• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Predicting and controlling interfacial microstructure of magnesium/aluminum bimetallic structures for improved interfacial bonding

    2020-12-18 11:24:18ZingZhuRenhiShiAndrewKlrnerAlnLuoYiqingChen
    Journal of Magnesium and Alloys 2020年3期

    Zing Zhu,Renhi Shi,Andrew D.Klrner,d,Aln A.Luo,c,?,Yiqing Chen

    a Materials Science and Engineering,The Ohio State University,Columbus,OH,USA bMaterials Science and Engineering,Hefei University of Technology,Hefei,Anhui,China

    c Integrated Systems Engineering,The Ohio State University,Columbus,OH,USA

    d now at M Cubed Technologies,Newark,DE,USA

    Received 12 January 2020;received in revised form 29 February 2020;accepted 9 March 2020 Available online 27 May 2020

    Abstract In this study,an overcasting process followed by a low-temperature(200°C)annealing schedule has been developed to bond magnesium to aluminum alloys.ProCAST software was used to optimize the process parameters during the overcasting process which lead to Mg/Al bimetallic structures to be successfully produced without formation of Mg-Al intermetallic phases.Detailed microstructure evolution during annealing,including the formation and growth of Al-Mg interdiffusion layer and intermetallic phases(Al12Mg17 and Al3Mg2),was experimentally observed for the frst time with direct evidence,and predicted using Calculation of Phase Diagrams(CALPHAD)modeling.Maximum interfacial strength was achieved when the interdiffusion layer formed at the Mg/Al interface reached a maximum thickness the without formation of brittle intermetallic compounds.The precise diffusion modeling of the Mg/Al interface provides an efficien way to optimize and control the interfacial microstructure of Mg/Al bimetallic structures for improved interfacial bonding.? 2020 Published by Elsevier B.V.on behalf of Chongqing University.This is an open access article under the CC BY-NC-ND license.(http://creativecommons.org/licenses/by-nc-nd/4.0/)Peer review under responsibility of Chongqing University

    Keywords:Bimetallic structure;Interfacial bonding;CALPHAD and diffusion modeling;Aluminum alloys;Magnesium alloys.

    1.Introduction

    Lightweight aluminum(Al)and magnesium(Mg)alloys are increasingly used in transportation,electronics and energy industries due to their excellent specifi properties,which offer significan mass savings compared with iron and steel components[1,2].However,each metal has its own unique properties;Mg has a high damping capacity and good castability,while Al has high stiffness and good creep resistance.Typically,a single metal cannot simultaneously meet the complex performance and low cost/mass requirements in modern industry.Bimetallic structures combining Al and Mg alloys often provide better solutions than a monolithic alloy[3].

    There are two main types of methods presently used to join Al and Mg alloys,but with limited success.One is fusion welding(such as arc welding and laser welding),which is highly efficien and can be applied to complex shaped parts[4,5].However,the formation of a thick layer of brittle Al-Mg intermetallic compounds(IMCs)such as Al3Mg2and Al12Mg17at the interface is a challenge for Mg/Al welding systems due to its detrimental effect on the interfacial properties.The other process for Mg/Al joining is solid-state welding(such as friction stir welding,diffusion bonding,accumulative roll bonding(ARB),and explosion cladding),which has a relatively thin IMC layer but low efficien y and limited applications[6-8].

    Overcasting is a key enabling technology that joins dissimilar metals by casting molten Al and Mg alloys onto dissimilar metal substrates(steel,Al or Mg).This can be achieved by a conventional casting process[9,10],such as gravity casting or high pressure die casting(HPDC)[11,12]which is a highefficien y manufacturing process capable of producing complex and thin-walled Al and Mg components.The“shrink-fit between the cast layer and the substrate,due to the large solidificatio shrinkage during overcasting,results in a good mechanical bond,but lack a metallurgical bond[10].For the Mg/Al overcasting system,the aluminum substrates can be treated by“electropolishing+anodizing”process[13,14]to remove the natural oxide fil[15]on Al surfaces and promote wetting between molten Mg and Al subtracts,promising strong metallurgical bond in the interface.

    In the last two decades,the design of new materials and development of manufacturing processes have gradually transitioned from the traditional“trial-and-error”methodology to computation-based approaches[16-19].CALPHAD(Calculation of Phase Diagrams)modeling[18-20],as part of Integrated Computational Materials Engineering(ICME)framework[21],has been used to understand the thermodynamic phase equilibria and kinetic atomic diffusion in materials design and process development for a wide range of structural and functional systems.

    In this study,a novel“overcasting+annealing”process has been developed to bond magnesium AM50(Mg-5wt.%Al-0.4wt.%Mn)and aluminum 6061(Al-1wt.%Mg-0.6wt.%Si-0.3wt.%Cu)alloys.Using the optimal process conditions obtained from the HPDC overcasting process simulation,molten AM50 Mg alloy was firs cast around 6061 Al alloy rings.In an annealing process following overcasting,the AM50/6061 bimetallic structures were heated to a low temperature(200°C in this study)to control the diffusion layer while avoiding the formation of intermetallic phases.This process combines the advantages of HPDC process(low cost,high efficien y and the ability of producing complex shapes)and diffusion bonding(controllable IMC layer thickness)to improve the mechanical properties of Mg/Al bimetallic structures.Diffusion modeling using CALPHAD(Calculation of Phase Diagrams)software and an open-source Python library code,named“pydiffusion”[22]were used to predict the formation and growth of Mg-Al diffusion layer and intermetallic phases.Lastly,the simulations results were validated by experiments.

    2.Experimental procedures and simulation methods

    2.1.Die design and HPDC process parameters optimization

    Fig.1.Photographs of(a)HPDC die;and(b)Schematic of a vacuum-assisted HPDC system for Mg/Al overcasting experiments.

