李廷亮,王宇峰,王嘉豪,栗麗,謝鈞宇,李麗娜,黃曉磊,謝英荷
我國主要糧食作物秸稈還田養(yǎng)分資源量及其對小麥化肥減施的啟示
李廷亮1,2,王宇峰1,王嘉豪1,栗麗1,謝鈞宇1,李麗娜1,黃曉磊1,謝英荷1
(1山西農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院,山西太谷 030801;2山西農(nóng)業(yè)大學(xué)農(nóng)業(yè)資源與環(huán)境國家級實驗教學(xué)示范中心,山西太谷 030801)
【】明確我國主要糧食作物秸稈及其養(yǎng)分資源特征,為秸稈肥料化利用、化肥合理減施及農(nóng)業(yè)綠色生產(chǎn)提供科學(xué)依據(jù)?;凇吨袊y(tǒng)計年鑒》和文獻(xiàn)資料數(shù)據(jù),估算我國水稻、小麥和玉米秸稈及其養(yǎng)分資源量,分析秸稈和養(yǎng)分資源區(qū)域分布特征、養(yǎng)分資源當(dāng)季釋放量以及小麥生產(chǎn)中化肥減施量。通過文獻(xiàn)數(shù)據(jù)加權(quán)估算,我國水稻、小麥和玉米的草谷比分別為1.01、1.14和1.25。2014—2018年,我國三大糧食作物秸稈年均產(chǎn)量為65 386.6萬t,其中水稻、小麥和玉米秸稈產(chǎn)量分別占32.3%、22.7%和45.0%。秸稈資源量的73.3%分布在我國華北、長江中下游和東北農(nóng)區(qū),其中水稻秸稈主要集中在長江中下游農(nóng)區(qū)(50.7%)、小麥秸稈主要集中在華北農(nóng)區(qū)(59.0%)、玉米秸稈主要集中在東北農(nóng)區(qū)(33.7%)和華北農(nóng)區(qū)(30.4%)。我國水稻、小麥和玉米秸稈氮素(N)平均含量分別為0.78%、0.64%和0.85%,磷素(P2O5)平均含量分別為0.42%、0.27%和0.53%,鉀素(K2O)平均含量分別為2.31%、1.53%和1.59%,秸稈總養(yǎng)分含量(N+P2O5+K2O)表現(xiàn)為水稻>玉米>小麥。三大糧食作物秸稈養(yǎng)分資源年均量為509.8萬t(N)、284.7萬t(P2O5)和1 183.0萬t(K2O),不同農(nóng)區(qū)總養(yǎng)分量分布表現(xiàn)為長江中下游(26.0%)>華北(25.4%)>東北(21.3%)>西北(11.1%)>西南(10.5%)>東南(5.6%)。我國水稻、小麥和玉米秸稈還田氮素當(dāng)季釋放率分別為54.9%、51.4%和61.9%,磷素當(dāng)季釋放率分別為60.9%、65.3%和73.0%,鉀素當(dāng)季釋放率分別為90.1%、93.3%和92.3%,表現(xiàn)為鉀>磷>氮。三大糧食作物秸稈還田養(yǎng)分當(dāng)季歸還量(化肥可替代量)年均值為294.0萬t(N)、194.1萬t(P2O5)和1 083.9萬t(K2O),總量為1 572萬t,其中以玉米秸稈養(yǎng)分(N+P2O5+K2O)當(dāng)季歸還量最高,占當(dāng)季養(yǎng)分總歸還量的44.6%。秸稈還田對我國小麥生產(chǎn)具有較高化肥替代潛力,在小麥一年一作區(qū),小麥秸稈全量還田理論上可替代4.6 kg N·hm-2、7.8 kg P2O5·hm-2和65.3 kg K2O·hm-2的化肥投入量;小麥玉米輪作區(qū),玉米秸稈全量還田理論上可替代小麥生產(chǎn)季39.4 kg N·hm-2、28.9 kg P2O5·hm-2和109.9 kg K2O·hm-2的化肥投入量;稻麥輪作區(qū),水稻秸稈全量還田理論上可替代小麥生產(chǎn)季29.9 kg N·hm-2、17.8 kg P2O5·hm-2和145.1 kg K2O·hm-2的化肥投入量。