• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一鍋法制備S型異質(zhì)結(jié)光催化劑Fe2O3/Fe2TiO5及其高效降解有機污染物性能

    2022-09-16 09:29:18趙英杰壽幼平王江南石婷婷
    無機化學(xué)學(xué)報 2022年9期
    關(guān)鍵詞:英杰水運光催化劑

    常 方 趙英杰 壽幼平 張 騄 王江南 石婷婷

    (交通運輸部天津水運工程科學(xué)研究院,天津 300000)

    0 Introduction

    Water is one of the important resources that human beings depend on for survival and development.However,nearly a third of the population worldwide is estimated to lack access to safely managed drinking water services[1-2].In the last years,water pollution is becoming a major concern due to novel and dangerous anthropogenic pollutants.Reducing the release of wastewater into the environment and degrading the contaminants from wastewater are important strategies for water environment purification[3-5].

    Many water treatment ways have been employed to degrade organic pollutants,such as physical absorption,biological purification,advanced oxidation processes(AOPs),electrochemical processes,and photocatalytic degradation.Among them,photocatalytic degradation is a kind of AOPs.Compared to traditional AOPs,the active-oxidizing species HO· or·O2-isin-situproduced by semiconductor photocatalysis[6-14].Semiconductor photocatalysts can be excited by light with energy higher than their band gap values,and then generate electron-hole pairs.Hole-electron pairs separate and transfer to the photocatalyst surface,produce HO· or·O2-,and then lead to the oxidation of organic pollutions.To obtain high photocatalytic efficiency,a semiconductor should have a small band gap enabling the utilization of a wide range of solar light[15-20].Fe2O3with a narrow band gap ofca.2.0 eV,can absorb a large amount of visible sunlight.Besides,Fe2O3has many other advantages,such as being lowcost,and non-toxic,making it a promising photocatalyst material.However,Fe2O3exhibits low conductivity and over-positive conduction band position,which are adverse to its photocatalytic efficiency.

    Many strategies were employed to overcome these problems and improve photocatalytic efficiency on Fe2O3.Nano-engineering,intentional n-type doping,and electrocatalyst loading have been often used to improve charge separation efficiency or the surface oxidation rate[21-24].Besides,constructing heterojunction with another semiconductor material is an effective way to improve the separation of electron-hole pairs by the built-in electric field.This strategy has been successfully applied to many semiconductors[21-26],including BiVO4,WO3,TiO2,and so on.

    Constructing heterojunction between Fe2O3particles and another semiconductor with a suitable band position benefits the separation of photo-generated carriers.Fe2TiO5is such a semiconductor with a band gap ofca.2.0 eV and similar to Fe2O3while showing higher conduction and valence band levels,which can form staggered band positions with Fe2O3,therefore,effective step-scheme(S-scheme)heterojunction can be developed between Fe2O3and Fe2TiO5[27-29].Moreover,Fe2TiO5exhibits a high conduction band level located atca.-0.2 eV vs reversible hydrogen electrode,making the composite materials propose the capacity to reduce O2to·O2-and further improve the photocatalytic properties.In previous reports,Fe2O3/Fe2TiO5composites were commonly applied in oxygen evolution[30-32],and rarely seen in pollution degradation[33].The preparing Fe2O3/Fe2TiO5composite was mainly by an ion-exchange method,i.e.employing Fe2O3or TiO2as the substrate to inter-react with Ti or Fe precursors at high temperature[30,32-33].Yu and Waqas fabricated Fe2O3/Fe2TiO5composite utilizing sol-gel and calcination method[31,34].

    In this work,for the first time,Fe2O3/Fe2TiO5composite materials were prepared by a one-pot solvothermal method.Compared to the pure Fe2O3and pure Fe2TiO5,the photocatalytic properties toward removing methylene blue(MB)were significantly improved,which is mainly due to the promoted charge separation efficiency and the preserved higher-energy electrons from Fe2TiO5caused by the S-scheme heterojunction.

    1 Experimental

    1.1 Preparation of Fe2O3/Fe2TiO5 heterojunction particles

    Fe2O3/Fe2TiO5heterojunction particles were fabricated by a solvothermal method.Firstly,2.51 mmol Fe(NO3)3·9H2O was added to 50 mL isopropanol.Under stirring,0.625 mmol of titanium isopropoxide was immediately added to the above solution.The precursor solution,after further being stirred for another 1 h,was transferred into a 100 mL Teflon-line stainless steel autoclave.Then the autoclave was sealed and heated in an oven at 150℃for 12 h.After cooling down naturally,the prepared precipitates were washed with deionized water four times.As-prepared precipitates were dried at 80℃overnight,then dried precipitates were annealed in air at 550℃for 2 h and then 700℃for 10 min.Then the Fe2O3/Fe2TiO5heterojunc-tion particles were obtained.