    Commercial magnesium AM50 alloy(high-energy absorption,high elongation,and good castability)and aluminum 6061 alloy(good weldability,corrosion resistance,and low cost)were used in this study.Fig.1(a)shows a HPDC die designed to produce overcasting samples.Prior to casting,two 3.3 mm thick and 99 mm long 6061 Al tube inserts with diameters of 38.1 mm and 50.8 mm were put into the die and preheated.Fig.1(b)shows a schematic of a vacuumassisted HPDC system for producing Mg/Al overcasting samples.First,AM50 alloy was ladled into the injection chamber.After the plunger moved past the pouring hole and sealed off the die cavity,the vacuum valve was activated and a lower than atmospheric pressure was created in the die cavity.The cavity was evacuated continuously from the beginning of die fillin to the end.ProCAST is a finit element method(FEM)-based casting simulation package that can be used to predict the f ow field temperature fiel and various defects during casting,which can heighten productivity and make more economical benefit[23].In this study,ProCAST was used to optimize the process parameters(such as gate velocity,die and insert preheating temperatures and metal temperature)before conducting HPDC experiments.Based on these simulation results,Mg/Al overcasting samples were produced using a vacuum-assisted 250-ton Buhler HPDC machine at The Ohio State University.A Mg/Al overcasting sample was then annealed at 430°C for 4 hours for diffusion bonding,based on diffusion simulation results.Samples in as-cast and annealed were sectioned and polished to examine the cross-sectional interface microstructure using optical microscopy(OM).

    2.2.Diffusion behavior in low temperature annealing

    Too thick intermetallic layers usually have a detrimental effect on the mechanical properties of bimetallic joints[9],thus most research has focused on reducing IMC formation during processing at a temperature range of 350-475°C[24-26],so the reaction rate between Al and Mg is generally high and thick IMC layers can form even with very short time.Since diffusion coefficient are exponentially increased with temperature,high-temperature exposure of Al-Mg bimetallic samples would cause fast formation and high growth rate of IMC at the Al/Mg interface[27].Therefore,a significantl lower temperature of 200°C was selected in this study to provide better-controlled diffusion experiments to suppress/reduce the formation of IMCs during annealing.

    Fig.2.A schematic assembly of the AM50/6061 diffusion couple.

    In order to explore the interdiffusion and the growth of Mg-Al IMC in the Al and Mg interface at 200°C,a Mg/Al diffusion experiment was performed.Both 6061 and AM50 alloy sample blocks were prepared to the dimensions of 10×10×3 mm using electrical discharge machining.The sample surfaces were ground and polished starting with 180-grit SiC paper and finishin with 0.25-μm colloidal silica.Diffusion couples of 6061(Al)vs.AM50(Mg)were assembled in a steel jig consisting of two steel plates and four steel bolts,as shown in Fig.2.During the diffusion experiments,clamping was maintained to ensure good contact between the Al and Mg alloy blocks.Each diffusion couple assembly was placed in a furnace and annealed at 200°C for different durations.After annealing,the diffusion couples were quenched in water to retain their microstructure and compositional profiles The annealed diffusion couples were sectioned parallel to the direction of diffusion and metallographically prepared for scanning electron microscopy(SEM)observations.The interfacial microstructure and compositions of the diffusion couples were characterized using a FEI Apreo LoVac SEM equipped with an energy dispersive spectroscopy(EDS)system at the accelerating voltages of 5-10 kV and the beam currents 13-26 nA.

    2.3.Prediction of diffusion layer and intermetallic phases

    It is important to predict and control the formation of the Mg-Al diffusion layer and intermetallic phases because they are generally the“weakest link”and determine the strength of Al-Mg bimetallic structures.However,currently there is no precise and effective method to estimate the growth of intermetallic phases.In this study,CALPHAD(Calculation of Phase Diagrams)and diffusion modeling was used to simulate the diffusion process of Al and Mg atoms during annealing,which can help to clarify the formation mechanisms of intermetallic phases and provide critical guidance in determining the anneal temperature and time for optimal interfacial strength.

    2.4.Shear testing

    Fig.3 shows a schematic of the shear strength test setup for bimetallic samples,which uses a MTS EM test system.The samples were put on a fla supporting surface and the magnesium ring was pushed on by a steel cylindrical ring punch,concentric with the sample,at a cross-head displacement rate of 0.2 mm min?1.Then the shear strength of the interface with different thickness of diffusion layer or intermetallic phases layer were compared.

    Fig.3.Test setup of Mg/Al bimetallic samples.

    3.Results and discussion

    3.1.Overcasting process simulation

    Various combinations of HPDC process parameters were tested in overcasting simulation using ProCAST software.It was determined that an optimal set of parameters included a gate velocity of 40 m/s,die preheating temperature of 100°C,Al tube insert preheating temperature of 250°C,and molten Mg temperature of 690°C.In this process condition,Mg melt temperature was kept at the low end of desirable casting temperatures to reduce the possibility of reactions in Mg-Al interface while ensuring a good quality of Mg/Al overcasting samples.Fig.4(a)shows the liquid metal flui velocity during the die filling Under the high speed and high pressure,the time of f lling process is only 0.185 s.In this condition,the casting can be fille very well.Fig.4(b)shows the distribution of solid fraction during solidificatio process.The solid fraction is consistent across different Mg rings.The solidifi cation sequence indicates that there is sufficien melt in the gate to compensate when the rings are solidified thus helping form a qualifie bimetallic product.

    3.2.Interfacial microstructure of Mg/Al samples

    Fig.4.Overcasting process simulation using ProCAST:(a)metal flui velocity during die filling and(b)percent fraction of solid during solidifica ion.

    Fig.5.Photographs of(a)Mg/Al overcasting produced via vacuum-assisted HPDC;(b)cross-sectional interface of Mg/Al overcasting ring;(c)and(d)optical micrographs of as-cast interface and the interface after annealed at 430°C for 4 hours.