我國水稻、小麥和玉米秸稈年均產(chǎn)量分別為21 141.5萬t、14 843.1萬t和29 402.0萬t,總量為65 386.6萬t。三大糧食作物秸稈全量還田養(yǎng)分當(dāng)季釋放量為294.0萬t(N)、194.1萬t(P2O5)和1 083.9萬t(K2O)。70%以上秸稈資源和養(yǎng)分當(dāng)季釋放量集中在長江中下游、華北和東北地區(qū)。小麥生產(chǎn)區(qū),前茬作物秸稈全量還田理論上可替代4.6—39.4 kg N·hm-2、7.8—28.9 kg P2O5·hm-2和65.3—145.1 kg K2O·hm-2的化肥投入量。
秸稈產(chǎn)量;養(yǎng)分資源量;化肥減施;小麥生產(chǎn)
【研究意義】農(nóng)作物秸稈含有大量氮、磷、鉀及其他中微量元素,秸稈還田后易分解物質(zhì)可快速釋放礦質(zhì)養(yǎng)分供后期作物吸收利用,難分解部分則經(jīng)微生物轉(zhuǎn)化為腐殖質(zhì)增加土壤碳匯,改善土壤結(jié)構(gòu)和微生態(tài)環(huán)境,進而提高土壤肥力[1-3]。作物秸稈是農(nóng)業(yè)生產(chǎn)中最經(jīng)濟有效的有機養(yǎng)分資源,科學(xué)統(tǒng)計評價我國現(xiàn)階段主要糧食作物秸稈資源量及養(yǎng)分釋放特征對合理減少農(nóng)業(yè)化肥投入和提高耕地質(zhì)量具有重要意義?!厩叭搜芯窟M展】我國農(nóng)作物秸稈資源豐富,據(jù)統(tǒng)計2015年全國農(nóng)作物秸稈總產(chǎn)量達(dá)10.4億t,其中可收集資源量為9億 t,秸稈肥料化利用率為43.2%[4]。秸稈含有大量養(yǎng)分資源,宋大利等[5]研究表明2015年我國水稻、小麥和玉米秸稈全量還田可歸還的氮素(N)分別為56.9、36.6和61.5 kg·hm-2,占對應(yīng)作物生產(chǎn)化肥氮施用量的31.6%(水稻)、22.5%(小麥)和28.8%(玉米);柴如山等[6]對我國2013—2017年主要糧食作物秸稈鉀素資源量研究表明,我國水稻、小麥和玉米秸稈還田當(dāng)季可提供的鉀素量分別為499萬t、193萬t和479萬t。目前國際上估算秸稈資源量普遍采用的方法是草谷比,而草谷比受作物品種、栽培措施和氣候條件等因素影響較大,我國水稻、小麥和玉米的草谷比一般在0.62—1.40、0.73—1.56和0.89—2.00之間[7-12]。草谷比的選擇很大程度上會影響秸稈和養(yǎng)分資源量的估算結(jié)果,畢于運等[11]采用玉米草谷比1.2估算我國2005年玉米秸稈總產(chǎn)量為2.02億t,而在張培棟等[13]研究中選擇玉米草谷比2.0估算我國2005年玉米秸稈資源量為2.78億t。