• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First description of scleractinian corals from the Santa Marta and Snow Hill Island (Gamma Member) formations, Upper Cretaceous, James Ross Island, Antarctica

    2020-12-18 07:20:12RobertoVIDEIRASANTOSSandroMarceloSCHEFFLERLuizaCorralMartinsdeOliveiraPONCIANOLuizCarlosWEINSCHTZRodrigoGiestaFIGUEIREDOTaissaRODRIGUESJulianaMansoSAYDouglasSantosRIFFAlexanderWilhelmArminKELLNER
    Advances in Polar Science 2020年3期

    Roberto VIDEIRA-SANTOS, Sandro Marcelo SCHEFFLER, Luiza Corral Martins de Oliveira PONCIANO, Luiz Carlos WEINSCHüTZ, Rodrigo Giesta FIGUEIREDO, Taissa RODRIGUES, Juliana Manso SAY?O, Douglas Santos RIFF & Alexander Wilhelm Armin KELLNER

    1 Laboratório de Paleoinvertebrados, Departamento de Geologia e Paleontologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, 20940-040, Rio de Janeiro, RJ, Brazil;

    2 Universidade Federal Rural do Rio de Janeiro, BR-465, Km 07, s/n, 23890-000, Seropédica, RJ, Brazil;

    3 Laboratório de Tafonomia e Paleoecologia Aplicadas – LABTAPHO, Departamento de Ciências Naturais – DCN, Universidade Federal do Estado do Rio de Janeiro – UNIRIO, Av. Pasteur, 458, 22290-250, Rio de Janeiro, RJ, Brasil;

    4 Centro Paleontológico de Mafra – CENPALEO, Universidade do Contestado, Av. Pres. Nereu Ramos,1071, 89300-000, Mafra, SC, Brazil;

    5 Departamento de Biologia, Universidade Federal do Espírito Santo – UFES, Alto Universitário s/n, Guararema, Alegre, ES, Brazil;

    6 Laboratório de Paleontologia, Departamento de Ciências Biológicas, Centro de Ciências Humanas e Naturais, Universidade Federal do Espírito Santo – UFES, Avenida Fernando Ferrari, 514, Goiabeiras, 29075-910, Vitória, ES, Brazil;

    7 Laboratório de Paleobiologia e Microestruturas, Núcleo de Biologia, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco – UFPE, Rua do Alto do Reservatório, s/n, 52050-480, Vitória de Santo Ant?o, PE, Brazil;

    8 Laboratory of Systematics and Taphonomy of Fossil Vertebrates, Departamento de Geologia e Paleontologia, Museu Nacional/Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, S?o Cristóv?o, 20940-040 Rio de Janeiro, RJ, Brazil;

    9 Laboratório de Paleontologia, Instituto de Biologia, Universidade Federal de Uberlandia, campus Umuarama, 38400-902, Uberlandia, MG, Brazil

    Abstract Antarctic corals are known from the Upper Cretaceous Santa Marta Formation (Santonian–early Campanian) and Gamma Member (late Campanian) of Snow Hill Island Formation (late Campanian–early Maastrichtian) but they have not so far been taxonomically described. We describe three corals taxa based on 29 specimens collected in 2007 and 2016 on James Ross Island (northeast of the Antarctic Peninsula). They represent the first formal record of scleractinian corals from the Santa Marta Formation, identified as Caryophylliidae indet. and Gamma Member of Snow Hill Island Formation, identified as ?Astreopora sp. and Fungiacyathus deltoidophorus. The family Caryophylliidae and the genus Astreopora were not restricted to the Weddellian Biogeographic Province but the species Fungiacyathus deltoidophorus was endemic to Antarctica during the Cretaceous. The genus Fungiacyathus and the family Caryophylliidae thrive in Antarctica until the present day. Fungiacyathus occurred in shallower environments during the late Campanian than today. No specimens related to Astreopora have yet to be found in Antarctica after the late Campanian. This can be explained by the capacity of Fungiacyathus and Caryophyllidae to endure cold waters, since they are asymbiotic corals. The symbiotic ?Astreopora sp., due to its sensitivity to low temperatures, became extinct in this continent as soon as the Antarctic waters began to cool, around the Campanian/Maastrichtian. The presence of ?Astreopora sp. in Gamma Member of Snow Hill Island Formation may represents the first occurrence of this genus in Antarctica and the oldest record of this genus in the Southern Hemisphere.

    Keywords scleractinia, taxonomy, Campanian, James Ross Sub-Basin, Antarctica

    1 Introduction

    Scleractinians are solitary or colonial corals bearing a skeleton of aragonite, including all true post-Paleozoic fossil corals. These corals can be divided into two ecological groups: the symbiotic, characterized by the presence of vast numbers of unicellular symbiotic, dinoflagellates or zooxanthellae in their endodermal tissues, and the asymbiotic, which lack of zooxanthellae (Wells, 1956).

    Symbiotic corals are restricted to shallow tropical waters, generally with depths less than 20 m and temperatures between 25 ℃ and 29 ℃, due to the photosynthetic needs of the zooxanthellae algae. Some recent taxa can be found in depths up to 90 m, supporting temperatures as cold as 16 ℃ (Fernandes, 2011). Even though asymbiotic corals can occur associated with coral reefs, they are not subjected to the same environmental restrictions as the symbiotic, surviving in depths up to 6000 m and temperatures ranging between 1.1 and 28℃. ℃Their geographic distribution includes all the seas and oceans of normal salinity (Fernandes, 2011).

    The Antarctic sedimentary rocks, from Mesozoic and Cenozoic, are quite fossiliferous (e.g., Scasso et al., 1991; Luther, 1999; Olivero, 2012a). At least 16 species of scleractinian corals have been identified in the Late Cretaceous (Lopez de Bertodano Formation) and Paleocene (Sobral Formation) strata from the Seymour and Snow Hill islands (e.g.del Valle et al., 1982; Filkorn, 1994). So far, scleractinian corals in the Santa Marta Formation (Santonian–early Campanian) and Gamma Member (late Campanian) of Snow Hill Island Formation (late Campanian–early Maastrichtian) at James Ross Island have been recorded (e.g.Scasso et al., 1991; Olivero, 2012a) but were not studied in detail. Darrel and Taylor (1993) illustrated some coral specimens from Santa Marta Formation referring them toDeltocyathus?complanatusbut did not provide any further taxonomic description.

    Here we provide the first taxonomic description of scleractinian corals from the Santa Marta Formation (Alpha Member) and Gamma Member of Snow Hill Island Formation, including the first record of asymbioticFungiacyathus deltoidophorusand Caryophylliidae indet., and the symbiotic symbiotic ?Astreoporasp.

    2 Geological setting

    The James Ross Sub-Basin, part of the Larsen Basin, is located in the northeast of the Antarctic Peninsula and contains a significant Meso-Cenozoic sedimentary succession (Figure 1) related to the Gondwanan break-up and subsequent development of a back-arc basin (Hathway, 2000).

    The James Ross Archipelago (James Ross, Snow Hill, Humps, Seymour, Vega, Cockburn, Persson and Lockyer islands) presents the best exposure of volcano-sedimentary rocks of its homonymous sub-basin. Two thick sedimentary successions are recognized on James Ross Island: Gustav Group (Aptian–Coniacian) and Marambio Group (Santonian– Danian) (Olivero, 2012a). The Gustav Group consists of the Pedersen, Lagrelius Point, Kotick Point, Whisky Bay and Hidden Lake formations (Riding and Crame, 2002), which represent a deep marine depositional environment with submarine fan and slope deposits. This group is not very fossiliferous, being composed mainly of conglomerates and sandstones (Ineson, 1989; Medina et al., 1992; Whitham et al., 2006).

    The Marambio Group is rich in fossils, consisting of siltstones, argillites and fine-grained sandstones, interpreted as being deposited in a shallow inner to outer continental shelf environment with the presence of a prograding delta (Crame et al., 1991; Pirrie et al., 1997; Olivero, 2012a). Although there are several proposed subdivisions for the Marambio Group (e.g., Pirrie et al., 1997; Olivero and Medina, 2000; Olivero, 2012a), in this contribution we follow the stratigraphy of Olivero (2012a), which divides this group into: Santa Marta Formation, Rabot Formation, Snow Hill Island Formation, Hamilton Point Member, Karlsen Cliffs Member, Sanctuary Cliff Member, Haslum Crags Sandstone, Lopéz de Bertodano Formation and Sobral Formation (Figure 2).