    The Mg/Al overcast samples were produced using a vacuum-assisted HPDC system using the optimal process conditions described in the last section,shown in Fig.5(a).The AM50 casting was fille completely,which is consistent with the simulation results.Fig.5(b)shows a cross-sectional interface photograph of two Mg/Al overcast rings,with Mg casting thicknesses of 1.5 mm and 3 mm formed on 6061 tubes.The AM50 alloy was evenly cast on the 6061 tubes surfaces without any detectable macro defects.Fig.5(c)shows that the Mg and Al alloys created a clean interface,but no IMC layer was found at the interface in as-cast conditions due to the fast solidificatio of molten Mg during the HPDC process.The nearly perfect fi found between Mg and Al is also called“shrink-fit which is attributed to the larger solidifica tion shrinkage of Mg compared to the solid-state shrinkage of Al substrate[9].Fig.5(d)shows that a continuous IMC layer of about 105μm thick formed at the interface of an overcast sample after being annealed at 430°C for 4 h.These results indicate that using this novel“overcasting+annealing”process can avoid the formation of excessively thick intermetallic layers in traditional bimetallic compound process while offering the possibility of precise control of the formation and growth of interdiffusion layer or intermetallic layer in the annealing process.

    3.3.Process of intermetallic growth

    The backscatter electron(BSE)SEM images in Fig.6(a)-(e)show the interfacial microstructure evolution during annealing of the diffusion couples at 200°C for 3,4,12,61 and 235 hours,respectively.Fig.6(f)shows the EDS results of element line scanning at the cross-sectional interface of each Al-Mg diffusion couple,which indicate the change of Al concentrations with diffusion time.For the diffusion couple annealed at 200°C for 3 hours,there is essentially no intermetallic phase formation observed at the interface,shown in Fig.6(a).However,the Al solute concentrations at 1-3 hours in Fig.6(f)has an obvious transition,suggesting that diffusion has occurred at the interface,as Al solute atoms gradually diffused into the Mg side while Mg solute atoms diffused into the Al side.Thus,an interdiffusion layer has grown to about 1.5μm into each side,forming a 3μm region of Al-Mg solute enrichment.

    Fig.6.Backscatter electron(BSE)SEM images of 6061/AM50 diffusion couple interface annealed at 200°C for(a)3 hours,(b)4 hours,(c)12 hours,(d)61 hours and(e)235 hours,respectively;and(f)mole fraction of Al at the diffusion couple interface annealed at 200°C for 1-61 hours.

    After annealing at 200°C for 4 hours,many small ovalshaped particles appeared at the interface,as shown by the black arrows in Fig.6(b).The thickness of particles measured perpendicular to the interface were 0.22μm to 0.74μm.Apparently,these particles were intermetallic phases formed from the Al and Mg block substrates from the enrichment of Al and Mg atoms due to diffusion.Then these particles gradually grew along the interface and eventually formed two continuous layers,as shown in Fig.6(c)for 12 hours and(d)for 61 hours.The thickness of these layers was 1.9μm at 12 hours and 4.2μm at 61 hours.Based on the EDX results in Fig.6(f)and Al-Mg equilibrium phase diagram analysis,these two layers were determined as the intermetallic phasesγ-Al12Mg17(near the Mg)andβ-Al3Mg2(near the Al).Therefore,the particles observed in Fig.6(b)were actually an initial stage ofγ-Al12Mg17andβ-Al3Mg2phase nucleation and growth.With the increase of the annealing time from 12 to 61 hours,it can be observed from Fig.6(d)that someβ-Al3Mg2particles formed at the interface and appeared in theγ-Al12Mg17side,suggesting thatβ-Al3Mg2phase might have nucleated in theγ-Al12Mg17layer.After a long annealing time of 235 hours,a sublayer ofβ-Al3Mg2phase eventually formed in theγ-Al12Mg17layer between the initialβ-andγ-phases,as shown in Fig.6(e).The thicknesses ofγ-Al12Mg17(3.11μm)andβ-Al3Mg2(2.87μm)layers as well as theβ-Al3Mg2sublayer(1.83μm)are greater than the original ones(1.65μm,1.78μm and 0.76μm,respectively),which means the growth mechanism ofβ-Al3Mg2is simultaneously transformedγ-Al12Mg17and fcc-Al intoβ-Al3Mg2.This is consistent with a previous report[28]that theβ-Al3Mg2phase has a higher growth rate.

    3.4.Diffusion simulation results

    In this study,the diffusional behavior of Al and Mg atoms was simulated via atomic diffusion mobility(Mi)[29]in DICTRA software[30].The atomic diffusion mobility database in Mg-Al binary system used in this work was taken from our recent work[31].Assuming the mono-vacancy mechanism for diffusion and neglecting the correlation factor,the tracer diffusion coefficienD?iwas related to the diffusion mobility by the Einstein relation:D?i=RT Mi.For a diffusion couple,the partial molar volume of each component was assumed to be a constant.The interdiffusion coefficien ?Dnpqwas related to the flu of elementpto the concentration gradient of elementq,while elementnis the dependent element.The interdiffusion coefficien also can be derived by:where Kronecker deltaδip=1 wheni=pandδip=0 otherwise.In the present low-temperature annealing simulation,an Al/Mg diffusion couple similar to the experimental diffusion couple was constructed in DICTRA software and shown in Fig.7(a).The simulated concentration profile at 200°C for 1-3 hours are shown in Fig.7(b)and agree well with experimental results,indicating no formation of IMC layer at 200°C for 1-3 hours and only the interdiffusion layer measuring about 1.5μm exists at each side of interface.