    Fe2O3was prepared by the same steps employed for Fe2O3/Fe2TiO5fabrication, except that only Fe(NO3)3·9H2O was added to the precursor solution without titanium isopropoxide.Fe2TiO5was also prepared by this solvothermal method[31].In the precursor solution,2.51 mmol Fe(NO3)3·9H2O and 1.25 mmol of titanium isopropoxide were added in sequence.Other steps were the same as that of Fe2O3/Fe2TiO5fabrication.The photoelectrodes based on the prepared Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5were also fabricated with the same process.Firstly,10 mg of each sample was dispersed in 1 mL glycol.20 μL solution was spincoating on F-doped SnO2coated glass(FTO),then another 20 μL solution was immediately dropped on the above FTO.After drying at 150℃for 30 min,the film was calcined at 600℃for 1 h.

    1.2 Characterization

    The crystal structures of the prepared samples were probed by a powder X-ray diffraction(XRD)on a Bruker diffractometer system,using CuKαradiation(λ=0.154 18 nm)with a working voltage and current of 40 kV and 40 mA,respectively.The scan rate was 0.04(°)·s-1in a 2θrange of 5°-70°.The morphology test of the samples was carried out on a field emission scanning electron microscope(SEM;JEOL,JSM-6700F with an accelerating voltage of 5 kV).The working voltage for SEM-EDS(EDS=energy dispersive X-ray spectroscopy)mapping was 20 kV.Transmission electron microscope(TEM)images were recorded on a transmission electron microscope(HT7700).Highresolution TEM(HRTEM)was conducted at 200 kV.The optical absorption spectra of the samples were performed on a UV-visible(UV-Vis)spectrophotometer(Shimadzu,UV-Vis 2550).Electrochemical impedance spectra(EIS)of the three photoelectrodes were measured at 0.9 V(vs RHE)using an electrochemical workstation(Shanghai Chenhua,660E)with a 10 mV amplitude perturbation and frequencies between 0.1 Hz and 1 MHz.

    1.3 Photocatalytic property measurements

    20 mg Fe2O3/Fe2TiO5was added into a 100 mL water solution with an MB concentration of 10 mg·L-1.After 40 min absorption,3 mL solution was filtrated and taken for the test.Then the remained solution was stirred and irradiated under light with a power of 100 mW·cm-2.TThe area of the beaker exposed to the light wasca.20 cm2.The light source used in this work was a 100 W LED lamp.The reaction solution was cooled by running water during the whole irradiating process to exclude the thermal effect.3 mL solution was taken every 30 min.Current-potential curves were tested on an electrochemical workstation using a three-electrode system.

    2 Results and discussion

    2.1 Characterization of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5

    To investigate the crystallinity and phase of asprepared samples,XRD was carried out(Fig.1).All the peaks of the black curve at 24.2°,33.3°,35.7°,40.9°,49.5°,54.1°,57.6°,62.4°,and 64.1°can be assigned to Fe2O3(hematite,PDF No.33-0664),while all peaks of the red curve belong to the pseudobrookite Fe2TiO5(PDF No.41-1432).The results indicate that Fe2O3and Fe2TiO5have been successfully prepared.Both XRD peaks of Fe2O3and Fe2TiO5were observed in Fe2O3/Fe2TiO5,demonstrating that Fe2O3/Fe2TiO5was obtained by the one-pot solvothermal method.Moreover,the high peak intensity of the three samples indicates their well crystalline nature.Note that the prepared Fe2O3/Fe2TiO5composite showed only two relatively low peaks at 18.1°and 25.6°.To evaluate the contents of Fe2O3and Fe2TiO5in the composite,EDS has been per-formed.Elemental Ti was not observed in the pure Fe2O3,while in Fe2TiO5,both Fe and Ti were detected with an atomic ratio of 1.93 which is close to the Fe/Ti stoichiometric proportion in Fe2TiO5.In terms of Fe2O3/Fe2TiO5composite,the atomic ratio of Fe/Ti was 3.99,which is the same as the feed proportion,indicating the content of Fe2O3and Fe2TiO5was equal in molar quantity.EDS mapping on the three samples has also been tested and the results are shown in Fig.2.For Fe2O3/Fe2TiO5,Fe,O,and Ti were uniformly distributed in the sample,demonstrating that Fe2O3or Fe2TiO5can contact each other well.

    Fig.1 XRD patterns of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5

    Fig.2 SEM-EDS element mapping images of(a)Fe2O3,

    TEM was performed to further investigate the crystallinity and phase of the Fe2O3/Fe2TiO5composite.As shown in Fig.3b-3d,elemental Fe was evenly distributed in the particles,while elemental Ti is mainly distributed on the particle surface and interface.HRTEM has also been measured and the results are shown in Fig.3e and 3f.Fringe spacing of 0.251 and 0.247 nm can be indexed to the(110)plane of Fe2O3and(301)plane of Fe2TiO5,especially,demonstrating the formation of heterojunction between Fe2O3and Fe2TiO5.In addition,Fe2O3is well crystalline in the whole Fe2O3sample,while the crystalline region in Fe2TiO5is relatively small and enshrouded with an amorphous phase.This result indicates that Fe2TiO5spreads over the surface of Fe2O3,and the crystallinity of Fe2TiO5is restricted to some extent.Moreover,the TEM-EDS results suggest that the atomic ratio of Fe and Ti wasca.5.6,which is larger than the feed proportion and SEM-EDS values.It is understandable considering that part of small Fe2TiO5particles falls away from Fe2O3during the ultrasonic process.Overall,the results of XRD,SEM-EDS,and TEM demonstrate that Fe2O3/Fe2TiO5heterojunction composites have been successfully prepared.