    2.1 Santa Marta and Snow Hill Island (Gamma Member) formations

    Figure 1 a, Sedimentary deposits of the Cretaceous/Paleogene outcrops of the James Ross Sub-Basin. In detail, the region where the PALEOANTAR I and II expeditions were concentrated. b, Simplified geological map of the Ulu Peninsula, showing outcrops of the Santa Marta (Alpha and Beta members) and Snow Hill Island (Gamma Member) formations, as well as the collection areas of the studied fossils. A—represents point AK 042 (Caryophylliidae indet.); B—represents points 22, 24, 26, AK 281 and AK 292 (Fungiacyathus deltoidophorus and ?Astreopora sp.) (adapted from Castro and Carvalho, 2015; Reguero et al., 2016).

    Figure 2 Several proposals of subdivisions of the Marambio Group, highlighting the proposal of Olivero (2012a). Adapted from Milanese et al. (2017).

    The Santa Marta Formation (Santonian–early Campanian) is composed of an intercalation of sandstones, siltstones, and argillites with volcanic tuffs and rare coquinas (Olivero, 2012a). It was originally defined to the northwest of James Ross Island and subdivided into Alpha, Beta and Gamma members by Olivero et al. (1986), however due to great lithostratigraphic similarity between the Alpha and Beta members, Crame et al.(1991) considered them to be a single unit and named it Lachman Crags Member (Santonian–middle Campanian), while the Gamma Member (late Campanian) was renamed Herbert Sound Member, this member represents a basin wide shallowing event (Crame et al., 1991).

    Olivero (2012a) pointed out that the Gamma Member is included into the Snow Hill Island Formation instead of the Santa Marta Formation, as originally defined. The Gamma Member crops out at Santa Marta Cove and Dreadnought Point and is dominated by sandstones beds with scarceNeograhamites primusammonites, common gastropods, bivalves and coquinas (Guerra et al., 2015).

    In the southeast of James Ross Island (Rabot Point and Hamilton Point), there are two another stratigraphic unit: Rabot Formation (Lirio et al., 1989) and Hamilton Point Member (Pirrie et al., 1997). The Rabot Formation is laterally correlated to the Alpha and Beta members and the lower portion of the Gamma Member. The Hamilton Point Member is the lateral equivalent of the intermediate to upper portion of the Gamma Member (Pirrie et al., 1997).

    The Campanian fauna from Santa Marta Formation and Gamma Member are not yet completely known (Crame, 2019), but it is often referred as part of the Weddellian Biogeographic Province. This province included the seas of New Zealand, South America (Patagonia) and Antarctica from the Late Cretaceous to late Eocene (e.g., Zinsmeister, 1979, 1982; Olivero and Medina, 2000; Novas et al., 2015). More recently, Brazilian researchers have made significant progress in the understanding of the vertebrate paleontology (e.g., Kellner et al., 2011, 2018; Say?o et al., 2017), nannofossils (Guerra et al., 2015) and dinoflagellate cyst assemblage (e.g., Castro and Carvalho, 2015) of this stratigraphic unit.

    2.2 Outcrop descriptions

    The collection localities for this paper come from two different units. At Point AK 042, the lithology consists of fine to very fine sandstones, associated with turbiditic levels and rare conglomeratic levels deposited in a shelf environment below the level of storm waves belonging to the upper portion of the Alpha Member of Santa Marta Formation, N sequencesensuOlivero (2012a).

    The lithology of Point AK 042 is the same as the Lithofacies BsensuScasso et al. (1991). This lithofacies was deposited in the distal part of a submarine fan developed on the mid-outer shelf (Pirrie, 1989; Scasso et al., 1991; Olivero, 2012a). According to Scasso et al. (1991) the Lithofacies B is composed of the “Cerithium”–RotulariaandEryphyla–“Aporrhais” biofacies that indicate autochthonous to parautochthonous associations in a soft substrate and possibly in the photic zone. Due to the stratigraphic position of the Point AK 042 and its lithological description, it is positioned in the “Cerithium”–Rotulariabiofacies, facies Group IIsensuScasso et al. (1991). The ammonites’ assemblages that occur in this lithofacies indicate an early Campanian age (Olivero, 1992, 2012a).

    Points 22, 24, 26 (Santa Marta Cove), AK 281 and AK 292 are located close together, and are represented by fine to medium bioturbed sandstones, with cross- stratification, occurrence of fossiliferous concretions and conglomeratic levels, deposited in a shelf environment above the level of storm waves, belonging to the lower portion of Gamma Member of Snow Hill Island Formation, NG sequencesensuOlivero (2012a).

    The lithology of points 22, 24, 26, AK 281 and AK 292 is similar to Lithofacies EsensuScasso et al. (1991) which presents autochthonous to parautochthonous assemblages (TaiomaandCucullaea–“Neilo” biofaciessensuScasso et al., 1991). Due to the relative stratigraphic position of these points, they are probably positioned inCucullaea–Neilobiofacies, facies Group VIsensuScasso et al. (1991). The association of ammonites in these lithofacies suggests a late Campanian age (Olivero, 2012a).

    The occurrence of rockin situwas sparse, at all the outcrops cited in this paper. Because of it we did not have security for the elaboration of a sedimentologic profile, but we were able to position them in the Santa Marta (Alpha Member) and Snow Hill Island (Gamma Member) formations. For a better visualization of the geological context, the specimens were tentatively plotted, based on stratigraphic position and lithology, in a general sedimentologic profile of the Santa Marta and Snow Hill Island (Gamma Member) formations (Olivero, 2012b) (Figure 3).

    Figure 3 General sedimentologic profile of the Santa Marta (Alpha and Beta members) and Snow Hill Island (Gamma Member) formations. Adapted from Olivero (2012b).

    3 Materials and methods

    The analyzed fossils are deposited in thePaleoinvertebratescollection, housed at Departamento de Geologia e Paleontologia, Museu Nacional, Universidade Federal do Rio de Janeiro(MN-I)and at the scientific collection of Phanerozoic fossils (CFF) of the Universidade Federal do Estado do Rio de Janeiro(UNIRIO). The specimens housed at the Paleoinvertebrates collection that were inside the building of Museu Nacional suffered a tragical fire on September 2, 2018 (e.g., Kellner, 2019; Scheffler, 2019). All specimens of ?Astreoporasp. and Caryophylliidae indet. were recovered, but unfortunately no specimen ofFugiacyathusdeltoidophoruswas rescued so far.

    The 29 studied specimens were collected in the austral summers of 2007 and 2016, during the expeditions of the PALEONTAR Project (PROANTAR—Programa Antártico Brasileiro), organized by the Museu Nacional/ UFRJand a team of interinstitutional Brazilian researchers to the James Ross Island. The taxonomic identification was based on the “Treatise on Invertebrate Paleontology” (Wells, 1956), the “Fossil Scleractinian Coral from James Ross Basin, Antarctica” (Filkorn, 1994) and the “An illustrated key to the genera and subgenera of the recent azooxanthellate Scleractinia (Cnidaria, Anthozoa), with an attached glossary” (Cairns and Kitahara, 2012). We used for measurements a digital caliper (0.02 mm accuracy).

    4 Systematic paleontology

    Order Scleractinia (Bourne, 1900)

    Suborder Caryophylliina (Vaughan and Wells, 1943)

    Superfamily Caryophylliicae (Gray, 1847)

    Family Caryophylliidae (Gray, 1847)

    Caryophylliidae indet.(Figures 4a, 4b)

    Material:Two specimens (MN 8656-Ia and MN 8656-Ib).

    Provenance:Upper portion of Alpha Member (Santa Marta Formation), early Campanian, unnamed locality, field number AK 042 (63o49′40.4″S, 57o53′20.5″W).

    Description:Solitary corals with length varying from 13 to 15 mm, mediumcorallum(between 7.0 and 9.0 mm) encircled by thick layers of tectura, about 35 septa preserved, laminarseptumwithout dentation. The shape of the calice is from turbid to subcylindrical and the wall is septothecal.

    Remarks:The columella, is poorly preserved which makes it difficult to accurately differentiate the MN 8656-Ia and MN 8656-Ib specimens from the other genera of solitary corals that belongs to the family Caryophylliidae, such asParacyathus,Cyathoceras,Oxysmiliaand

    Lophosmilia,reason why we decided to identify the specimens analyzed here just to family level. The general morphology, mainly the external shape, of the specimens of Caryophylliidae here described, is very similar toCaryophylliasp. from Seymour Island, Eocene from La Meseta Formation (Stolarski, 1996).

    Occurrence for the family Caryophylliidae:It appeared in the Permian and has had a cosmopolitan distribution ever since (e.g. Howse, 1848; Forbes, 1845; Wells, 1933; Stephenson, 1941; Sohl and Koch, 1984; Eliasova, 1991; Stolarski, 1996; Leloux, 1999; L?sser and Liao, 2001; Helm et al., 2003; Turnsek et al., 2003; Jell et al., 2011).