另外關(guān)于作物秸稈養(yǎng)分含量,多數(shù)研究[6,14-17]參考了1999年全國農(nóng)業(yè)技術(shù)推廣服務(wù)中心編制的《中國有機肥料養(yǎng)分志》,其中我國水稻、小麥和玉米秸稈的氮(N)含量分別為0.91%、0.65%和0.92%,磷(P2O5)含量分別為0.30%、0.18%和0.34%,鉀(K2O)分別為2.29%、1.27%和1.43%;而劉曉永等[12]在《中國有機肥料養(yǎng)分志》基礎(chǔ)上通過后期文獻(xiàn)統(tǒng)計加權(quán)確定的我國水稻、小麥和玉米的磷素(P2O5)含量分別為0.13%、0.09%和0.11%,整體降低了50%以上;高偉[18]對我國北方不同地區(qū)玉米秸稈養(yǎng)分含量研究結(jié)果為0.93%(N)、0.37%(P2O5)和2.37%(K2O),其中鉀素含量則提高了66%。表明作物秸稈養(yǎng)分含量會隨作物品種的更替、土壤水肥條件和栽培措施等發(fā)生變化。作物秸稈還田后在微生物作用下逐步發(fā)生腐解,釋放礦質(zhì)營養(yǎng)元素,研究表明不同作物秸稈中養(yǎng)分釋放速率表現(xiàn)為K>P>N,其中秸稈鉀的當(dāng)季釋放率可達(dá)90%,磷的當(dāng)季釋放率在60%—70%,氮的當(dāng)季釋放率在50%—60%[12,19-21]。秸稈翻埋在15—20 cm土層的累積腐解率高于0—5 cm土層,秸稈在旱地土壤中的累積腐解率和養(yǎng)分釋放率總體高于水田[22-24]。我國近年小麥種植面積在2 400萬hm2以上,其中旱作小麥約占1/3,我國旱地土壤相對貧瘠,化肥利用效率低,因此秸稈還田在小麥種植區(qū)的化肥減量有機替代研究對當(dāng)?shù)赝寥蕾|(zhì)量提升和小麥綠色生產(chǎn)顯得尤為重要。【本研究切入點】以往研究中有關(guān)秸稈產(chǎn)量及養(yǎng)分資源量統(tǒng)計多依據(jù)某一標(biāo)準(zhǔn)或單一文獻(xiàn)的草谷比和養(yǎng)分含量值,所以統(tǒng)計結(jié)果差異較大,且秸稈還田養(yǎng)分資源估算量大多沒有考慮當(dāng)季養(yǎng)分釋放率,僅通過全量養(yǎng)分估算秸稈還田替代化肥潛力。而基于大樣本統(tǒng)計的草谷比和養(yǎng)分含量值估算我國主要糧食作物秸稈產(chǎn)量和養(yǎng)分資源量,以及基于秸稈養(yǎng)分當(dāng)季釋放率估算化肥實際可替代量的研究鮮為報道?!緮M解決的關(guān)鍵問題】本文基于《中國統(tǒng)計年鑒》和前人大量文獻(xiàn)數(shù)據(jù),系統(tǒng)研究我國2014—2018年水稻、小麥和玉米三大糧食作物秸稈產(chǎn)量分布特征、秸稈養(yǎng)分含量和釋放特征,并進一步分析秸稈還田養(yǎng)分釋放對我國小麥生產(chǎn)化肥減施的貢獻(xiàn),以期為我國農(nóng)業(yè)綠色資源化生產(chǎn)提供理論依據(jù)。
本研究參照中國糧食主產(chǎn)區(qū)劃分,將中國大陸31個省、市、自治區(qū)(未包括香港、澳門、臺灣和南海群島)劃分為六大農(nóng)區(qū):(1)東北農(nóng)區(qū)(黑龍江、吉林和遼寧);(2)華北農(nóng)區(qū)(北京、天津、河北、河南、山東、山西);(3)長江中下游農(nóng)區(qū)(上海、江蘇、浙江、安徽、湖北、湖南、江西);(4)西北農(nóng)區(qū)(內(nèi)蒙古、陜西、寧夏、甘肅、青海、新疆);(5)西南農(nóng)區(qū)(重慶、四川、貴州、云南、西藏);(6)東南農(nóng)區(qū)(福建、廣東、廣西、海南)。研究的作物包括水稻、小麥和玉米。
本研究中各地區(qū)水稻、小麥和玉米的秸稈產(chǎn)量是指籽粒收獲后所有地上部剩余的副產(chǎn)品,采用草谷比法進行估算。