    Fig.3 TEM-EDS element mapping images(a-d),and HRTEM images(e,f)for Fe2O3/Fe2TiO5

    Light absorption properties show a great effect on the final photocatalytic degradation performance.Therefore,UV-Vis diffuse reflectance spectra(DRS)of the prepared samples were measured to evaluate their absorption properties.The UV-Vis DRS results have been converted to absorption form using the Kubelka-Munk function as shown in Fig.4a.Besides,the curves have been normalized.As shown in Fig.4a,all samples exhibited absorption regions from UV to visible wavelengths.Fe2O3exhibited the widest light absorption,while the absorption edge of Fe2TiO5blue shift compared to Fe2O3and proposed the narrowest light absorption region.While,from 500 to 600 nm,the absorption of Fe2O3/Fe2TiO5was higher than that of Fe2TiO5and smaller than the absorption of Fe2O3.The band gaps of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5were estimated by drawing Tauc plots,which are shown in Fig.4b.In the ordinate of the curves,n=2 represents the direct band gap,whilen=1/2 represents the indirect band gap[13,35].As Fe2O3and Fe2TiO5are indirect band gap semiconductors,n=1/2 was employed here to calculate their band gaps.The band gaps of the three samples were similar with the values of 2.05-2.08 eV,which match the previously reported values[31].

    Fig.4 (a)Absorption spectra and(b)Tauc plots of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5

    Morphologies of the prepared samples were analyzed by SEM.As shown in Fig.5,all the samples show an ellipsoidal shape with uniform distribution.The particle size of the nanoparticles was less than 50 nm.The small particle size enables a large semiconductor/solution interface,facilitating the injecting of photoexcited charges into the solution.In consideration of the similar shape and size of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5,their MB absorption amount should be a little different,which is following the MB absorption experiment.

    Fig.5 SEM images of(a)Fe2O3,(b)Fe2TiO5,and(c)Fe2O3/Fe2TiO5

    2.2 Photocatalytic performance

    To evaluate the performance of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5,the photocatalytic degradation of MB organic pollutants experiments was performed.10 mg·L-1MB aqueous solution was employed in this experiment,the concentration of the three samples was 20 mg per 100 mL MB aqueous solution.The filter for filtering Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5was saturated by MB first.After 40 min of adsorption-desorption equilibrium,the photocatalytic degradation experiment was carried out by exposing the illumination solution.2 mL solution was taken out from the MB solution every 30 min using a disposable syringe with the filter.The MB degradation rates on Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5are shown in Fig.6a.Fe2O3/Fe2TiO5exhibited the highest degradation rate.The degradation efficiencies of the three samples were also calculated according to the formula of(c0-ct)/c0,wherec0is the initial concentration after adsorption-desorption equilibrium,ctis the concentration atttime.After 150 min irradiation,MB degradation efficiency of Fe2O3/Fe2TiO5reached 98.4%,while the efficiencies of Fe2O3and Fe2TiO5were just 50.9% and 62.9%,respectively.As discussed above,though the light absorption property of Fe2O3was better than that of Fe2TiO5,their photocatalytic activity was similar.This is because the conduction band minimum(CBM)of Fe2TiO5was higher and can reduce O2to·O2-,which provides another pathway for degradation,except for oxidizing MB by the hole in valence band maximum(VBM).Among the three samples,Fe2O3/Fe2TiO5presented the highest degradation rate and highest degradation efficiency.To further understand the photocatalytic degradation process,the data were fitted by a first-order kinetic equation,ln(c0/ct)=kt,which is commonly used as a mode to analyze organic pollutant degradation[35].The results are shown in Fig.6b,and the degradation rate constantkwas fitted from the slope of the line.Thekvalue of Fe2O3/Fe2TiO5was 2.787×10-2min-1,which is significantly higher than that of Fe2O3(5.06×10-3min-1)and Fe2TiO5(7.47×10-3min-1).

    Fig.6 (a)Degradation performance of MB over the different samples;(b)Plots of ln(c0/ct)vs illuminated time;(c)Stability of Fe2O3/Fe2TiO5on MB degradation

    To evaluate the stability of Fe2O3/Fe2TiO5,cycle tests for the photocatalytic degradation of MB were tested.The solid particles should be relatively evenly dispersed in the solution after ultrasonic dispersion before the reaction and agitation during the reaction.Moreover,the intermediate solution was taken each time.Therefore,after the first cycle,since the 10 mL solution has been taken out,ca.1/10 of Fe2O3/Fe2TiO5has also been taken out along with the solution.Therefore,we just added MB into the remained 90 mL solution to keep MB and the catalyst concentrations still at 10 and 0.2 mg·mL-1,respectively.As shown in Fig.6c,compared with the 1st cycle,although the degradation rates of the 2nd and 3rd cycles slightly decreased,degradation rates were still high.This result indicates the high stability of as-synthesized Fe2O3/Fe2TiO5composite material.