    Observation:The family has a cosmopolitan distribution during the Cenozoic. It is a living family (e.g., Wells, 1956; Cairns et al., 2005).

    Figure 4 Scleractinian corals from Santa Marta (Alpha Member) and Snow Hill Island (Gamma Member) formations. Caryophylliidae indet. (a–b): a, lateral view (MN 8656-Ia); b, calicular view (MN 8656-Ia). Fungiacyathus deltoidophorus (c–e): c, base view (MN 9978-Ia); d, calicular view (CFF 0308b); e, base view (CFF 308a). ?Astreopora sp. (f–h): f, general view (MN 9984-I); g, general view (MN 9985-I); h, general view (corallite) (MN 9985-I).

    Suborder Fungiina (Verrill, 1865)

    Superfamily Fungiicae (Dana, 1846)

    Family Fungiidae (Dana, 1846)

    GenusFungiacyathus(Sars, 1872)

    SubgenusFungiacyathus(Moseley, 1881)

    Type species:Fungiacyathus fragilis(Sars, 1872)

    Fungiacyathus deltoidophorus(Felix, 1909)

    (Figure 4c, 4d, 4e)

    Material:19 specimens (MN 9978-Ia, MN 9978-Ib, MN 10022-I, MN 10202-I, MN 10203-I, MN 10207-I, MN 10229-I, MN 10233-I, MN 10236-I, MN 10250-I, MN 10251-I, MN 10269-I, MN 10270-I, MN 10292-I, MN 10443-I, CFF 308 a, b, c, CFF 210). All the Museu Nacional specimens not recovered so far and we have only their photos.

    Provenance:Lower portion of Gamma Member (Snow Hill Island Formation), late Campanian, unnamed locality,field number point 24 (63o56′46.6″S, 57o51′13.5″W).

    Description:Solitary corals, copulate, free, withcorallumranging from 7 to 14 mm in diameter, discoidal; base of corallum flat to slightly convex, costate; presence ofsynapticulae; laminar septa thin; costae correspond to septa equal in size and gradually increase in height and width toward calicular margin; small, elliptical, trabecular and feebly developed columella. Corallum with four cycles of septa (48 septa), all unperforated.

    Remarks:Differs fromDeltocyathus, a Caryophyllina coral superficially close toFungiacyathus, because the columella is papillose inDeltocyathusbut trabecular inFungiacyathus. Felix (1909), originally, based on the corallites’ diameters (d) and septa number (n) distinguished three different species:Fungiacyathus antarcticus(Felix, 1909) (d= up to 26 mm andn= 48 to 96),Fungiacyathus deltoidophorus(Felix, 1909) (d= 4 to 14 mm andn= 48) andFungiacyathus larseni(Felix, 1909) (d= up to 14 mm andn= 48). Filkorn (1994) noticed the great overlap in the dimensions of the corallites ofF. deltoidophorusandF. larseni. In addition to the dimensions of the skeletal elements, Felix (1909) also included features as the development of the central region of the columella (flat or convex), the length of the costaeand the size difference of the fine granulations on the aboral region. However, Baron-Szabo (2008) interpreted all these characteristics as environmentally induced, and, therefore, intraspecific variations. In addition,F. antarcticusseems to correspond to the later ontogenetic stage ofF. larseniandF. deltoidophorus. For this reason, in a similar hypothesis as the one proposed by Baron-Szabo (2008), these three species are here considered synonymous.

    Occurrence ofFungiacyathus deltoidophorus:Late Campanian–Maastrichtian, Antarctica (Filkorn, 1994); ?Paleocene, Egypt (Baron-Szabo, 2008) and ?Eocene, Barbados (Baron-Szabo, 2008).

    Suborder Astrocoeniina (Vaughan and Wells, 1943)

    Family Acroporidae (Verrill, 1902)

    GenusAstreopora(Blainville, 1830)

    Type species:Astrea myriophtalma(Lamarck, 1801); subsequent designation (Milner-Edwards and Haime, 1850)

    ?Astreoporasp.(Figure 4f, 4g, 4h)

    Material:Eight specimens (MN 9984-I, MN 9985-I, MN 10005-I, MN 10006-I, CFF 189, CFF 188, CFF 187, CFF 186).

    Provenance:Lower portion of Gamma Member (Snow Hill Island Formation), late Campanian, field number point 22 (63o56′15.4″S; 57o50′48.1″W); Santa Marta Cove, field number point 26 (63o56′44.6″S; 57o51′12.2″W); unnamed locality A, field number AK 292 (63o56′15.4″S; 57o50′48.1″W) and unnamed locality B, field number AK 281 (63o56′49.4″S; 57o49′42.5″W).

    Description:Colonial corals with a spinose surface, corallites embedded in a reticular coenosteum, massive, plocoid, extratentacular budding, globular corallite with small diameter (maximum 1.0 mm), wall of solid corallites, poorly developed thin septa, dissepiments tabulate, no (?) columella nor axial corallites.

    Remarks:The specimens analyzed here has a morphology very similar to the genusAstreopora, however due to the poor preservation of them, we decide to leave them in open nomenclature. ?Astreoporasp. differs ofAcroporaby not having axial of leading corallite. ?Astreoporasp. differs ofDendracisby having massive shape. ?Astreoporasp. differs ofCyphastreaby having poorly developed septa and not developing septocostae. The doubtful Chilean record of theAstreoporanot have extratentacular budding, which is typical of family Acroporidae (Prinz, 1991). Therefore, the Chilean specimens are possibly not reallyAstreopora. ?Astreoporasp. differs from the Paleocene–OligoceneAstreopora auvertiaca(Michelin, 1844), because the corallites are sparser among themselves (Baron-Szabo, 2006). ?Astreoporasp. differs from the Senonian–EoceneAstreopora hexaphylla(Felix, 1906) because the former has a massive shape, while the second has ramose or encrusting shape (Baron-Szabo, 2006). ?Astreoporasp. is very similar to Maastrichtian- EoceneAstreopora esperanzae(Frost and Langenheim, 1974) but differs in having less developed septa and smaller corallite (maximum 1 mm in ?Astreoporasp., maximum 1.8 mm inA. esperanzae) (Baron-Szabo, 2006).

    Occurrence for the genusAstreopora:?Hauterivian, Chile (Prinz, 1991); ?Albian, United States of America (Wells, 1932); Senonian, Ukraine (Felix, 1906) and Maastrichtian, Jamaica (Baron-Szabo, 2006).

    Observation:The genus has a cosmopolitan distribution in both Pacific and Indian oceans during the Cenozoic. It is a living genus (e.g. Lamberts, 1982).

    5 Final considerations

    The presence of scleractinian corals in the Santa Marta and Snow Hill Island (Gamma Member) formations indicate, at least for coral occurrence levels, that the salinity of the waters was normal and the sedimentation rates were low in the region during few moments of the Campanian, since this group would hardly survive in conditions other than those mentioned (Wells, 1956; Fernandes, 2011).

    This becomes clear when we observe that corals occur in the Facies Group II and VIsensuScasso et al. (1991). Facies Group II represents a volcaniclastic submarine fan environment with some direct pyroclastic input. Presents extensive evidence of sedimentation by gravity flow processes. The relatively fine-grained turbidites of Facies Group II represent the distal parts of a submarine fan, alternating periods of relatively low sedimentation (Scasso et al., 1991). Scasso et al. (1991) argued that these submarine fans were settled in shallower sea, developed on the shelf, and probably in photic zone; a similar environment is proposed by Pirrie (1989) (Facies Association 1) and Olivero (2012a) (lower portion of Ammonite Assemblage 3). For this reason, the fossils found in this association, despite being in submarine fans, and being shallower waters inhabitants, have no significant transport, as demonstrated by Scasso et al. (1991). The delicate corallites without abrasion or fragmentation of Caryophylliidae indet. described here also corroborates this stament.

    The association of Facies Group VIsensuScasso et al. (1991), was deposited in an inner shelf environment, under normal salinity and oxygenation conditions. The similar environment is proposed by Pirrie (1989, Facies Association 2) and Olivero (2012a, Assemblage 8-1). The Ichnofossils Assemblage IVsensuScasso et al. (1991) is characterized by a deposition between the base level of the fair-weather waves until the base level of the storm waves. The fossils of Facies Group VI are basically parautochthonous, with little transport, which is evidenced by the low fragmentation, which can also be seen in corals. Therefore,Fungiacyathus deltoidophorusand ?Astreoporasp. lived in this inner shelf environment.