    After the formation of intermetallic phases at the Al/Mg interface,pydiffusion[22]was used to predict diffusion length and growth of Al-Mg intermetallic phases.pydiffusion is a powerful method for analyzing various types of diffusion,such as solid-solid and solid-liquid diffusion couples[32].The key features of pydiffusion include extraction of diffusion coefficient from diffusion couple experiments using forward simulation analysis(FSA)[22]and then fast simulation of multiphase diffusion.In order to determine the effectiveness of this method at different temperatures,the simulations and experiments of Mg/Al diffusion were performed at three temperatures,i.e.200°C,300°C and 400°C.First,three AM50/6061 diffusion couples were assembled and annealed at 200°C for 235 hours,300°C for 159 hours and 400°C for 100 hours,respectively.Fig.6(e),Fig.8(a)and(b)show the backscatter electron(BSE)SEM images for them,respectively.Based on the EDX results in Figs.8(e)and(f)and Al-Mg equilibrium phase diagram analysis,intermetallic phasesγ-Al12Mg17(near the Mg)andβ-Al3Mg2(near the Al)were determined in Fig.8(a)and(b).In addition,a thinε-Al30Mg23layer betweenγ-Al12Mg17andβ-Al3Mg2layers is also determined in Fig.8(a).It was observed that theε-Al30Mg23phase was present in the 300°C sample which was consistent with a prior report[33].Then the profile of Al concentrations were measured by EDS element line scanning and imported into the pydiffusion.The interdiffusion coefficient of all phases extracted by performing FSA in pydiffusion are shown in Fig.8(c)and compared with available literature data[27,34].The results for hcp-Mg,γ-Al12Mg17,β-Al3Mg2and fcc-Al calculated in this study are in general agreement with literature.The differences in hcp-Mg and fcc-Al may be due to the diffusion couples used in this study being AM60(95%Mg)/6061(99%Al)instead of pure Mg and Al.The extracted interdiffusion coefficient were then used to simulate the diffusion process for all experiments.The simulation results in Fig.8(d)-(f)show an excellent agreement with the experimental data on both diffusion profile and IMC thicknesses.These results validated that the simulation method used in this study can quickly predict the diffusion length and IMC phase growth of intermetallics for Al/Mg bimetallic structures at typical annealing temperature and times.

    Fig.7.(a)model of diffusion couple in DICTRA;and(b)concentration profile at 200°C for 1-3 hours.

    Fig.8.Backscatter electron(BSE)SEM images of 6061/AM50 diffusion couple interface annealed at(a)300°C for 159 hours and(b)400°C for 100 hours,respectively;(c)interdiffusion coeff cients as a function of the Al concentration for hcp-Mg,γ-Al12Mg17,ε-Al30Mg23,β-Al3Mg2 and fcc-Al phases obtained from this study in comparison with the results of Kulkarni and Luo[34]and Brennan et al.[27].Experimental and stimulated concentration profile at(d)200°C;(e)300°C;and(f)400°C for longer annealing time.

    Fig.9 shows the measured layer thickness is plotted against the square root of time(hours1/2)for bothγ-Al12Mg17andβ-Al3Mg2phases for the three temperatures.The parabolic increasing layer thickness for both intermetallic phases suggests diffusion-controlled growth mechanisms.Both the calculated and measured thicknesses of the IMC layer were~23μm after 15 mins at 400°C and~6μm after 15 mins at 300°C,which are thicker than the 0.7μm IMC layer after 4hrs at 200°C.We can conclude that the solute enrichment period is very short at 300°C and 400°C,suggesting the IMC layer is unavoidable in these high temperature conditions.Thus,a low annealing temperature of 200°C is a better choice for diffusion bonding in Mg/Al dissimilar joining to avoid the formation of IMC layers.

    Fig.9.Simulated layer thickness of IMC vs.diffusion time compared with experimental data.

    3.5.Interfacial microstructure and strength

    Fig.10 illustrates the overall interfacial microstructure evolution process of Al-Mg interdiffusion layer and intermetallic phase(γ-Al12Mg17andβ-Al3Mg2)formation during lowtemperature annealing and the corresponding shear strengths of the bimetallic samples.Fig.10(a)shows graduate enrichments of Mg atoms in Al and Al atoms in Mg at the interface,also called the“interdiffusion layer”,as a result of Mg-Al interdiffusion.When such enrichments reach critical concentrations,nucleation ofβ-Al3Mg2phase in the Al side andγ-Al12Mg17phase in Mg side will start at the interface simultaneously,and they fi closely with each other(Fig.10(b)).With continuing time,γ-Al12Mg17andβ-Al3Mg2particles grow along the interface and gradually thicken into the diffusion layer(Fig.10(c))and eventually they form a continuous IMC layer at the Mg/Al interface.Further continuing,β-Al3Mg2particles nucleate in theγ-Al12Mg17side and grow along the interface(Fig.10(d)).Theseβ-Al3Mg2particles will also thicken toward the Mg side,which is driven by the concentration gradients of Al and Mg and will eventually form aβ-Al3Mg2sublayer(Fig.10(e)).This indicates that the growth ofβ-Al3Mg2is toward both the Mg and Al sides simultaneously achieved by consumingγ-Al12Mg17and fcc-Al,while theγ-Al12Mg17phase grows only toward the Mg side by consuming hcp-Mg.

    Fig.10.Schematic illustration showing:(a)formation of Al-Mg interdiffusion layer;(b)nucleation ofγ-Al12Mg17 andβ-Al3Mg2 in hcp-Mg and fcc-Al,respectively;(c)growth of intermetallic phases along the interface;(d)nucleation ofβ-Al3Mg2 inγ-Al12Mg17;and(e)formation ofβ-Al3Mg2 sublayer and the thickening of IMC layer;and(f)corresponding interfacial shear strength.

    Fig.10(f)shows the shear strength measurements of bimetallic samples for various annealing conditions,corresponding to different stages of Al-Mg interdiffusion layer and intermetallic phase formation.The shear test setup is shown in Fig.3.The as-cast(untreated)sample only had a low strength of 1.4 MPa,while increasing annealing time resulted in significan increases in shear strength due to the interdiffusion of Al and Mg at the Mg/Al interface.The shear strength reached a peak value of 8.09 MPa when the interdiffusion layer is at its maximum at 200°C for 3 hours,after which it started to decrease due to the formation of brittle intermetallic phases.This result confirm that the formation of the interdiffusion layer instead of the intermetallic layer provides a higher joint strength in Al-Mg bimetallic structures.

