• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      機器視覺在奶牛個體識別中的研究進展

      2020-12-14 07:37:22
      農(nóng)業(yè)工程技術(shù) 2020年27期
      關(guān)鍵詞:灰度奶牛個體

      1 機器視覺技術(shù)監(jiān)管

      目前,中國奶牛養(yǎng)殖從整體上來看,有著規(guī)模小、養(yǎng)殖觀念傳統(tǒng)、缺乏養(yǎng)殖和管理經(jīng)驗等缺陷,這導致牧場的管理水平低下,影響了奶牛養(yǎng)殖的產(chǎn)量與質(zhì)量[1]。普遍的人力監(jiān)管方式難以避免人為因素導致的牛奶質(zhì)量問題,且其獲取養(yǎng)殖場的綜合信息能力較低。因此為保證奶牛得到高效率的監(jiān)管,增加養(yǎng)殖收益,使用機器視覺技術(shù)監(jiān)管成為一種趨勢。

      機器視覺作為一種智慧農(nóng)場實現(xiàn)的熱點技術(shù),具有非接觸、不易干擾奶牛正常生活、長時間連續(xù)監(jiān)控、算法更新迅速的優(yōu)點。對于奶牛的個體準確識別是機器視覺對獲取到的奶牛圖像進行各類體況分析的前提,也是將奶牛體況信息精準記錄到每一只奶牛的基礎技術(shù)。該文將從以下三方面基礎技術(shù)對奶牛個體的精準識別研究進展進行綜述,即從圖像中識別到奶牛具體位置的算法,對奶牛身份進行識別對應的算法,獲取更多奶牛信息量的算法。

      2 精確識別牛只技術(shù)

      2.1 牛只圖像位置識別技術(shù)

      所有對于奶牛圖像的各類人工智能分析方法,都建立在一個最基礎的問題上——奶牛圖像的獲取。攝像機等硬件設備能夠拍攝獲得奶牛所處場景的整體圖像,但無法單獨獲取奶牛個體的圖像。因此,為了進行后續(xù)對奶牛個體動作和狀態(tài)的分析,首先需要解決奶牛個體圖像的準確提取。顧靜秋等[2]提出了使用聚類算法和熵結(jié)合的方式獲取奶牛對象。通過閾值區(qū)分天空、地面和目標對象的圖像灰度,再對圖像歐氏空間內(nèi)的特征向量進行聚類,抽取分離奶牛對象。實驗中奶牛對象提取效果較好,但由于其方法基于灰度值的計算,在目標對象與背景灰度近似時可能會造成準確度的影響。趙凱旋[3]同樣提出了一種對圖像灰度進行分析的方法。通過按照灰度值劃分不重疊的子區(qū),使用動態(tài)RGB通道合成參數(shù)調(diào)整的方法對目標及背景圖像進行適時調(diào)整,然后使用背景去除和最后進行子區(qū)域拼接的方法完成目標的檢測。檢測率為88.34%,誤檢率、誤檢幀和拒檢幀較低,且對光照變化適應性較強。但文章只對單頭奶牛和單一背景進行了實驗,對于這一方法的適用性還需要更多應用和測試來進行評估。同樣是背景去除的方法,宋懷波等[4]將圖像轉(zhuǎn)換為HSV圖像,對亮度分量進行二值化得到奶牛目標提取的掩模,使用高斯去噪后,使用掩模在灰度圖上去除無關(guān)背景后,得到奶牛目標。其算法一定程度上補充了背景去除算法的思路。

      不同于利用灰度值的思想,宋懷波等還提出了使用光流法對于奶牛個體或其所需要檢測的部位圖像進行提取。光流是一種圖像亮度模式的表觀運動,其表達了目標的運動信息,其引申出的光流場概念描述了圖像中所有像素點構(gòu)成的瞬時速度場,因此光流法提取目標主要應用于運動較劇烈的目標的提取。宋懷波等[5]使用每幀圖像的光流場,通過識別光流場的變化,檢測奶牛較大運動部位,作為目標區(qū)域的候選。對圖像用合適閾值分割,使用有較大變化的光流值的幀,疊加分割后幀的二值圖像,利用牛反芻時嘴部運動最為劇烈的特點,通過最終疊加后的二值圖像識別牛的嘴部區(qū)域。