    The data above demonstrate that, as previously discussed, the coral specimens here analyzed corresponds to an autochthonous to parautochthonous assemblages. The specimens of Caryophylliidae indet. were collected in a mid-outer shelf environment, below the level of storm waves,while the specimens ofFungiacyathus deltoidophorusand ?Astreoporasp. were collected in an inner shelf environment, above the level of storm waves.

    The genusFungiacyathusand the family Caryophylliidae indet. thrive in Antarctica until the present day, but in deep waters (Cairns, 1990). Therefore, the genusFungiacyathusoccurred in shallower environments during the late Campanian period than today, as seen previously. Currently, this genus occurs in deeper zones in different parts of the world, between 99 and 6.328 m deep, the deepest for any known scleractinian coral (Cairns, 1990).

    The genusAstreoporawas not restricted to the Weddellian Biogeographic Province, occurring in other parts of the world during the Late Cretaceous.

    Fungiacyathus deltoidophoruswas endemic to Antarctica during the Late Cretaceous, ranging between Campanian to Maastrichtian ages.The oldest occurrences ofFungiacyathusare known from Antarctica (Snow Hill Island and Lopez de Bertodano formations), so it is possible that this genus appeared for the first time in this continent and later spread to lower latitudes (Yabe and Eguchi, 1942; Keller, 1976; Filkorn, 1994; Jell et al., 2011).

    No specimens related toAstreoporahave yet to be found in Antarctica after the late Campanian. This can be explained by the ability ofFungiacyathusand Caryophylliidaeto endure colder temperatures, since they are asymbiotic corals. The symbiotic ?Astreoporasp.,due to its sensitivity to low temperatures, became extinct in this continent as soon as the Antarctic waters began to cool, between the late Campanian and the early Maastrichtian (Pirrie and Marshall, 1990; Crame and Luther, 1997; Dingle and Lavelle, 1998; Francis and Poole, 2002; Olivero, 2012a). Currently, all living corals in Antarctica are asymbiotic. The low temperatures and low light levels, characteristic of deep waters, are very unfavorable to sustain photosynthetic algae (Cairns, 1990; Waller and Feehan, 2013).

    Finally, the presence of ?Astreoporasp. in the base of Snow Hill Island Formation (Gamma Member) may represents the first occurrence of this genus in Antarctica and the oldest record of this genus in the Southern Hemisphere.

    AcknowledgementsThe team of the PALEOANTAR Project wants to thank the NApOc Ary Rongel military group and the pilots of the HU-1 helicopter squadron for the logistical support that allowed us to arrive on James Ross Island (Antarctica). Mr. Jo?o Marcelo Pais (UNIRIO) photographed some of the specimens analyzed in this paper. This study was supported byPrograma Antártico BrasileiroPROANTAR (CNPq #557347/2005-0; #407670/2013-0 and #442677/2018-9 to AWAK). We would also like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq #370345/2017-7 to RVS; CNPq 312360/2018-5 to TR; CNPq #311715/2017-6 to JMS and CNPq #420687/2016-5; #313461/2018-0 to AWAK) and Funda??o Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ # E-26/202.905/2018 to AWAK; FAPERJ E-26/200.110/2019 to SMS) for the funding of this research. Finally, we would like to thank the reviewers (anonymous and Dr. Cecilia Amenabar) for their valuable suggestions and comments.

    References

    Andersson J G. 1906. On the geology of Graham Land. Bull Geol Inst Uppsala, 7: 19-71.

    Baron-Szabo R C. 2006. Corals of the K/T-boundary: scleractinian corals of the suborders astrocoeniina, faviina, rhipidogyrina and amphiastraeina. J Syst Palaeontol, 4(1): 1-108, doi:10.1017/s147720 1905001689.

    Baron-Szabo R C. 2008. Corals of the K/T-boundary: scleractinian corals of the suborders dendrophylliina, caryophylliina, fungiina, microsolenina, and stylinina. Zootaxa, 1952(1): 1-244, doi:10.11646/ zootaxa.1952.1.1.

    Bibby J S. 1966. The stratigraphy of part of north-east Graham Land and the James Ross Island group. London: British Antarctic Survey, 1-37.

    Blainville H M. 1830. Zoophytes//Levraulte F G. Dictionnaire des sciences naturelles, dans lequel on traitre méthodiquement des differéns êtres de la nature, considérés soit en eux-mêmes, d’après l’état actuel de nos connoissances, soit relativement a l’utlité qu’en peuvent retirer la médicine, l’agriculture, le commerce et les arts. Paris: Le Normat, 1-456.

    Bourne G C. 1900. The Anthozoa//Lankester E R. A treatise on zoology. Part II. The porifera and coelenterata. London: Adam & Charles Black, 1-84.

    Cairns S D. 1990. Antarctic Scleractinia//Wagele J W, Sieg J. Synopses of the Antarctic Benthos, v.1, Koenigstein: Koeltz Scientific Books, 5-76.

    Cairns S D, H?ussermann V, F?rsterra G. 2005. A review of the Scleractinia (Cnidaria: Anthozoa) of Chile, with the description of two new species. Zootaxa, 1018(1): 15-46, doi:10.11646/zootaxa.1018.1.2.

    Cairns S D, Kitahara M V. 2012. An illustrated key to the genera and subgenera of the Recent azooxanthellate Scleractinia (Cnidaria, Anthozoa), with an attached glossary. ZooKeys, 227: 1-47, doi:10.3897/zookeys.227.3612.

    Castro S P, Carvalho M A. 2015. Santonian dinocyst assemblages of the santa marta formation, Antarctic peninsula: inferences for paleoenvironments and paleoecology. An Acad Bras Ciênc, 87(3): 1583-1597, doi:10.1590/0001-3765201520140651.

    Crame J A. 2019. Paleobiological significance of the James Ross Basin. Adv Polar Sci, 30(3): 186-198, doi: 10.13679/j.advps.2018.0047.

    Crame J A, Luther A. 1997. The last inoceramid bivalves in Antarctica. Cretaceous Res, 18(2): 179-195, doi:10.1006/cres.1996.0055.

    Crame J A, Pirrie D, Riding J B, et al. 1991. Campanian–Maastrichtian (Cretaceous) stratigraphy of the James Ross Island area, Antarctica. J Geol Soc, 148(6): 1125-1140, doi:10.1144/gsjgs.148.6.1125.

    Dana J D. 1846. United States Exploring Expedition during the years 1838–1842 under the command of Charles Wilkes, U.S.N. Zoophytes, v.7, Philadelphia: Lea and Blanchard.

    Darrel J G, Taylor P D. 1993. Macrosymbiosis in corals: a review of fossil and potentially fossilizable examples. Cour Forsh Inst Senckenberg, 164: 185-198.

    del Valle R A, Fourcade N H, Medina F A. 1982. The stratigraphy of Cape Lamb and the Naze, Vega and James Ross Islands, Antarctica. Antarct Geosci: 275-280.

    Dingle R, Lavelle M. 1998. Late Cretaceous–Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeogr Palaeoclimatol Palaeoecol, 141(3-4): 215-232, doi:10.1016/s0031-0182(98)00056-x.

    Eliasova H. 1991. Quelques Scleractiniaires nouveaux de la Slovaquie (Cretace et Paleogene, Tchecoslovaquie). Zapadne Karpaty. Seria Paleontologia, 15: 49-55.

    Felix J. 1906. über eine Korallenfauna aus der Kreideformation Ost-Galiziens. Zeitschrift der Deutschen Geologischen Gesellschaft Band, 58: 38-52.

    Felix J. 1909. Uber die fossilen Korallen der Snow Hill-Insel und der Seymour-Insel. Wissenshaftliche Ergebnisse der Schwedischen Südpolar-Expedition 1901-1903, Lithogr Institut d Generalstabs, 3(5): 1-15.

    Fernandes A C S. 2011. Cnidários//Carvalho I S. Paleontologia, 3., v. 2. Rio de Janeiro: Interciência, 315-331.

    Filkorn H F. 1994. Fossil scleractinian corals from James Ross basin, Antarctica. Antarctic Research Series, v. 65, Washington, D.C.: AGU.

    Forbes E. 1845. V.—Report on the fossil invertebrata from southern India, collected by Mr. Kaye and Mr. Cunliffe. Transactions of the Geological Society of London, S2-7(1): 97-174, doi:10.1144/ transgslb.7.97.

    Francis J E, Poole I. 2002. Cretaceous and early Tertiary climates of Antarctica: evidence from fossil wood. Palaeogeogr Palaeoclimatol Palaeoecol, 182(1-2): 47-64, doi:10.1016/s0031-0182(01)00452-7.