    4.Concluding Remarks

    Mg/Al overcast samples without intermetallic phase formation were successfully produced by a vacuum-assisted HPDC system.Process simulation is an effective tool to optimize the process parameters in HPDC process.The low-temperature annealing(200°C in this study)following Mg/Al overcasting process can promote metallurgical bonding by forming a Mg-Al interdiffusion layer at the interface.Further annealing at this temperature will lead to the formation and growth of Al-Mg intermetallic phases(γ-Al12Mg17andβ-Al3Mg2),which should be avoided due to their brittleness and detrimental effect on strength.

    The low-temperature annealing also fully revealed detailed microstructure evolution for the frst time with direct evidence and presented the formation and growth of Mg-Al interdiffusion layer and intermetallic phases.This process involves:(1)formation of Al-Mg interdiffusion layer;(2)nucleation ofγ-Al12Mg17in hcp-Mg andβ-Al3Mg2in fcc-Al;(3)growth of intermetallic phases along the interface;(4)nucleation ofβ-Al3Mg2inγ-Al12Mg17;and(5)formation ofβ-Al3Mg2sublayer and the thickening of intermetallic phases layer.

    This research suggests that precise control of the annealing temperature/time after overcasting can provide optimum interfacial strength by maximizing the interdiffusion layer while minimizing or avoiding the intermetallic phase formation.Such a precise control requires accurate and reliable prediction of Mg-Al diffusion and IMC formation during annealing.CALPHAD modeling using DICTRA and pydiffusion codes proved efficien in predicting the diffusion profile and lengths in Mg/Al diffusion couple and bimetallic samples during annealing.Compared with the growth of Al-Mg intermetallic phases in different annealing temperatures(200°C,300°C and 400°C),the intermetallic phases are almost inevitable at 300°C and 400°C due to their high growth rates.The“overcasting+low temperature annealing”process as well as the diffusion simulation method provides an important technology for optimizing and controlling the interfacial microstructure of Mg/Al bimetallic castings for improved interfacial bonding.

    Declaration of Competing Interest

    None.

    Acknowledgements

    The authors gratefully acknowledge The Ohio State University(OSU)for supporting this research.Professor J-C Zhao and Dr.Zhangqi Chen of University of Maryland provided the support in using the pydiffusion code.Z.Zhu also expresses his gratitude to the China Scholarship Council for supporting his stay at OSU as a visiting scholar.Y.Chen and Z.Zhu are grateful to the support from the National Natural Science Foundation of China[grant number 51571080].