    2.3 Mechanism for the improvement

    Photocatalytic performance highly depends on light absorption of the semiconductor and charge separation in the bulk semiconductor.As discussed above,the light absorption property of Fe2O3/Fe2TiO5was not the best,the highest photocatalytic property of Fe2O3/Fe2TiO5must result from the significantly improved charge separation efficiency.Moreover,in Fe2O3/Fe2TiO5,besides the preserved higher-energy holes from Fe2O3which oxidize MB,the preserved higherenergy electrons from Fe2TiO5which provide another pathway for MB degradation.

    To verify the mechanism proposed above,photoelectrodes based on Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5were prepared to evaluate their separation efficiency of the photogenerated charge carriers.The photoelectrodes were tested in a three-electrode system,where photoelectrode was used as a working electrode,Ag/AgCl was used as a reference electrode,and Pt was used as the counter electrode.The scan rate was 30 mV·s-1.The electrolyte was 1 mol·L-1NaOH.As shown in Fig.7,the Fe2O3/Fe2TiO5photoelectrode presented significantly higher photocurrents than that of Fe2O3and Fe2TiO5.The significantly increased photocurrent density of Fe2O3/Fe2TiO5can be attributed to the higher charge separation efficiency due to the formed heterojunction between Fe2O3and Fe2TiO5[27].

    Fig.7 Chopped current vs potential curves on Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5photoelectrodes

    EIS was also conducted to confirm the charge transport properties of the three samples.As shown in Fig.8,the Fe2O3/Fe2TiO5photoelectrode exhibited the smallest diameter,indicating the faster charge transfer kinetics in the film.This phenomenon can be attributed to the build-in field induced by the heterojunction between Fe2O3and Fe2TiO5since the built-in field can facilitate the separation of electron-hole pairs.It should be pointed out that the charge transfer resistance of Fe2O3is smaller than that of Fe2TiO5,which is consistent with the reported result[36].

    Fig.8 Nyquist plots of the Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5photoelectrodes

    A possible mechanism for photocatalytic degradation of MB by Fe2O3/Fe2TiO5is illuminated in Fig.9.Fe2TiO5has higher CBM and VBM levels than that Fe2O3.Under irradiation,Fe2O3and Fe2TiO5absorb light and generate electron-hole pairs,respectively.An S-scheme heterojunction[37]is formed between Fe2O3and Fe2TiO5.In this S-scheme heterojunction,electrons in CBM of Fe2O3and holes in VBM of Fe2TiO5can recombination with each other,while holes in VB of Fe2O3and electrons in CBM of Fe2TiO5separate and transfer to Fe2O3/solution and Fe2TiO5/solution surface,respectively.Due to the recombination electrons presenting relatively lower energy,the preserved electrons with higher energy in FeTiOcan reduce Oto·O-,2522and then produce·OH,which can degrade MB effectively.While the reserved holes in Fe2O3can degrade MB directly.Therefore,the Fe2O3/Fe2TiO5heterojunction can remove MB more effectively.

    Fig.9 Schematic diagram of charge carrier transfer process and possible photocatalytic mechanism of Fe2O3/Fe2TiO5

    3 Conclusions

    In summary,Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5have been prepared by a facile one-pot solvothermal method.In Fe2O3/Fe2TiO5,Fe2O3and Fe2TiO5can form S-scheme heterojunction,and thus promotes the electrons in CB of Fe2TiO5and holes in VB of Fe2O3transfer to the surface.In this way,carriers with higher energy were preserved.Compared to Fe2O3and Fe2TiO5,the photocatalytic degradation rate and efficiency of Fe2O3/Fe2TiO5were significantly improved.This approach provides a facile way to achieve Fe2O3/Fe2TiO5S-scheme heterojunction materials and can offer a reference to construct heterojunction on other materials.

    Acknowledgments:The National Nonprofit Institute Research Grants of TIWTE(Grant No.TKS190408),Science and Technology Development Fund of Tianjin Waterway Engineering Research Institute,Ministry of Transport(Grant No.KJFZJJ190201),and Scientific Research Program of Shanghai Science and Technology Commission(Grant No.19DZ1204303).