    Frost S H, Langenheim R L. 1974. Cenozoic Reef Biofacies: Tertiary Larger Foraminifera and Scleractinian Corals from Chiaoas, Mexico. Northern Illinois Press: Dekalb, 388.

    Gray J E. 1847. A list of the genera of Recent Mollusca, their synonyms and types, London: Proc Zool Soc Lond, 15: 129-219.

    Guerra R M, Concheyro A, Lees J, et al. 2015. Calcareous nannofossils from the Santa Marta Formation (Upper Cretaceous), northern James Ross Island, Antarctic Peninsula. Cretaceous Res, 56: 550-562, doi:10.1016/j.cretres.2015.06.009.

    Hathway B. 2000. Continental rift to back-arc basin: Jurassic–Cretaceous stratigraphical and structural evolution of the Larsen Basin, Antarctic Peninsula. J Geol Soc, 157(2): 417-432, doi:10.1144/jgs.157.2.417.

    Helm C, Reuter M, Schülke I. 2003. Die Korallenfauna des Korallenooliths (Oxfordium, Oberjura, NW-Deutschland): zusammensetzung, stratigraphie und regionale verbreitung. Pal?ontol Z, 77(1): 77-94, doi:10.1007/bf 03004561.

    Howse R. 1848. A catalogue of the fossils of the Permian system of the counties of Northumberland and Durham. Transactions of the Tyneside Naturalists’ Field Club, 1: 219-264.

    Ineson J R. 1989. Coarse-grained submarine fan and slope apron deposits in a Cretaceous back-arc basin, Antarctica. Sedimentology, 36(5): 793-819, doi:10.1111/j.1365-3091.1989.tb01747.x.

    Jell J S, Cook A G, Jell P A. 2011. Australian Cretaceous Cnidaria and Porifera. Alcheringa: Australas J Palaeontol, 35(2): 241-284, doi:10.1080/03115518.2011.532322.

    Keller N B. 1976. The deep-sea madreporian corals of the genus Fungiacyathus from the Kurile-Kamchatka, Aleurian Trenches and other regions of world ocean. Tr Inst Okeanol, 99: 31-44 (in Russian).

    Kellner A W A. 2019. A reconstru??o do Museu Nacional: bom Para o Rio, bom Para o Brasil!. Ciên Cult, 71(3): 4-5, doi:10.21800/2317-666 02019000300002.

    Kellner A W A, Say?o J M, Riff D, et al. 2018. An unusual reptile bone (Pterosauria) from the Cretaceous deposits of the James Ross Island, Antarctic Peninsula//Rio de Janeiro, Brazil: 49° Congresso Brasileiro de Geologia, Congr. Bras. Geol.

    Kellner A W A, Sim?es T, Riff D, et al. 2011. The oldest plesiosaur (Reptillia, Sauropterygia) from Antarctica. Polar Res, 30: 1-6.

    Lamarck J B. 1801. Système des animaux sans vertèbres ou tableau général des classes, des ordres, et des genres de ces animaux, Paris: Chez Deterville.

    Lamberts A E. 1982. The reef coral Astreopora (Anthozoa, Scleractinia, Astrocoeniidae): A revision of the taxonomy and description of a new species. Pac Sci, 36(1): 83-105.

    Leloux J. 1999. Numerical distribution of Santonian to Danian corals (Scleractinia, Octocorallia) of southern Limburg, the Netherlands. Neth J Geosci, 78(2): 191-195, doi:10.1023/A:1003743301625.

    Lirio J M, Marenssi S A, Santillana S N, et al. 1989. Marambio Group at the south eastern part of James Ross Island, Antarctica. Contribución del Instituto Antártico Argentino, 371: 1-45.

    L?ser H, Liao W H. 2001. Cretaceous corals from Tibet (China)—stratigraphic and palaeobiogeographic aspects. J Asian Earth Sci, 19(5): 661-667, doi:10.1016/s1367-9120(00)00063-8.

    Luther A. 1999. Paleoecological, taxonomical, biostratigraphical and sedimentological investigations in the Upper Cretaceous of southeastern James Ross Island, Antarctic Peninsula, Antarctica. Doctoral thesis. Germany: University of Heidelberg.

    Medina F A, Buatois L, Lopez-Angriman A. 1992. Estratigrafía del Grupo Gustav en la Isla James Ross, Antártida//Rinaldi C A. Geología de la Isla James Ross, Antártida. Buenos Aires: Contribución del Instituto Antártico Argentino, 167-192.

    Medina F A, Scasso R A, Del Valle R A, et al. 1989. Cuenca mesozoica del margen nororiental de la peninsula Antártica//Chebli G, Spalleti L. Cuencas sedimentarias argentinas. San Miguel de Tucumán: Instituto Superior de Correlación Geológica, 443-465.

    Michelin H. 1844. Iconographie zoophytologique. Description par localités et terrains des polypiers fossiles de France. Bertrand: Paris, 105-144, doi: 10.5962/bhl.title.11504.

    Milanese F N, Olivero E B, Kirschvink J L, et al. 2017. Magnetostratigraphy of the rabot formation, Upper Cretaceous, James Ross Basin, Antarctic Peninsula. Cretaceous Res, 72: 172-187, doi:10.1016/j.cretres.2016.12.016.

    Milner-Edwards H, Haime J. 1850. Monograph of the British fossil corals. London: Paleontographical Society.

    Moseley H N. 1881. Report on certain hydroid, alcyonarian, and madreporian corals procured during the voyage of H.M.S. Challenger, in the years 1873-1876 Part 3. On the deep-sea Madreporaria. Report on the scientific results of the voyage of the H.M.S. Challenger during the years 1873-1876. Zoology, 2: 127-208, 238-248.

    Novas F E, D’Angelo J S, O’Gorman J P, et al. 2015. First record of Polycotylidae (Sauropterygia, Plesiosauria) from the Upper Cretaceous of Antarctica. Cretaceous Res, 56: 563-568, doi:10.1016/j. cretres.2015.06.015.

    Olivero E B. 1992. Asociaciones de ammonites de la Formación Santa Marta (Cretácico tardio), Isla James Ross, Antartida. Geología de Isla James Ross: Antartida, Instituto Antártico Argentino, 47-76.

    Olivero E B. 2012a. Sedimentary cycles, ammonite diversity and palaeoenvironmental changes in the Upper Cretaceous Marambio Group, Antarctica. Cretaceous Res, 34: 348-366, doi:10.1016/j.cretres. 2011.11.015.

    Olivero E B. 2012b. New Campanian kossmaticeratid ammonites from the James Ross Basin, Antarctica, and their possible relationships with Jimboiceras? antarcticum Riccardi. Rev de Paleobiologie, 11: 133-149.

    Olivero E B, Medina F A. 2000. Patterns of late Cretaceous ammonite biogeography in southern high latitudes: the family Kossmaticeratidae in Antarctica. Cretaceous Res, 21(2-3): 269-279, doi:10.1006/cres. 1999.0192.

    Olivero E, Scasso R A, Rinaldi C A. 1986. Revisión del Grupo Marambio en La Isla James Ross – Antártida. Buenos Aires: Contribución del Instituto Antártico Argentino, 331: 1-29.

    Pirrie D. 1989. Shallow marine sedimentation within an active margin basin, James Ross Island, Antarctica. Sediment Geol, 63(1-2): 61-82, doi:10.1016/0037-0738(89)90071-7.

    Pirrie D, Crame J A, Lomas S A, et al. 1997. Late Cretaceous stratigraphy of the Admiralty Sound region, James Ross Basin, Antarctica. Cretaceous Res, 18(1): 109-137, doi:10.1006/cres.1996.0052.

    Pirrie D, Marshall J D. 1990. High-paleolatitude Late Cretaceous paleotemperatures: new data from James Ross Island, Antarctica. Geology, 18(1): 31-34, doi:10.1130/0091-7613(1990)018<0031: hplcpn>2.3.co;2.

    Prinz P. 1991. Mesozoishe Korallen aus Nordchile. Paleontogr Abt A, 216: 147-209.

    Reguero M A, Olivero E B, Pol D. 2016. Gondwanan perspectives: Cretaceous—Paleogene biota of west Antarctica. Ameghiniana, 53(3): 241-244, doi:10.5710/amgh.27.05.2016.3025.

    Riding J B, Crame J A. 2002. Aptian to Coniacian (Early–Late Cretaceous) palynostratigraphy of the Gustav Group, James Ross Basin, Antarctica. Cretaceous Res, 23 (6): 739-760, doi:10.1006/cres.2002.1024.

    Rinaldi C A, Massabie A, Morelli J, et al. 1978. Geologia de la Isla Vicecomodoro Marambio. Contribución del Instituto Antártico Argentino, 217: 1-37.