      除光流法外,也有其他對于圖像中的運動區(qū)域進行識別的方法被應用于奶牛個體的識別。Tsai D等[6]使用IP攝像機從牛棚頂部拍攝奶牛,通過對視頻的時空表示識別高水平的運動區(qū)域,得到運動強度圖,然后通過區(qū)域生長分割的方法,保留面積最大的區(qū)域進行進一步處理。使用基于模式的前景分割從當前圖像中提取奶牛的形狀。分割后的運動區(qū)域用來限制目標物體的前景,消除附近不相關(guān)的牛的部分。該方法能夠得到對奶牛個體的最小包圍框,而非沿奶牛個體邊界的精確提取。

      2.2 牛只身份識別技術(shù)

      為解決對牛個體間的區(qū)分問題,研究人員常利用機器學習和卷積神經(jīng)網(wǎng)絡的方法對牛只身份進行識別。趙凱旋等[7]提出通過幀間差值法計算直線行走側(cè)視奶牛視頻中的粗略輪廓,再由分段跨度分析對應二值圖像,從而定位器軀干區(qū)域,使用二值圖像對軀干進行比對跟蹤。將上述方法得到的軀干圖像進行灰度化,并進行插值運算和歸一化轉(zhuǎn)換為矩陣,作為神經(jīng)網(wǎng)絡的輸入數(shù)據(jù)。通過第一卷積層,第二下采樣層,第三卷積層和第四下采樣層的卷積神經(jīng)網(wǎng)絡結(jié)構(gòu),建立與奶牛頭數(shù)相當?shù)母兄?,使每一種奶牛個體作為一個模式進行輸出。該方法對視頻中奶牛個體的識別準確率達到了93.33%,同時,方法中減少了卷積層中特征圖的數(shù)量,提高了網(wǎng)絡對圖像信息的利用率。然而再對相似圖像進行處理時,會由于先前對圖像進行的變化導致細節(jié)信息的損失,從而降低了方法的準確性。Kumar等[8]提出利用牛的鼻口處紋路判斷牛的身份。該團隊先提出利用Fisher線性保留映射 FLPP(Fisher Linear Preserving Projection) 的方法來提取??诒翘卣?,通過 SVM 訓練預測達到 96.87% 的準確率。在這一研究基礎上,Kumar等[9]又對算法進行了更改。提出利用加速魯棒性特征和局部二值模式的特征提取方法,對口鼻處不同程度的高斯金字塔平滑圖像紋路特點進行描述。通過融合加權(quán)求和的方法,得到最終的特征描述。其團隊建立了500頭牛的5000張圖像數(shù)據(jù)集,通過對比多種算法的性能,最終選擇使用LDA算法,通過Fisher識別標準最大化組間和組內(nèi)的主要特征比例;使用ICA算法得到對口鼻圖像高階統(tǒng)計量更敏感的識別方式;采用基于SURF和LBP特征描述的技術(shù)對鼻口圖像進行評估,將融合后的相似度評分作為最終判定的依據(jù)。該方法交叉驗證得到身份識別準確率為93.87%,且方法為未來的持續(xù)性改進留有余地。方法中對于紋路的識別分析算法,以及對身份識別的算法,都可以根據(jù)算法的性能進行具體的更改。這使得算法在未來有更廣的使用方式和應用場景。

      2.3 提高牛只圖像信息量技術(shù)

      牛只個體識別這一基礎技術(shù)的準確度主要受制于圖像質(zhì)量。如同人眼視物,如果人眼本身接收到的圖像不清楚,則在人腦中反映出的信息也是不準確的。

      增強圖像本身的清晰程度和信息表現(xiàn)能力,是最基礎直接地提高獲取信息量的方法。劉忠超[10]借助雙域濾波去噪,通過低頻和高頻圖像分解、貝葉斯估計高頻圖像的小波閾值、Garrote函數(shù)小波去噪、伽馬變換矯正、暗通道先驗算法去霧、自適應直方圖均衡的算法處理,增強圖像清晰程度,擴充其涵蓋信息量。且在各時間段,各類天氣環(huán)境下都能夠有效地去噪、增強信息和改善圖像視覺效果,能夠為牛棚環(huán)境中的奶牛識別提供良好的樣本。