    午夜精品国产一区二区电影 | 尾随美女入室| 两性午夜刺激爽爽歪歪视频在线观看| 男女啪啪激烈高潮av片| 又粗又硬又长又爽又黄的视频 | 赤兔流量卡办理| 久久精品91蜜桃| 91aial.com中文字幕在线观看| 中文精品一卡2卡3卡4更新| 欧美成人一区二区免费高清观看| 啦啦啦啦在线视频资源| 大又大粗又爽又黄少妇毛片口| 一级黄色大片毛片| 亚洲av男天堂| 性色avwww在线观看| 老司机福利观看| 欧美日本视频| 看十八女毛片水多多多| 日本色播在线视频| 乱人视频在线观看| 麻豆av噜噜一区二区三区| 99久久精品一区二区三区| 欧美不卡视频在线免费观看| 久久99蜜桃精品久久| 亚洲内射少妇av| 插阴视频在线观看视频| 美女高潮的动态| 日韩大尺度精品在线看网址| 国产亚洲精品久久久久久毛片| 波多野结衣高清无吗| 免费不卡的大黄色大毛片视频在线观看 | 日韩视频在线欧美| 精品一区二区三区人妻视频| 中文精品一卡2卡3卡4更新| 日本一二三区视频观看| 亚洲在线观看片| 国产熟女欧美一区二区| 国产精品久久久久久亚洲av鲁大| 精品国产三级普通话版| 在线播放国产精品三级| 亚州av有码| 国产精品一区二区在线观看99 | 国产成人精品婷婷| 波多野结衣高清作品| 12—13女人毛片做爰片一| 国产色婷婷99| 成人欧美大片| 日韩,欧美,国产一区二区三区 | 国产高清三级在线| 国产成人午夜福利电影在线观看| 黄色一级大片看看| av.在线天堂| 久久久午夜欧美精品| 久久亚洲精品不卡| 久久人人爽人人爽人人片va| 嫩草影院新地址| 日本欧美国产在线视频| 久久99热6这里只有精品| 在线播放国产精品三级| 伦精品一区二区三区| 高清午夜精品一区二区三区 | 欧美3d第一页| 日本黄色片子视频| 免费电影在线观看免费观看| 边亲边吃奶的免费视频| 国产探花在线观看一区二区| 成人美女网站在线观看视频| 中出人妻视频一区二区| 一本精品99久久精品77| 国产av麻豆久久久久久久| 岛国毛片在线播放| 国产精品一区二区性色av| 国产精品福利在线免费观看| 色综合亚洲欧美另类图片| 97在线视频观看| 一个人观看的视频www高清免费观看| 99久国产av精品国产电影| 欧美成人精品欧美一级黄| av在线老鸭窝| 大又大粗又爽又黄少妇毛片口| 色综合色国产| 亚洲第一区二区三区不卡| av免费观看日本| 久久久久久国产a免费观看| 男插女下体视频免费在线播放| 国产精品一区www在线观看| 特大巨黑吊av在线直播| 麻豆一二三区av精品| 国产中年淑女户外野战色| 久久久久网色| 精品人妻一区二区三区麻豆| 变态另类成人亚洲欧美熟女| 日本与韩国留学比较| 欧美性猛交╳xxx乱大交人| 三级毛片av免费| 亚洲久久久久久中文字幕| 国产又黄又爽又无遮挡在线| 亚洲色图av天堂| 22中文网久久字幕| www.色视频.com| 精品久久国产蜜桃| 午夜免费激情av| 一级av片app| 午夜精品一区二区三区免费看| 久久久久国产网址| 波多野结衣高清无吗| 亚洲自偷自拍三级| 丝袜美腿在线中文| 99热全是精品| 亚洲av成人精品一区久久| 伦理电影大哥的女人| 神马国产精品三级电影在线观看| 亚洲18禁久久av| 亚洲精品久久国产高清桃花| 精品日产1卡2卡| kizo精华| 波多野结衣高清无吗| 深爱激情五月婷婷| 日本在线视频免费播放| 日韩一本色道免费dvd| 国产一区二区在线av高清观看| 久久久久久久午夜电影| 1000部很黄的大片| 日本与韩国留学比较| 一级毛片电影观看 | 亚洲美女视频黄频| 欧美一区二区亚洲| 亚洲四区av| 久久精品国产99精品国产亚洲性色| 乱码一卡2卡4卡精品| 伦理电影大哥的女人| 村上凉子中文字幕在线| 国产av不卡久久| 99国产精品一区二区蜜桃av| 狂野欧美白嫩少妇大欣赏| 十八禁国产超污无遮挡网站| 欧美人与善性xxx| 国产一区二区三区av在线 | 麻豆成人av视频| 久久欧美精品欧美久久欧美| 欧美一区二区国产精品久久精品| 插阴视频在线观看视频| 亚洲人与动物交配视频| 小蜜桃在线观看免费完整版高清| 12—13女人毛片做爰片一| 亚洲高清免费不卡视频| 国产美女午夜福利| 99热这里只有是精品50| 99久久九九国产精品国产免费| 国产av在哪里看| 九九久久精品国产亚洲av麻豆| 校园人妻丝袜中文字幕| 日本欧美国产在线视频| 国产精品麻豆人妻色哟哟久久 | 久久6这里有精品| 国产真实乱freesex| 免费观看精品视频网站| 亚洲国产精品合色在线| 精品人妻视频免费看| 国产精品国产三级国产av玫瑰| 舔av片在线| 国产精品一区www在线观看| 黄色欧美视频在线观看| 国产精品一区二区在线观看99 | 如何舔出高潮| 亚洲欧美成人精品一区二区| 三级经典国产精品| 哪个播放器可以免费观看大片| 亚洲国产欧美人成| 欧美激情在线99| 亚洲精品456在线播放app| 美女cb高潮喷水在线观看| 亚洲av熟女| 99热这里只有是精品在线观看| 日本一本二区三区精品| 国产黄片美女视频| 深夜a级毛片| 深爱激情五月婷婷| 久久久久性生活片| 国产在线男女| 国产女主播在线喷水免费视频网站 | 在线观看美女被高潮喷水网站| 国产精品美女特级片免费视频播放器| 欧美高清性xxxxhd video| 在线播放无遮挡| 亚洲真实伦在线观看| 欧美一区二区国产精品久久精品| 国产成人aa在线观看| 亚洲三级黄色毛片| 亚洲欧美成人综合另类久久久 | 欧美一级a爱片免费观看看| 2022亚洲国产成人精品| 日本一二三区视频观看| 婷婷亚洲欧美| 又粗又硬又长又爽又黄的视频 | 亚洲精品乱码久久久久久按摩| 日本av手机在线免费观看| 老师上课跳d突然被开到最大视频| 日日啪夜夜撸| 欧美成人一区二区免费高清观看| 国产成人一区二区在线| 色哟哟·www| 欧美色欧美亚洲另类二区| 欧美激情国产日韩精品一区| 国产老妇女一区| av在线老鸭窝| 黄色一级大片看看| 久久精品国产自在天天线| 