影视在线免费观看| 国产精品成人在线| 国产成人系列免费观看| 91老司机精品| 免费女性裸体啪啪无遮挡网站| 久久中文看片网| 一本综合久久免费| 欧美乱妇无乱码| 在线观看人妻少妇| 久久人妻av系列| 狠狠婷婷综合久久久久久88av| 日本黄色视频三级网站网址 | 99国产精品99久久久久| 中亚洲国语对白在线视频| 狠狠精品人妻久久久久久综合| 午夜久久久在线观看| 成人免费观看视频高清| 成年版毛片免费区| 国产成人影院久久av| 一边摸一边做爽爽视频免费| 免费人妻精品一区二区三区视频| 日本黄色视频三级网站网址 | 国产成人影院久久av| 日韩中文字幕欧美一区二区| 青草久久国产| 成人av一区二区三区在线看| 18禁黄网站禁片午夜丰满| 久久精品国产a三级三级三级| 日本撒尿小便嘘嘘汇集6| 国产野战对白在线观看| 精品久久蜜臀av无| 久久亚洲精品不卡| 久久影院123| 亚洲精品美女久久av网站| 一区二区三区国产精品乱码| 国内毛片毛片毛片毛片毛片| 热99国产精品久久久久久7| 国产成人精品久久二区二区91| 亚洲欧美精品综合一区二区三区| 亚洲av国产av综合av卡| 国产精品久久久久久精品古装| 欧美日韩福利视频一区二区| 亚洲精品在线观看二区| 最新在线观看一区二区三区| 成年动漫av网址| 久久久久精品国产欧美久久久| 高清视频免费观看一区二区| 啦啦啦视频在线资源免费观看| 亚洲av欧美aⅴ国产| 亚洲 国产 在线| 久久午夜综合久久蜜桃| 国产亚洲精品久久久久5区| 国产精品久久久久久精品古装| 熟女少妇亚洲综合色aaa.| 国产精品一区二区在线观看99| 建设人人有责人人尽责人人享有的| 中文字幕色久视频| 美女高潮到喷水免费观看| 在线观看66精品国产| 欧美黄色淫秽网站| 在线天堂中文资源库| 变态另类成人亚洲欧美熟女 | 他把我摸到了高潮在线观看 | 久久精品亚洲av国产电影网| 天天影视国产精品| 丁香六月欧美| 亚洲av国产av综合av卡| 国产一区有黄有色的免费视频| 丁香六月欧美| 汤姆久久久久久久影院中文字幕| 国产日韩欧美在线精品| 少妇猛男粗大的猛烈进出视频| 欧美亚洲 丝袜 人妻 在线| 久久国产精品男人的天堂亚洲| 午夜福利视频精品| 国产黄频视频在线观看| 午夜福利欧美成人| netflix在线观看网站|