    猜你喜歡
    英杰水運光催化劑
    Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature*
    Observe modern design works and taste traditional Chinese culture
    可見光響應(yīng)的ZnO/ZnFe2O4復(fù)合光催化劑的合成及磁性研究
    Special Property of Group Velocity for Temporal Dark Soliton?
    燕趙英杰
    軍工文化(2017年12期)2017-07-17 06:07:56
    圖說水運
    中國水運(2016年6期)2016-05-14 22:14:45
    圖說水運
    中國水運(2016年7期)2016-05-14 01:38:00
    圖說水運
    中國水運(2016年4期)2016-05-14 01:04:28
    Pr3+/TiO2光催化劑的制備及性能研究
    圖說水運
    中國水運(2015年4期)2015-05-11 15:59:45
    亚洲国产成人一精品久久久| 国产xxxxx性猛交| 男男h啪啪无遮挡| 欧美日韩视频精品一区| 精品国产一区二区三区四区第35| 毛片一级片免费看久久久久| 久久99蜜桃精品久久| 赤兔流量卡办理| 亚洲精品成人av观看孕妇| 91精品国产国语对白视频| 国产成人免费观看mmmm| av.在线天堂| 久久这里有精品视频免费| 99久久精品国产国产毛片| 国产亚洲欧美精品永久| 一区在线观看完整版| 黑丝袜美女国产一区| 国产成人精品一,二区| 侵犯人妻中文字幕一二三四区| 午夜激情久久久久久久| 你懂的网址亚洲精品在线观看| 国产xxxxx性猛交| 韩国av在线不卡| 高清不卡的av网站| 啦啦啦在线观看免费高清www| 黄色一级大片看看| 国产亚洲精品第一综合不卡| 成年人午夜在线观看视频| 久久影院123| 国产国语露脸激情在线看| a级毛片在线看网站| 久久久久久久久久久免费av| 午夜影院在线不卡| 亚洲欧美一区二区三区国产| 国产成人av激情在线播放| 亚洲av福利一区| 91国产中文字幕| 亚洲av电影在线进入| 中文字幕人妻丝袜一区二区 | 亚洲伊人久久精品综合| 肉色欧美久久久久久久蜜桃| 在线精品无人区一区二区三| 国产一级毛片在线| 最近中文字幕高清免费大全6| av免费观看日本| 精品国产一区二区三区久久久樱花| 纯流量卡能插随身wifi吗| 亚洲国产精品一区三区| 国产精品无大码| 免费大片黄手机在线观看| 久久精品国产鲁丝片午夜精品| av不卡在线播放| 丰满乱子伦码专区| 亚洲精品一区蜜桃| 大片免费播放器 马上看| 免费久久久久久久精品成人欧美视频| 日本av免费视频播放| 国产精品av久久久久免费| 亚洲三级黄色毛片| 免费看av在线观看网站| 久久热在线av| 亚洲国产av新网站| 纵有疾风起免费观看全集完整版| 人妻一区二区av| 欧美97在线视频| 女的被弄到高潮叫床怎么办| 我要看黄色一级片免费的| 在线观看美女被高潮喷水网站| 精品国产一区二区久久| 欧美精品人与动牲交sv欧美| a级片在线免费高清观看视频| 国产爽快片一区二区三区| 超碰97精品在线观看| 天天躁日日躁夜夜躁夜夜| 在线观看美女被高潮喷水网站| 亚洲欧洲国产日韩| 夫妻性生交免费视频一级片| 久久毛片免费看一区二区三区| 午夜福利视频在线观看免费| 如何舔出高潮| 美国免费a级毛片| 91在线精品国自产拍蜜月| 午夜久久久在线观看| 少妇人妻久久综合中文| 超色免费av| 亚洲av日韩在线播放| 夫妻性生交免费视频一级片| 日韩熟女老妇一区二区性免费视频| 国产精品国产av在线观看| 波多野结衣av一区二区av| 亚洲欧美日韩另类电影网站| 日韩免费高清中文字幕av| xxx大片免费视频| 美女主播在线视频| 青草久久国产| 久久久久久久久久久久大奶| 欧美激情极品国产一区二区三区| 亚洲第一av免费看| 亚洲五月色婷婷综合| 91精品伊人久久大香线蕉| 十分钟在线观看高清视频www| 亚洲精品aⅴ在线观看| 最近中文字幕2019免费版| 男人添女人高潮全过程视频| 久久久久久久大尺度免费视频| 亚洲综合精品二区| 一级片'在线观看视频| 精品国产一区二区久久| 熟女电影av网| 免费大片黄手机在线观看| 两个人免费观看高清视频| 国产乱人偷精品视频| 五月天丁香电影| 久久久国产一区二区| 欧美日韩一级在线毛片| 日韩一本色道免费dvd| 国产毛片在线视频| 国产精品香港三级国产av潘金莲 | 如何舔出高潮| 日韩 亚洲 欧美在线| 久久人人爽av亚洲精品天堂| 