最近中文字幕高清免费大全6| 六月丁香七月| 久久精品国产鲁丝片午夜精品| 欧美人与善性xxx| 亚洲精品日韩在线中文字幕 | 久99久视频精品免费| 日韩一区二区视频免费看| 日韩一本色道免费dvd| 久久精品综合一区二区三区| 午夜激情欧美在线| 人人妻人人看人人澡| 亚洲自拍偷在线| 最近中文字幕高清免费大全6| 久久草成人影院| 国产毛片a区久久久久| 五月伊人婷婷丁香| 国产高清有码在线观看视频| 99久国产av精品| 国产毛片a区久久久久| 成人国产麻豆网| 一区二区三区免费毛片| 精品久久久久久久久久久久久| 精品不卡国产一区二区三区| 深爱激情五月婷婷| 一级毛片aaaaaa免费看小| 日韩中字成人| 国产精品美女特级片免费视频播放器| 天堂中文最新版在线下载 | 老师上课跳d突然被开到最大视频| 国产亚洲5aaaaa淫片| 99久久精品国产国产毛片| 伊人久久精品亚洲午夜| 亚洲国产欧美人成| 久久久精品大字幕| 免费电影在线观看免费观看| 人妻久久中文字幕网| 精品人妻偷拍中文字幕| 日本av手机在线免费观看| 欧美潮喷喷水| 久久中文看片网| 国产v大片淫在线免费观看| 欧美一区二区精品小视频在线| 亚洲国产精品成人综合色| 免费一级毛片在线播放高清视频| 亚洲一级一片aⅴ在线观看| 99久国产av精品| 精品人妻偷拍中文字幕| 亚洲av熟女| 午夜精品一区二区三区免费看| 成人毛片60女人毛片免费| 蜜臀久久99精品久久宅男| 免费看a级黄色片| 久久久精品94久久精品| 嘟嘟电影网在线观看| av.在线天堂| 狂野欧美激情性xxxx在线观看| 欧美成人精品欧美一级黄| 人人妻人人澡人人爽人人夜夜 | 99久久精品国产国产毛片| 国产乱人偷精品视频| 在线观看免费视频日本深夜| 久久精品影院6| 麻豆精品久久久久久蜜桃| 不卡视频在线观看欧美| 变态另类丝袜制服| 乱系列少妇在线播放| 日本熟妇午夜| 欧美bdsm另类| 国产成人影院久久av| 国产伦精品一区二区三区四那| av在线观看视频网站免费| 久久午夜福利片| 国产成人午夜福利电影在线观看| 哪个播放器可以免费观看大片| 全区人妻精品视频| 有码 亚洲区| 欧美丝袜亚洲另类| 亚洲无线观看免费| 国产伦精品一区二区三区视频9| 性色avwww在线观看| 99久久精品一区二区三区| av国产免费在线观看| 精品国产三级普通话版| 天堂中文最新版在线下载 | 男人舔奶头视频| 久久精品综合一区二区三区| 色尼玛亚洲综合影院| 日韩人妻高清精品专区| 久久6这里有精品| 天堂网av新在线| 三级国产精品欧美在线观看| 色综合站精品国产| 美女 人体艺术 gogo| 久久亚洲国产成人精品v| 亚洲精品久久久久久婷婷小说 | 久久中文看片网| 麻豆乱淫一区二区| 黄色日韩在线| 亚洲熟妇中文字幕五十中出| 午夜激情欧美在线| 成年版毛片免费区| 国产av不卡久久| 麻豆av噜噜一区二区三区| 免费av不卡在线播放| 哪里可以看免费的av片| 91精品国产九色| 亚洲中文字幕日韩| 超碰av人人做人人爽久久| 亚洲天堂国产精品一区在线| 久久久久久久久大av| 国产精品蜜桃在线观看 | 1024手机看黄色片| 99久久久亚洲精品蜜臀av| 一级毛片我不卡| 岛国毛片在线播放| 99久久无色码亚洲精品果冻| 波野结衣二区三区在线| 亚洲精品久久国产高清桃花| 国产在线男女| 色综合站精品国产| 97超碰精品成人国产| 国产亚洲91精品色在线| 国产精品电影一区二区三区| 国产亚洲91精品色在线| 欧美潮喷喷水| 九色成人免费人妻av| 亚洲精品乱码久久久v下载方式| 深夜a级毛片| 成年免费大片在线观看| 亚洲精品久久久久久婷婷小说 | 欧洲精品卡2卡3卡4卡5卡区| 在线观看免费视频日本深夜| 中文字幕熟女人妻在线| 中文在线观看免费www的网站| 边亲边吃奶的免费视频| 欧美一区二区国产精品久久精品| 国产人妻一区二区三区在| 欧美+日韩+精品| 免费不卡的大黄色大毛片视频在线观看 | 变态另类成人亚洲欧美熟女| a级毛片免费高清观看在线播放| 别揉我奶头 嗯啊视频| 日本色播在线视频| 韩国av在线不卡| 成人亚洲欧美一区二区av| 一夜夜www| 国产伦精品一区二区三区四那| 男人舔女人下体高潮全视频| 在现免费观看毛片| 国产伦在线观看视频一区| 99热网站在线观看| 青春草国产在线视频 | 99在线人妻在线中文字幕| 国产精品伦人一区二区| 欧美一区二区精品小视频在线| 99riav亚洲国产免费| 人人妻人人澡人人爽人人夜夜 | 99热网站在线观看| 久久久久久久亚洲中文字幕| 深夜精品福利| 美女被艹到高潮喷水动态| 精品久久久久久久久av| 日韩欧美在线乱码| 欧美性猛交╳xxx乱大交人| 日日摸夜夜添夜夜添av毛片| 免费大片18禁| 黄色一级大片看看| 一区二区三区免费毛片| 精品熟女少妇av免费看| 精品欧美国产一区二区三| av在线蜜桃| 国产人妻一区二区三区在| 久久热精品热| 亚洲人与动物交配视频| 久久久午夜欧美精品| 久久精品国产亚洲网站| 国产亚洲5aaaaa淫片| 国产69精品久久久久777片| 亚洲真实伦在线观看| 国产亚洲欧美98| 国产一区二区三区av在线 | 日韩三级伦理在线观看| 国产av麻豆久久久久久久| 少妇的逼好多水| 午夜视频国产福利| 激情 狠狠 欧美| 伦精品一区二区三区| 日本爱情动作片www.在线观看| 人妻制服诱惑在线中文字幕| 欧美一区二区国产精品久久精品| 国产成人一区二区在线| 丝袜美腿在线中文| 成人特级黄色片久久久久久久| 久久午夜亚洲精品久久| 亚洲精品乱码久久久久久按摩| 免费在线观看成人毛片| av在线观看视频网站免费| 性欧美人与动物交配| 国产真实伦视频高清在线观看| 麻豆成人午夜福利视频| av在线观看视频网站免费| 一级av片app| 一区福利在线观看| 又黄又爽又刺激的免费视频.