    Sars M. 1872. On some remarkable forms of animal life from the great deeps off the Norwegian Coast//Sars G O. University Program for the First Half-Year 1869. Christiana: Brogger and Christie.

    Say?o J M, Lima F J, Riff D, et al. 2017. Inside the warmer Antarctica: microscopial characterization of charcoal in the Upper Cretaceous Santa Maria Formation, James Ross Island//Ribeir?o Preto, Brazil: XXV Congresso Brasileiro de Paleontologia, Congr Bras Paleontol.

    Scasso R A, Olivero E B, Buatois L A. 1991. Lithofacies, biofacies, and ichnoassemblage evolution of a shallow submarine volcaniclastic fan-shelf depositional system (Upper Cretaceous, James Ross Island, Antarctica). J S Am Earth Sci, 4(3): 239-260, doi:10.1016/0895- 9811(91)90034-i.

    Scheffler S M. 2019. Geologia e Paleontologia: Paleoinvertebrados. Rio de Janeiro, Museu Nacional, Universidade Federal do Rio de Janeiro, Rel Anual (2018) do Museu Nacional, 86-88.

    Sohl N F, Koch C F. 1984. Upper Cretaceous (Maestrichtian) larger invertebrate fossils from the Haustator bilira Assemblage Zone in the West Gulf Coastal Plain. USGS Open-File Report, 84-687: 1-282, doi: 10.3133/ofr84687.

    Stephenson L W. 1941. The larger invertebrate fossils of the Navarro group of Texas. Texas: The University of Texas Publication.

    Stolarski J. 1996. Paleogene corals from Seymour Island, Antarctic Peninsula//Gazdzicki A. Palaeontological results of the Polish Antarctic Expeditions. Part II. Warszawa: Palaeontologia Polonica, 55: 51-63.

    Turnsek D, Lemone D V, Scott R W. 2003. Tethyan Albian corals, Cerro de Cristo Rey Uplift, Chihuahua and New Mexico. Cretaceous Stratigraphy and Paleoecology, Texas and Mexico: Perkins Memorial Volume. Gulf Coast Section Society of Economic Paleontologists and Mineralogists Foundation, Special Publications in Geology, 1:147-185.

    Vaughan T W, Wells J W. 1943. Revision of the suborders families, and genera of the Scleractinia. Boulder: Geological Society of America Special Papers.

    Verrill A E. 1865. XXVI.—classification of polyps. (extract condensed from a synopsis of the polypi of the north Pacific exploring expedition under captains ringgold and Rodgers, USN. J Nat Hist, 16(93): 191-197, doi:10.1080/00222936508679407.

    Verrill A E. 1902. Variation and nomenclature of Bermudian, West Indian and Brazilian reef corals with notes on various Indo-Pacific Corals. Trans Conn Acad Arts Sci: 63-168.

    Waller R G, Feehan K A. 2013. Reproductive ecology of a polar deep-sea scleractinian, Fungiacyathus marenzelleri (Vaughan, 1906). Deep-Sea Res Pt II, 92: 201-206, doi:10.1016/j.dsr2.2013.03.006.

    Wells J W. 1932. Corals of the Trinity Group of the Comanchean of central Texas. J Paleontol, 6(3): 225-256.

    Wells J W. 1933. Corals of the Cretaceous of the Atlantic and Gulf Coastal plains and western interior of the United States. Bull Am Paleontol, 18(67): 85-288.

    Wells J W. 1956. Scleractinia//Moore R C. Treatise on Invertebrate Paleontology, Part F, Coelenterata, Lawrence: University of Kansas Press, 329-478.

    Whitham A G, Ineson J R, Pirrie D. 2006. Marine volcaniclastics of the Hidden Lake Formation (Coniacian) of James Ross Island, Antarctica: an enigmatic element in the history of a back-arc basin. Geol Soc London Spec Pub, 258(1): 21-47, doi:10.1144/gsl.sp.2006. 258.01.03.

    Yabe H, Eguchi M. 1942. Fossil and recent simple corals from Japan. Sci Rep Tohoku Imp Univ Geol, 22(2): 105-178.

    Zinsmeister W J. 1979. Biogeographic significance of the late Mesozoic and early Tertiary molluscan faunas of Marambio Island (Antarctic Peninsula) to the final break-up of Gondwanaland//Gray J, Boucot A J. Historical biogeography, plate tectonics and the changing environment. Corvallis: Oregon State University Press, 349-355.

    Zinsmeister W J. 1982. Late Cretaceous–early Tertiary molluscan biogeography of the southern circum-Pacifc. J Paleontol, 56: 84-102.