亚洲一码二码三码区别大吗| 黄网站色视频无遮挡免费观看| 人人妻人人添人人爽欧美一区卜| 精品国产一区二区久久| 伊人久久大香线蕉亚洲五| 亚洲国产欧美网| xxxhd国产人妻xxx| 国产精品女同一区二区软件| 大片电影免费在线观看免费| 久久精品久久久久久噜噜老黄| 久久99蜜桃精品久久| 亚洲av中文av极速乱| 亚洲国产精品一区二区三区在线| 成人亚洲精品一区在线观看| 老鸭窝网址在线观看| 一区二区av电影网| 秋霞伦理黄片| 99re6热这里在线精品视频| 久久人妻熟女aⅴ| 99热国产这里只有精品6| 性色avwww在线观看| 国产日韩欧美亚洲二区| 亚洲精品久久久久久婷婷小说| 久久99热这里只频精品6学生| 国产乱人偷精品视频| 亚洲一码二码三码区别大吗| 国产一区二区 视频在线| 熟妇人妻不卡中文字幕| 精品人妻偷拍中文字幕| videossex国产| 国产免费又黄又爽又色| 在线观看免费日韩欧美大片| av不卡在线播放| 日韩在线高清观看一区二区三区| 极品人妻少妇av视频| 男人爽女人下面视频在线观看| 日韩在线高清观看一区二区三区| 成人国语在线视频| 国产一级毛片在线| 中文天堂在线官网| 久久99热这里只频精品6学生| 男女午夜视频在线观看| 日韩人妻精品一区2区三区| 精品少妇久久久久久888优播| 涩涩av久久男人的天堂| 欧美精品一区二区免费开放| 亚洲四区av| 亚洲,欧美精品.| 亚洲国产av影院在线观看| 美女国产高潮福利片在线看| 久久久久久久久久久免费av| 一级片'在线观看视频| 性色av一级| 久久精品国产亚洲av涩爱| av福利片在线| 日韩 亚洲 欧美在线| 成年人免费黄色播放视频| 七月丁香在线播放| 亚洲欧美一区二区三区国产| 精品国产露脸久久av麻豆| 欧美日韩一级在线毛片| 嫩草影院入口| 欧美97在线视频| 叶爱在线成人免费视频播放| 欧美精品av麻豆av| 在线观看一区二区三区激情| 久久99蜜桃精品久久| 亚洲综合精品二区| 免费大片黄手机在线观看| 在线观看三级黄色| 女人被躁到高潮嗷嗷叫费观| 亚洲av国产av综合av卡| 99久国产av精品国产电影| 尾随美女入室| 熟女少妇亚洲综合色aaa.| 如何舔出高潮| 交换朋友夫妻互换小说| 午夜91福利影院| 两个人免费观看高清视频| 国产国语露脸激情在线看| 丝袜脚勾引网站| 五月开心婷婷网| 国产精品三级大全| 久久久国产欧美日韩av| 26uuu在线亚洲综合色| www日本在线高清视频| 蜜桃在线观看..| av片东京热男人的天堂| 久热久热在线精品观看| 天堂中文最新版在线下载| 久久影院123| 免费黄频网站在线观看国产| 久久精品国产自在天天线| 国产精品嫩草影院av在线观看| 精品人妻熟女毛片av久久网站| 亚洲成国产人片在线观看| 另类精品久久| 欧美日韩一区二区视频在线观看视频在线| 久久 成人 亚洲| h视频一区二区三区| 国产熟女午夜一区二区三区| 秋霞在线观看毛片| 国产女主播在线喷水免费视频网站| 国精品久久久久久国模美| 日韩电影二区| 国产精品亚洲av一区麻豆 | 蜜桃在线观看..| 亚洲av.av天堂| 天堂俺去俺来也www色官网| 免费观看在线日韩| 精品卡一卡二卡四卡免费| 国产成人午夜福利电影在线观看| 国产一区亚洲一区在线观看| 国产乱人偷精品视频| 国产精品偷伦视频观看了| 一级毛片我不卡| 久久亚洲国产成人精品v| 爱豆传媒免费全集在线观看| 久久精品国产亚洲av天美| 亚洲人成电影观看| 国产成人aa在线观看| 久久久久久久久久人人人人人人| 校园人妻丝袜中文字幕| 国产精品不卡视频一区二区| 国产精品欧美亚洲77777| 亚洲国产精品国产精品| 免费在线观看黄色视频的| 亚洲五月色婷婷综合| 一级毛片黄色毛片免费观看视频| 午夜免费鲁丝| 免费看不卡的av| 爱豆传媒免费全集在线观看| 黑人巨大精品欧美一区二区蜜桃| 美女主播在线视频| 亚洲成人一二三区av| 最近最新中文字幕大全免费视频 | 成人漫画全彩无遮挡| 欧美97在线视频| 久久这里只有精品19| 精品国产超薄肉色丝袜足j| 午夜福利网站1000一区二区三区| 色播在线永久视频| 国产精品.久久久| 成人漫画全彩无遮挡| 日韩电影二区| 亚洲综合色网址| 乱人伦中国视频| 91aial.com中文字幕在线观看| a级毛片黄视频| 欧美最新免费一区二区三区| 美女福利国产在线| 国产成人精品福利久久| 久久青草综合色| 两个人免费观看高清视频| 女人精品久久久久毛片| 久久久久久人人人人人| 黄片无遮挡物在线观看| 亚洲精品国产av成人精品| 久久久a久久爽久久v久久| 最近最新中文字幕大全免费视频 | 丰满迷人的少妇在线观看| 精品一区二区三卡| 色吧在线观看| 男女午夜视频在线观看| 少妇人妻久久综合中文| 久久精品国产亚洲av天美| 国产一区二区三区av在线| 一级a爱视频在线免费观看| 成年美女黄网站色视频大全免费| 日韩免费高清中文字幕av| av有码第一页| 久久青草综合色| 18禁国产床啪视频网站| 久久ye,这里只有精品| 欧美av亚洲av综合av国产av | 在现免费观看毛片| 日韩熟女老妇一区二区性免费视频| 两个人看的免费小视频| 亚洲,欧美精品.