      另一方面,由于設備硬件的條件本身決定了圖片質(zhì)量的上限,訓練能夠有效進行模糊識別的算法也是一種高信息量獲取的重要途徑。劉杰鑫等[11]為了解決傳統(tǒng)機器學習方法提取特征不充足和采用 CNN 的研究中深度學習網(wǎng)絡識別率不高的問題,提出了通過建立高斯混合模型,確定像素點與分布的匹配關(guān)系決定其歸屬,通過多個分布對背景進行建模。完成背景建模后,可以二值化提取到奶牛的模糊輪廓,使用最大連通域?qū)δ膛_M行定位,通過定位框的坐標和尺寸信息獲取奶牛個體圖像,隨機作為訓練集和測試集。然后使用Alex net網(wǎng)絡softmax和svm分類器對牛個體進行遷移學習。該方法采用規(guī)定像素占比的方式較好地避免了光線突變和鏡頭抖動帶來的噪聲干擾,且相較于先前的研究有著較好的準確性提高。

      3 結(jié)論與展望

      從近年研究情況來看,由于各類算法的更新以及設備的迭代,對于奶牛個體的精確識別在各個研究的測試環(huán)境下都能夠得到較準確的識別效果,且能夠依據(jù)不同的需求,對奶牛輪廓、奶?;y、奶牛嘴部等實驗所需識別部位進行較為精準的識別。對于牛只的身份確認,也能有較良好的表現(xiàn)。研究者也從圖像本身入手,著眼于提高圖像的信息量,以達到提供更好的算法訓練數(shù)據(jù)。整體而言,對于個體的精確識別一方面在對環(huán)境的適應和遷移上有所欠缺,另一方面各類奶牛個體的識別技術(shù)在可視化和與人交互方面的不足,可能會造成技術(shù)在推廣應用方面的阻力。為了能夠進一步提升機器視覺技術(shù)在實際應用中的可行性,未來能從以下幾個方面繼續(xù)發(fā)展:(1)建立奶牛圖像信息的互聯(lián)網(wǎng)數(shù)據(jù)庫。通過數(shù)據(jù)庫能夠交流不同地區(qū)環(huán)境采集到的奶牛圖像,豐富研究者在實驗中可獲取的奶牛圖像信息量。(2)研究綜合性算法。應用單一的算法檢測奶牛個體時,總會受到某個算法的弊端影響。可以通過將多種算法進行綜合,或可能夠減少單一算法帶來的誤差。(3)應用更新的人工智能算法?,F(xiàn)在人臉識別算法的準確度和普及度都十分可觀,人工智能的應用也在社會中十分廣泛。其中應用的各類新型算法思路,也可以被修改和應用到奶牛養(yǎng)殖業(yè),乃至其他畜牧養(yǎng)殖業(yè)管理中。

      總而言之,中國的奶牛養(yǎng)殖業(yè)還處于一種較為粗放的管理方式之中,對于奶牛的精細管理和信息化數(shù)據(jù)記錄以及分析都尚處于初級階段。各類自動化的監(jiān)控方式也都處于研究階段,進行落地轉(zhuǎn)化的技術(shù)較少。期望相關(guān)的研究單位能結(jié)合具體國情,研發(fā)更多可以投入生產(chǎn)生活中的技術(shù),提升中國奶牛養(yǎng)殖業(yè)的自動化、精細化和智能化水平,促進其繁榮發(fā)展。

      猜你喜歡
      灰度奶牛個體
      乍暖還寒時奶牛注意防凍傷
      采用改進導重法的拓撲結(jié)構(gòu)灰度單元過濾技術(shù)
      夏季奶牛如何預防熱應激
      基于灰度拉伸的圖像水位識別方法研究
      關(guān)注個體防護裝備
      勞動保護(2019年7期)2019-08-27 00:41:02
      奶牛吃草
      基于最大加權(quán)投影求解的彩色圖像灰度化對比度保留算法
      自動化學報(2017年5期)2017-05-14 06:20:56
      基于灰度線性建模的亞像素圖像抖動量計算
      個體反思機制的缺失與救贖
      學習月刊(2015年22期)2015-07-09 03:40:48
      How Cats See the World
      中學科技(2015年1期)2015-04-28 05:06:12
      天等县| 香港| 商都县| 阜新| 云林县| 礼泉县| 万山特区| 阳城县| 沙雅县| 迁西县| 长子县| 本溪| 普兰县| 敦煌市| 吉安县| 恭城| 正安县| 云阳县| 吴桥县| 介休市| 务川| 隆回县| 乐东| 奇台县| 通河县| 浪卡子县| 湖北省| 林州市| 嘉义县| 教育| 洛隆县| 凌源市| 怀化市| 荔波县| 桑日县| 马山县| 江口县| 拜城县| 文登市| 手游| 潍坊市|