    成人亚洲欧美一区二区av| 国产探花极品一区二区| 欧美精品人与动牲交sv欧美| 精品一区二区三区四区五区乱码 | 十分钟在线观看高清视频www| 青春草亚洲视频在线观看| 国产片特级美女逼逼视频| 欧美日韩亚洲高清精品| 亚洲久久久国产精品| 天堂中文最新版在线下载| 波多野结衣一区麻豆| 一边亲一边摸免费视频| 一区二区三区乱码不卡18| 一区二区三区激情视频| 国产午夜精品一二区理论片| 1024视频免费在线观看| av一本久久久久| 丰满少妇做爰视频| 精品亚洲成国产av| 中文字幕人妻丝袜制服| 桃花免费在线播放| 高清欧美精品videossex| 丝瓜视频免费看黄片| 在线精品无人区一区二区三| 哪个播放器可以免费观看大片| 精品一区在线观看国产| 亚洲精品第二区| 青春草视频在线免费观看| 久久国产精品大桥未久av| av福利片在线| 国产免费视频播放在线视频| 韩国精品一区二区三区| 久久久久久久久久久免费av| 菩萨蛮人人尽说江南好唐韦庄| xxxhd国产人妻xxx| 欧美 日韩 精品 国产| 欧美激情 高清一区二区三区| 中文天堂在线官网| www.熟女人妻精品国产| 亚洲欧美激情在线| 亚洲,欧美,日韩| 亚洲欧美精品自产自拍| 久久久久国产一级毛片高清牌| av卡一久久| 天天躁夜夜躁狠狠躁躁| 国产成人精品福利久久| 菩萨蛮人人尽说江南好唐韦庄| 高清不卡的av网站| 自线自在国产av| 九草在线视频观看| 亚洲人成电影观看| 在线观看国产h片| 一二三四在线观看免费中文在| 日本欧美视频一区| 亚洲国产欧美一区二区综合| 亚洲国产中文字幕在线视频| 狂野欧美激情性bbbbbb| kizo精华| 亚洲美女黄色视频免费看| 成人18禁高潮啪啪吃奶动态图| 久久人人爽人人片av| av视频免费观看在线观看| 交换朋友夫妻互换小说| 精品第一国产精品| 在线亚洲精品国产二区图片欧美| 午夜福利免费观看在线| 国产成人欧美在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 美女大奶头黄色视频| av网站在线播放免费| 老司机亚洲免费影院| 欧美97在线视频| 久久精品国产亚洲av高清一级| 狂野欧美激情性xxxx| 2021少妇久久久久久久久久久| 国产成人系列免费观看| 日韩人妻精品一区2区三区| 国产精品免费大片| 丰满饥渴人妻一区二区三| 欧美黄色片欧美黄色片| 99精品久久久久人妻精品| 啦啦啦中文免费视频观看日本| 中文字幕亚洲精品专区| 90打野战视频偷拍视频| 国产97色在线日韩免费| 热99国产精品久久久久久7| 午夜影院在线不卡| 亚洲精品久久久久久婷婷小说| 久久综合国产亚洲精品| 精品亚洲乱码少妇综合久久| 永久免费av网站大全| 国产激情久久老熟女| 97人妻天天添夜夜摸| kizo精华| 如日韩欧美国产精品一区二区三区| 久久综合国产亚洲精品| 男女午夜视频在线观看| 国产精品一区二区在线观看99| 大香蕉久久成人网| av又黄又爽大尺度在线免费看| 男男h啪啪无遮挡| 丰满饥渴人妻一区二区三| 精品少妇黑人巨大在线播放| 国产一区二区三区av在线| 美女扒开内裤让男人捅视频| 下体分泌物呈黄色| 亚洲欧美色中文字幕在线| 90打野战视频偷拍视频| 日本wwww免费看| 欧美日韩视频高清一区二区三区二| 黄色视频在线播放观看不卡| 涩涩av久久男人的天堂| 欧美最新免费一区二区三区| 国产精品秋霞免费鲁丝片| 精品久久久精品久久久| 自线自在国产av| 免费在线观看完整版高清| 精品福利永久在线观看| 国产亚洲最大av| 国产精品久久久久成人av| 在线亚洲精品国产二区图片欧美| 亚洲av电影在线进入| 女人精品久久久久毛片| www日本在线高清视频| av线在线观看网站| 亚洲av电影在线进入| 少妇被粗大猛烈的视频| 99久久99久久久精品蜜桃| 涩涩av久久男人的天堂| 大香蕉久久成人网| 青春草亚洲视频在线观看| 黄色视频在线播放观看不卡| 欧美变态另类bdsm刘玥| 麻豆av在线久日| 在线观看三级黄色| a级毛片黄视频| 亚洲精品一二三| 久久久亚洲精品成人影院| 中文字幕色久视频| 精品久久久精品久久久| 午夜影院在线不卡| 久久久久久久久久久久大奶| 夫妻午夜视频| 最近的中文字幕免费完整| 青春草视频在线免费观看| av.在线天堂| 桃花免费在线播放| 中文字幕av电影在线播放| 女的被弄到高潮叫床怎么办| 国产在线视频一区二区| 中文欧美无线码| 久久ye,这里只有精品| 一边摸一边抽搐一进一出视频| 丝袜喷水一区| 久久人妻熟女aⅴ| 亚洲综合色网址| 亚洲自偷自拍图片 自拍| 在线观看人妻少妇| 欧美日韩一区二区视频在线观看视频在线| 日韩制服骚丝袜av| 高清欧美精品videossex| 国产亚洲精品第一综合不卡| 深夜精品福利| 99香蕉大伊视频| 观看美女的网站| 激情视频va一区二区三区| 欧美人与善性xxx| 婷婷色麻豆天堂久久| 日韩成人av中文字幕在线观看| 亚洲国产欧美日韩在线播放| 在线精品无人区一区二区三| 这个男人来自地球电影免费观看 | 少妇精品久久久久久久| 亚洲成av片中文字幕在线观看| 母亲3免费完整高清在线观看| 欧美日韩视频高清一区二区三区二| 啦啦啦啦在线视频资源| 亚洲,欧美精品.| 亚洲一区二区三区欧美精品| 色视频在线一区二区三区| 免费看av在线观看网站| 日本黄色日本黄色录像| 日韩av免费高清视频| 日本欧美国产在线视频| 国产精品香港三级国产av潘金莲 | 亚洲色图 男人天堂 中文字幕| 久久影院123| 韩国高清视频一区二区三区| 精品人妻熟女毛片av久久网站| 男人操女人黄网站| 搡老乐熟女国产| 18禁观看日本| 51午夜福利影视在线观看| 中国国产av一级| 秋霞在线观看毛片| 国产精品二区激情视频| 国产男人的电影天堂91| 美女福利国产在线| 亚洲专区中文字幕在线 | 亚洲欧美一区二区三区久久| 久久人人97超碰香蕉20202| 永久免费av网站大全| 多毛熟女@视频| 亚洲五月色婷婷综合| 90打野战视频偷拍视频| 大片电影免费在线观看免费| 另类精品久久| 美女脱内裤让男人舔精品视频| 国产97色在线日韩免费| 久久人人爽人人片av| 色网站视频免费| 中文字幕色久视频| 久热爱精品视频在线9| 国产成人精品福利久久| 日韩一卡2卡3卡4卡2021年| 热re99久久国产66热| 黑人巨大精品欧美一区二区蜜桃| 久久国产精品大桥未久av| 国产97色在线日韩免费| 欧美乱码精品一区二区三区| 久热这里只有精品99| 日韩一本色道免费dvd| 免费观看性生交大片5| 性色av一级| 黄色视频不卡| 国产精品亚洲av一区麻豆 | 久久亚洲国产成人精品v| 亚洲激情五月婷婷啪啪| 99久国产av精品国产电影| 一级爰片在线观看| 亚洲av国产av综合av卡| 欧美另类一区| 久久久久久免费高清国产稀缺| kizo精华| 又大又黄又爽视频免费| 中文字幕精品免费在线观看视频| 日韩 欧美 亚洲 中文字幕| 免费观看人在逋| 中文字幕色久视频| 国产精品免费视频内射| 国产在线视频一区二区| 最新在线观看一区二区三区 | 丝袜美足系列| 国产淫语在线视频| 91aial.com中文字幕在线观看| 五月天丁香电影| 美女中出高潮动态图| a级毛片在线看网站| 国产精品一区二区在线不卡| 国产欧美日韩一区二区三区在线| 国产精品成人在线| 亚洲,一卡二卡三卡| 97在线人人人人妻| 在线看a的网站| 欧美少妇被猛烈插入视频| 日韩中文字幕欧美一区二区 | 国产一区二区三区综合在线观看| 日韩制服骚丝袜av| 熟妇人妻不卡中文字幕| av.在线天堂| 丰满少妇做爰视频| 久久亚洲国产成人精品v| 在线观看三级黄色| 一个人免费看片子| av福利片在线| www日本在线高清视频| 久久精品熟女亚洲av麻豆精品| 男的添女的下面高潮视频| 亚洲欧洲精品一区二区精品久久久 | 在线观看国产h片| 女的被弄到高潮叫床怎么办| 亚洲欧美精品自产自拍| 欧美精品av麻豆av| 一区二区三区激情视频| 亚洲人成77777在线视频| 天堂8中文在线网| 亚洲av综合色区一区| 国产在线免费精品| 亚洲伊人久久精品综合| 国产亚洲av高清不卡| 黄色一级大片看看| 亚洲美女视频黄频| 如何舔出高潮| 人人妻人人澡人人爽人人夜夜| 爱豆传媒免费全集在线观看| 日韩 亚洲 欧美在线| 一本一本久久a久久精品综合妖精| 波多野结衣一区麻豆| 午夜福利影视在线免费观看| 久久精品熟女亚洲av麻豆精品| 成人手机av| 日本爱情动作片www.