| √禁漫天堂资源中文www| 亚洲欧美色中文字幕在线| 久久久久精品久久久久真实原创| 三上悠亚av全集在线观看| 成人手机av| 一二三四在线观看免费中文在| 亚洲欧美精品自产自拍| av不卡在线播放| 欧美日韩综合久久久久久| 久久精品久久精品一区二区三区| 欧美老熟妇乱子伦牲交| 成人漫画全彩无遮挡| 老女人水多毛片| 日本wwww免费看| 久久久久久久大尺度免费视频| 成人手机av| 秋霞在线观看毛片| 国产极品天堂在线| 一边摸一边做爽爽视频免费| 亚洲av中文av极速乱| 丝袜脚勾引网站| 国产成人精品久久久久久| 性色avwww在线观看| 看十八女毛片水多多多| 国产免费视频播放在线视频| 久久久国产精品麻豆| 亚洲,一卡二卡三卡| 亚洲,欧美精品.| 伦理电影免费视频| 热99久久久久精品小说推荐| 国产精品三级大全| 赤兔流量卡办理| 国产男女内射视频| 成人午夜精彩视频在线观看| 精品一区在线观看国产| 亚洲精品一二三| 激情五月婷婷亚洲| 亚洲精品一二三| 伦理电影免费视频| 亚洲,欧美精品.| 久久久久人妻精品一区果冻| 久久av网站| 伦理电影免费视频| 亚洲,欧美精品.| 中文字幕最新亚洲高清| 午夜福利,免费看| 国产日韩一区二区三区精品不卡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费黄网站久久成人精品| 五月伊人婷婷丁香| 自线自在国产av| 欧美日韩一级在线毛片| 欧美成人午夜免费资源| 亚洲伊人久久精品综合| av在线老鸭窝| 一边亲一边摸免费视频| 久久婷婷青草| 黑人猛操日本美女一级片| 久久精品aⅴ一区二区三区四区 | 亚洲国产毛片av蜜桃av| 午夜激情久久久久久久| 考比视频在线观看| 亚洲av电影在线观看一区二区三区| kizo精华| 校园人妻丝袜中文字幕| 性高湖久久久久久久久免费观看| 咕卡用的链子| 男女免费视频国产| 九色亚洲精品在线播放| 亚洲精品久久久久久婷婷小说| 侵犯人妻中文字幕一二三四区| 午夜日本视频在线| 久久久久久免费高清国产稀缺| 中文欧美无线码| 久久久久久免费高清国产稀缺| 欧美精品一区二区免费开放| 国产欧美日韩一区二区三区在线| 久久这里只有精品19| 精品亚洲乱码少妇综合久久| 爱豆传媒免费全集在线观看| h视频一区二区三区| 欧美国产精品一级二级三级| 免费看不卡的av| 国产日韩一区二区三区精品不卡| 国产在线视频一区二区| 99久久综合免费| 黑丝袜美女国产一区| 一区二区三区乱码不卡18| 精品国产乱码久久久久久男人| 亚洲欧美清纯卡通| 成人毛片a级毛片在线播放| 水蜜桃什么品种好| 国产精品成人在线| 香蕉精品网在线| 久久精品久久久久久噜噜老黄| 久久人人97超碰香蕉20202| 亚洲国产av影院在线观看| 极品少妇高潮喷水抽搐| 啦啦啦在线观看免费高清www| 国产淫语在线视频| 中国国产av一级| 久久亚洲国产成人精品v| 综合色丁香网| 亚洲经典国产精华液单| 国产精品久久久久成人av| 在线看a的网站| 午夜激情av网站| 汤姆久久久久久久影院中文字幕| 国产无遮挡羞羞视频在线观看| 制服诱惑二区| 乱人伦中国视频| 69精品国产乱码久久久| 秋霞在线观看毛片| 交换朋友夫妻互换小说| 制服丝袜香蕉在线| www.熟女人妻精品国产| 高清在线视频一区二区三区| 男女边摸边吃奶| 午夜日韩欧美国产| 亚洲国产欧美日韩在线播放| 欧美日韩综合久久久久久| 欧美日韩视频高清一区二区三区二| www.自偷自拍.com| 久久久亚洲精品成人影院| 久久97久久精品| 午夜福利乱码中文字幕| 视频区图区小说| 不卡av一区二区三区| 日韩一区二区视频免费看| av免费在线看不卡| 久久精品国产鲁丝片午夜精品| 免费观看a级毛片全部| 久热久热在线精品观看| 如日韩欧美国产精品一区二区三区| 少妇 在线观看| 交换朋友夫妻互换小说| 校园人妻丝袜中文字幕| 国产免费又黄又爽又色| 一区在线观看完整版| 美女国产高潮福利片在线看| 国产一区二区三区综合在线观看| 国产亚洲最大av| 巨乳人妻的诱惑在线观看| 欧美日韩精品成人综合77777| 青春草国产在线视频| 母亲3免费完整高清在线观看 | 亚洲精品第二区| 最近最新中文字幕大全免费视频 | 成人黄色视频免费在线看| 秋霞在线观看毛片| 