| 99久久精品热视频| 国产精品美女特级片免费视频播放器| 久久九九热精品免费| 日韩视频在线欧美| 久久99热这里只有精品18| 欧美bdsm另类| 热99re8久久精品国产| h日本视频在线播放| 成人漫画全彩无遮挡| 久久久精品大字幕| 久久亚洲精品不卡| 日本黄色片子视频| 亚洲中文字幕日韩| 亚洲国产精品成人综合色| 色5月婷婷丁香| 国产精品日韩av在线免费观看| 久久人妻av系列| 精华霜和精华液先用哪个| 国产日本99.免费观看| av天堂中文字幕网| av视频在线观看入口| 尾随美女入室| 97在线视频观看| 亚洲人成网站高清观看| 亚洲欧美成人综合另类久久久 | 国产日本99.免费观看| 国产精品综合久久久久久久免费| 成人无遮挡网站| 青春草视频在线免费观看| 我的女老师完整版在线观看| 亚洲不卡免费看| av在线观看视频网站免费| 久久精品人妻少妇| 国产成人a∨麻豆精品| av在线亚洲专区| 国产高清视频在线观看网站| 亚洲不卡免费看| 免费观看a级毛片全部| 免费在线观看成人毛片| 国产高潮美女av| 一本久久精品| 免费av不卡在线播放| 日日干狠狠操夜夜爽| 日韩成人伦理影院| 亚洲一级一片aⅴ在线观看| 老司机福利观看| 男人舔奶头视频| 国内精品宾馆在线| 日韩国内少妇激情av| 一个人看视频在线观看www免费| 精品午夜福利在线看| 中文字幕人妻熟人妻熟丝袜美| 亚洲成av人片在线播放无| 国内揄拍国产精品人妻在线| 丰满的人妻完整版| av视频在线观看入口| 日本成人三级电影网站| 久久九九热精品免费| 亚洲av中文av极速乱| 老司机福利观看| 亚洲欧洲国产日韩| 国内精品久久久久精免费| 国产成人精品婷婷| 日日摸夜夜添夜夜添av毛片| 午夜福利在线观看吧| 亚洲中文字幕一区二区三区有码在线看| 国产中年淑女户外野战色| 成人三级黄色视频| 中文在线观看免费www的网站| 成年女人永久免费观看视频| 久久久久免费精品人妻一区二区| 日韩av在线大香蕉| 国产免费一级a男人的天堂| 国产视频内射| 国产伦精品一区二区三区视频9| 大又大粗又爽又黄少妇毛片口| 免费看美女性在线毛片视频| 九草在线视频观看| 国产视频首页在线观看| 一级毛片久久久久久久久女| 国产单亲对白刺激| 免费看av在线观看网站| 亚洲欧美精品自产自拍| 亚洲va在线va天堂va国产| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品人妻久久久久久| 91麻豆精品激情在线观看国产| 日韩一区二区三区影片| 小蜜桃在线观看免费完整版高清| 只有这里有精品99| 国产淫片久久久久久久久| 免费av不卡在线播放| 中文字幕熟女人妻在线| 成人二区视频| 久久国产乱子免费精品| 国产精品一区www在线观看| 国产免费一级a男人的天堂| 一本久久精品| 婷婷精品国产亚洲av| 一个人观看的视频www高清免费观看| kizo精华| 色综合站精品国产| 欧美最黄视频在线播放免费| 亚洲熟妇中文字幕五十中出| 又黄又爽又刺激的免费视频.| 国产高清激情床上av| 九九爱精品视频在线观看| 亚洲成人中文字幕在线播放| 亚洲成a人片在线一区二区| 在线观看av片永久免费下载| 日本欧美国产在线视频| 黄色配什么色好看| 午夜亚洲福利在线播放| 在线播放无遮挡| or卡值多少钱| 亚洲人成网站在线观看播放| 亚州av有码| 天堂网av新在线| 亚州av有码| 亚洲丝袜综合中文字幕| 九色成人免费人妻av| 精品久久久久久成人av| 亚洲欧美日韩高清在线视频| 色吧在线观看| 国产又黄又爽又无遮挡在线| av又黄又爽大尺度在线免费看 | 青青草视频在线视频观看| 国产伦理片在线播放av一区 | 欧美极品一区二区三区四区| 3wmmmm亚洲av在线观看| 午夜福利成人在线免费观看| 美女大奶头视频| 中出人妻视频一区二区| 少妇被粗大猛烈的视频| 日本三级黄在线观看| 草草在线视频免费看| 亚洲第一电影网av| 免费电影在线观看免费观看| 成人美女网站在线观看视频| 日韩欧美一区二区三区在线观看| 国产单亲对白刺激| 婷婷六月久久综合丁香| 国产又黄又爽又无遮挡在线| av免费在线看不卡| av在线老鸭窝| 少妇的逼好多水| 波多野结衣巨乳人妻| 在线观看美女被高潮喷水网站| 亚洲,欧美,日韩| 免费看美女性在线毛片视频| 国产在线精品亚洲第一网站| 菩萨蛮人人尽说江南好唐韦庄 | 久99久视频精品免费| 亚洲精品日韩在线中文字幕 | 国产一区二区三区av在线 | 国内揄拍国产精品人妻在线| 直男gayav资源| 免费电影在线观看免费观看| 天堂网av新在线| 国产一区二区激情短视频| 欧美变态另类bdsm刘玥| 中国国产av一级| 久久久久久久久久成人| 又黄又爽又刺激的免费视频.| 国产精品三级大全| 国产亚洲精品av在线| 国产高清有码在线观看视频| 亚洲av二区三区四区| 国产亚洲精品久久久com| 男女啪啪激烈高潮av片| 国产日本99.免费观看| 波多野结衣高清无吗| 蜜桃亚洲精品一区二区三区| 成人国产麻豆网| 国产成人精品一,二区 | 国产伦理片在线播放av一区 | 校园春色视频在线观看| 搡女人真爽免费视频火全软件| 天堂影院成人在线观看| 丰满人妻一区二区三区视频av| 欧美成人精品欧美一级黄| 久久久午夜欧美精品| 人妻久久中文字幕网| 九九久久精品国产亚洲av麻豆| 中文字幕制服av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 麻豆av噜噜一区二区三区| 日韩精品青青久久久久久| 非洲黑人性xxxx精品又粗又长| 村上凉子中文字幕在线| 国产v大片淫在线免费观看| 热99在线观看视频| 在线播放国产精品三级| 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩高清在线视频| 淫秽高清视频在线观看| 91精品一卡2卡3卡4卡| 国产精品女同一区二区软件| 两性午夜刺激爽爽歪歪视频在线观看| 一个人观看的视频www高清免费观看| 一级黄色大片毛片| 男人和女人高潮做爰伦理| 亚洲成人久久性|