在线观看| 亚洲精品第二区| 亚洲成av片中文字幕在线观看| 日韩一本色道免费dvd| 成人漫画全彩无遮挡| 999久久久国产精品视频| 亚洲欧美精品自产自拍| 两个人看的免费小视频| 国产精品久久久久久精品古装| 欧美精品一区二区大全| 亚洲 欧美一区二区三区| 国产欧美日韩一区二区三区在线| 国产成人精品久久二区二区91 | 97在线人人人人妻| 亚洲精品久久久久久婷婷小说| 国精品久久久久久国模美| 精品亚洲乱码少妇综合久久| 免费观看a级毛片全部| 欧美人与性动交α欧美软件| 99国产精品免费福利视频| 成人国产av品久久久| 成人国产av品久久久| 中文字幕制服av| 赤兔流量卡办理| 精品一区二区三区四区五区乱码 | 观看美女的网站| 成年av动漫网址| 免费观看a级毛片全部| 夜夜骑夜夜射夜夜干| 国产精品香港三级国产av潘金莲 | 国产有黄有色有爽视频| 久久综合国产亚洲精品| 亚洲精华国产精华液的使用体验| 一本色道久久久久久精品综合| 曰老女人黄片| 久久久久久久久久久久大奶| 国语对白做爰xxxⅹ性视频网站| 岛国毛片在线播放| 国产精品 欧美亚洲| 久久久久久人妻| 婷婷色综合大香蕉| 一级a爱视频在线免费观看| 老司机影院毛片| 国产1区2区3区精品| 亚洲精品久久成人aⅴ小说| 免费高清在线观看视频在线观看| 亚洲国产精品成人久久小说| 国产精品av久久久久免费| 男女高潮啪啪啪动态图| 男人添女人高潮全过程视频| 看非洲黑人一级黄片| 成年人午夜在线观看视频| 51午夜福利影视在线观看| 久久精品久久精品一区二区三区| 一区二区日韩欧美中文字幕| 亚洲国产中文字幕在线视频| 无遮挡黄片免费观看| e午夜精品久久久久久久| 亚洲成人一二三区av| 国产av精品麻豆| 久久久久精品国产欧美久久久 | 爱豆传媒免费全集在线观看| 亚洲成人一二三区av| 夫妻性生交免费视频一级片| 天天躁日日躁夜夜躁夜夜| 亚洲,欧美精品.| 日韩大片免费观看网站| 国产欧美日韩一区二区三区在线| 高清黄色对白视频在线免费看| 老司机亚洲免费影院| 捣出白浆h1v1| 国产男女内射视频| 老熟女久久久| 国产黄频视频在线观看| 在线观看www视频免费| 亚洲国产精品一区二区三区在线| 国产成人a∨麻豆精品| 国产精品国产av在线观看| 成人国产av品久久久| a级毛片在线看网站| 国语对白做爰xxxⅹ性视频网站| 1024香蕉在线观看| 可以免费在线观看a视频的电影网站 | 国产av精品麻豆| 久久影院123| 精品一区二区三卡| 日本猛色少妇xxxxx猛交久久| 女人被躁到高潮嗷嗷叫费观| 一级,二级,三级黄色视频| 少妇猛男粗大的猛烈进出视频| 久久精品aⅴ一区二区三区四区| 菩萨蛮人人尽说江南好唐韦庄| 咕卡用的链子| 高清黄色对白视频在线免费看| 美女福利国产在线| 99re6热这里在线精品视频| 爱豆传媒免费全集在线观看| 久久久久久久大尺度免费视频| 99香蕉大伊视频| 国产日韩欧美视频二区| 国产女主播在线喷水免费视频网站| 91精品伊人久久大香线蕉| 久久天堂一区二区三区四区| 多毛熟女@视频| 久久国产精品男人的天堂亚洲| 少妇被粗大猛烈的视频| 久久精品久久久久久久性| 母亲3免费完整高清在线观看| 两个人看的免费小视频| 国产在线免费精品| 精品一区二区三区av网在线观看 | 欧美在线一区亚洲| netflix在线观看网站| 亚洲成av片中文字幕在线观看| 日韩av免费高清视频| 女的被弄到高潮叫床怎么办| 人人妻人人澡人人看| 一级黄片播放器| 亚洲第一区二区三区不卡| 在线观看免费高清a一片| 成人亚洲精品一区在线观看| 国产成人av激情在线播放| 飞空精品影院首页| 91aial.com中文字幕在线观看| 亚洲四区av| 岛国毛片在线播放| 天堂8中文在线网| 精品人妻熟女毛片av久久网站| 伦理电影免费视频| 九九爱精品视频在线观看| 91aial.com中文字幕在线观看| 欧美精品亚洲一区二区| 国产女主播在线喷水免费视频网站| 丝袜美足系列| 国产成人精品无人区| 高清不卡的av网站| kizo精华| 久久ye,这里只有精品| 亚洲在久久综合| 亚洲精品国产色婷婷电影| 日本欧美视频一区| 日韩中文字幕视频在线看片| 欧美黑人精品巨大| xxx大片免费视频| 伊人久久国产一区二区| 精品国产乱码久久久久久小说| 超碰97精品在线观看| 国产黄频视频在线观看| 免费黄色在线免费观看| 母亲3免费完整高清在线观看| 无限看片的www在线观看| 最近最新中文字幕大全免费视频 | 少妇人妻精品综合一区二区| 男人操女人黄网站| 久久精品亚洲熟妇少妇任你| 久久久国产精品麻豆| 黄片播放在线免费| 午夜免费男女啪啪视频观看| 欧美日韩成人在线一区二区| 在线 av 中文字幕| 欧美日韩成人在线一区二区| 一二三四在线观看免费中文在| 久久99一区二区三区| 精品第一国产精品| 免费在线观看完整版高清| 久久国产亚洲av麻豆专区| 欧美黄色片欧美黄色片| 成人漫画全彩无遮挡| 一区二区日韩欧美中文字幕| 爱豆传媒免费全集在线观看| 九九爱精品视频在线观看| 日韩中文字幕视频在线看片| 免费黄频网站在线观看国产| 亚洲国产av新网站| 日韩 欧美 亚洲 中文字幕| 日韩大片免费观看网站| 国产成人午夜福利电影在线观看| 两个人看的免费小视频| 欧美黄色片欧美黄色片| 热re99久久国产66热| 人人妻人人爽人人添夜夜欢视频| 精品第一国产精品| 成人亚洲精品一区在线观看| 久久精品国产综合久久久| 精品少妇黑人巨大在线播放| 午夜福利影视在线免费观看| 亚洲第一区二区三区不卡| 亚洲精品成人av观看孕妇| 男的添女的下面高潮视频| 亚洲自偷自拍图片 自拍| 中文字幕另类日韩欧美亚洲嫩草| 超碰成人久久| 男女免费视频国产| 国产精品国产三级国产专区5o| 1024视频免费在线观看| 国产精品国产三级国产专区5o| 国产国语露脸激情在线看| 三上悠亚av全集在线观看| 中文字幕人妻熟女乱码| av在线老鸭窝| 中文精品一卡2卡3卡4更新| 在线观看一区二区三区激情| 成人漫画全彩无遮挡| 中文字幕人妻丝袜一区二区 | 亚洲,欧美精品.| av一本久久久久| 80岁老熟妇乱子伦牲交| 9色porny在线观看| 黄片小视频在线播放| 国产成人a∨麻豆精品| 国产成人精品在线电影| 久久99热这里只频精品6学生| 黄色视频不卡| 青青草视频在线视频观看| 99精国产麻豆久久婷婷| 丁香六月欧美| 国产日韩欧美在线精品| 丰满迷人的少妇在线观看| 18禁国产床啪视频网站| 9色porny在线观看| 在线观看人妻少妇| 亚洲综合色网址| 亚洲,欧美,日韩| 国产人伦9x9x在线观看| 不卡视频在线观看欧美| 国产成人av激情在线播放| 不卡视频在线观看欧美| 国产亚洲最大av| 亚洲男人天堂网一区| 亚洲精品久久午夜乱码| 在线天堂最新版资源| 好男人视频免费观看在线| 大话2 男鬼变身卡| 亚洲精品成人av观看孕妇| 亚洲第一区二区三区不卡| 亚洲精品在线美女| 免费在线观看黄色视频的| 国产免费又黄又爽又色| 免费av中文字幕在线| 巨乳人妻的诱惑在线观看| 丰满迷人的少妇在线观看| a级片在线免费高清观看视频| 精品第一国产精品| 99国产精品免费福利视频| 2021少妇久久久久久久久久久| 人成视频在线观看免费观看| 97人妻天天添夜夜摸| 亚洲欧洲国产日韩| 丝袜喷水一区| 国产一区亚洲一区在线观看| 熟女av电影| 人人妻人人添人人爽欧美一区卜| 美女高潮到喷水免费观看| 精品少妇内射三级| 夫妻性生交免费视频一级片| 国产老妇伦熟女老妇高清| 男的添女的下面高潮视频| 在线免费观看不下载黄p国产| 欧美人与性动交α欧美精品济南到| 欧美97在线视频| 日韩av免费高清视频| 亚洲精品一二三| 啦啦啦中文免费视频观看日本| 男女下面插进去视频免费观看| 国产亚洲av高清不卡| 亚洲天堂av无毛| 久久久精品区二区三区| 午夜av观看不卡| 嫩草影视91久久| 可以免费在线观看a视频的电影网站 | 51午夜福利影视在线观看| 婷婷色av中文字幕| 精品一区二区三区四区五区乱码 | 秋霞在线观看毛片| 亚洲av国产av综合av卡| 在线观看人妻少妇| 777米奇影视久久| 一区二区日韩欧美中文字幕| 成人影院久久| 欧美日韩亚洲综合一区二区三区_| 无限看片的www在线观看| 亚洲欧美一区二区三区黑人| av女优亚洲男人天堂| 香蕉国产在线看| 伊人久久大香线蕉亚洲五| 极品人妻少妇av视频| 欧美黄色片欧美黄色片| 中文字幕高清在线视频| 欧美日韩综合久久久久久| 一级a爱视频在线免费观看| 日本一区二区免费在线视频| 美女脱内裤让男人舔精品视频| 亚洲三区欧美一区| 亚洲精品乱久久久久久| 黄色视频不卡| 少妇 在线观看| 两性夫妻黄色片| 国产精品久久久久久精品古装| bbb黄色大片| 涩涩av久久男人的天堂| 多毛熟女@视频| 欧美日韩亚洲综合一区二区三区_| 美女国产高潮福利片在线看| av在线观看视频网站免费| 男女午夜视频在线观看| 国产精品 欧美亚洲| 亚洲成av片中文字幕在线观看| 亚洲精品av麻豆狂野| 这个男人来自地球电影免费观看 | 亚洲七黄色美女视频| 久久精品久久久久久久性| bbb黄色大片| 国产成人系列免费观看| 日韩av免费高清视频| 成人亚洲欧美一区二区av| 欧美国产精品va在线观看不卡| 久久天躁狠狠躁夜夜2o2o | 免费看不卡的av| 青青草视频在线视频观看| 久久亚洲国产成人精品v| 国产老妇伦熟女老妇高清| 欧美日韩成人在线一区二区| 三上悠亚av全集在线观看| 青春草亚洲视频在线观看|