伊人亚洲综合成人网| 老司机影院成人| 中文字幕另类日韩欧美亚洲嫩草| 久久韩国三级中文字幕| 欧美日韩国产mv在线观看视频| 精品第一国产精品| 午夜福利视频在线观看免费| 69精品国产乱码久久久| a 毛片基地| 九草在线视频观看| 校园人妻丝袜中文字幕| 人妻 亚洲 视频| 日日撸夜夜添| 午夜精品国产一区二区电影| 国产精品成人在线| 超碰成人久久| 美女高潮到喷水免费观看| 亚洲av电影在线观看一区二区三区| 日韩电影二区| 久久久久人妻精品一区果冻| 亚洲中文av在线| 热99国产精品久久久久久7| xxxhd国产人妻xxx| 99精国产麻豆久久婷婷| 97精品久久久久久久久久精品| 哪个播放器可以免费观看大片| 男女午夜视频在线观看| 亚洲精品国产色婷婷电影| 九草在线视频观看| 欧美国产精品va在线观看不卡| 一级,二级,三级黄色视频| 麻豆精品久久久久久蜜桃| 欧美bdsm另类| 久久狼人影院| 看免费av毛片| 欧美xxⅹ黑人| 久久久久久免费高清国产稀缺| 日韩制服骚丝袜av| 久久久精品免费免费高清| 久久精品久久精品一区二区三区| 久久人妻熟女aⅴ| 国产日韩欧美视频二区| 极品人妻少妇av视频| 午夜免费观看性视频| 看免费av毛片| 亚洲国产精品一区二区三区在线| 免费看av在线观看网站| 18禁裸乳无遮挡动漫免费视频| 国产不卡av网站在线观看| 国产成人av激情在线播放| 色网站视频免费| 一级a爱视频在线免费观看| 欧美日韩一级在线毛片| 精品一区二区三卡| 最近中文字幕高清免费大全6| 美女脱内裤让男人舔精品视频| 久久久久国产精品人妻一区二区| av福利片在线| 久久婷婷青草| 国产免费视频播放在线视频| 欧美精品人与动牲交sv欧美| 狠狠精品人妻久久久久久综合| 亚洲综合色网址| 不卡视频在线观看欧美| 2021少妇久久久久久久久久久| 只有这里有精品99| 国产野战对白在线观看| 成人漫画全彩无遮挡| 色网站视频免费| 一级黄片播放器| 日本wwww免费看| 国产av一区二区精品久久| 啦啦啦视频在线资源免费观看| 纵有疾风起免费观看全集完整版| 亚洲国产成人一精品久久久| 2018国产大陆天天弄谢| 久久久久精品人妻al黑| 国产片特级美女逼逼视频| 男人操女人黄网站| 美女午夜性视频免费| 免费观看性生交大片5| 国产免费福利视频在线观看| 香蕉精品网在线| 又粗又硬又长又爽又黄的视频| 日本黄色日本黄色录像| 曰老女人黄片| 人人妻人人澡人人看| 两个人免费观看高清视频| 国产成人a∨麻豆精品| a级毛片在线看网站| 黑人巨大精品欧美一区二区蜜桃| 91久久精品国产一区二区三区| 欧美最新免费一区二区三区| 欧美成人午夜精品| 一本—道久久a久久精品蜜桃钙片| 午夜福利,免费看| 久久国内精品自在自线图片| 日本午夜av视频| 国产日韩欧美在线精品| av在线播放精品| 母亲3免费完整高清在线观看 | 亚洲成色77777| 在线免费观看不下载黄p国产| 国产国语露脸激情在线看| 两个人免费观看高清视频| 丝袜美足系列| 欧美日韩成人在线一区二区| 欧美av亚洲av综合av国产av | 久久久久久人妻| 免费av中文字幕在线| 久久精品人人爽人人爽视色| 一边摸一边做爽爽视频免费| 中国三级夫妇交换| 老汉色av国产亚洲站长工具| 亚洲国产精品成人久久小说| 国产麻豆69| 亚洲国产精品999| 婷婷色综合www| 两性夫妻黄色片| 亚洲国产看品久久| av卡一久久| 免费人妻精品一区二区三区视频| 国产日韩欧美在线精品| 啦啦啦视频在线资源免费观看| 久久久亚洲精品成人影院| av在线app专区| 色视频在线一区二区三区| 纵有疾风起免费观看全集完整版| 国产深夜福利视频在线观看| 两个人看的免费小视频| 久久精品国产亚洲av高清一级| 午夜精品国产一区二区电影| 欧美精品av麻豆av| 天堂中文最新版在线下载| 三上悠亚av全集在线观看| 伦理电影免费视频| 免费观看在线日韩| 久久久久久久国产电影| 欧美精品av麻豆av| 成年美女黄网站色视频大全免费| 国产爽快片一区二区三区| 国产精品一区二区在线不卡| 欧美xxⅹ黑人| 伊人久久大香线蕉亚洲五| 亚洲av电影在线观看一区二区三区| 国产免费福利视频在线观看| www.自偷自拍.com| 国产精品女同一区二区软件| 交换朋友夫妻互换小说| 国产乱人偷精品视频| 久久久久久久精品精品| 男女啪啪激烈高潮av片| 丝袜喷水一区| 国产成人免费无遮挡视频| 免费高清在线观看视频在线观看| 国产xxxxx性猛交| 亚洲婷婷狠狠爱综合网| 如日韩欧美国产精品一区二区三区| 久久婷婷青草| av电影中文网址| 欧美bdsm另类| 国产伦理片在线播放av一区| av女优亚洲男人天堂| 亚洲av.av天堂| 岛国毛片在线播放|