各省份主要糧食作物秸稈產(chǎn)量的計算公式為:
WS=Wg×R (1)
式中,WS為作物秸稈產(chǎn)量;Wg為作物籽粒產(chǎn)量;R為作物草谷比。
各省份主要糧食作物秸稈養(yǎng)分資源量的計算公式為:
WN= WS×NS(2)
式中,WN為作物秸稈氮素(N)資源量;NS為作物秸稈氮素(N)含量。
WP2O5= WS×PS×2.29 (3)
式中,WP2O5為作物秸稈磷素(P2O5)資源量;PS為作物秸稈磷素(P)含量;2.29為單質(zhì)磷轉(zhuǎn)化為P2O5的系數(shù)。
WK2O= WS×KS×1.2 (4)
式中,WK2O為作物秸稈鉀素(K2O)資源量;KS為作物秸稈鉀素(K)含量;1.2為單質(zhì)鉀轉(zhuǎn)化為氧化鉀(K2O)的系數(shù)。
本研究中各地區(qū)作物產(chǎn)量及種植面積數(shù)據(jù)來自2015—2019年國家統(tǒng)計局編制的《中國統(tǒng)計年鑒》,為避免糧食作物產(chǎn)量年度之間差異引起的統(tǒng)計不準(zhǔn)確性,水稻、小麥和玉米秸稈產(chǎn)量為基于2014—2018年作物產(chǎn)量多年統(tǒng)計數(shù)據(jù)的估算值。關(guān)于草谷比的確定,本研究基于前人大量數(shù)據(jù)統(tǒng)計結(jié)果,加權(quán)平均計算獲得(表1)。水稻、小麥和玉米秸稈養(yǎng)分含量及當(dāng)季釋放率均為近年相關(guān)研究文獻(xiàn)大量樣品統(tǒng)計結(jié)果。
表1 不同文獻(xiàn)中主要農(nóng)作物的草谷比
表中括號內(nèi)的數(shù)據(jù)為統(tǒng)計樣本數(shù)。下同 The data in brackets indicate the number of statistical samples. The same as below
2014—2018年我國三大糧食作物秸稈總產(chǎn)量年平均為65 386.6萬t(表2),其中水稻、小麥和玉米秸稈產(chǎn)量分別占32.3%、22.7%和45.0%。三大糧食作物秸稈資源主要集中在我國華北、長江中下游和東北農(nóng)區(qū),占總秸稈產(chǎn)量的73.3%。水稻秸稈產(chǎn)量以長江中下游農(nóng)區(qū)最高,西北農(nóng)區(qū)最低,分別占全國水稻秸稈總量的50.7%和2.8%;小麥秸稈產(chǎn)量以華北農(nóng)區(qū)最高,占全國小麥秸稈總量的59.0%,東南農(nóng)區(qū)小麥秸稈年均產(chǎn)量最低,僅1.5萬t;玉米秸稈產(chǎn)量以東北和華北農(nóng)區(qū)最高,分別占全國玉米秸稈總量的33.7%和30.4%,以東南農(nóng)區(qū)最低,僅占全國玉米秸稈總量的1.5%。
表3為根據(jù)相關(guān)文獻(xiàn)數(shù)據(jù)[5-6,12,16,18-21,23-115]統(tǒng)計的我國水稻、小麥和玉米秸稈氮(N)、磷(P2O5)和鉀(K2O)養(yǎng)分含量??芍?,不同文獻(xiàn)背景下作物養(yǎng)分含量差異較大,其中三大作物秸稈氮素含量變異系數(shù)在28.7%—39.6%,磷素含量變異系數(shù)在69.0%—87.5%,鉀素含量變異系數(shù)在43.9%—46.1%,表明作物秸稈中磷含量較氮和鉀更容易受到研究條件變化的影響。我國水稻、小麥和玉米秸稈氮素(N)平均含量分別為0.78%、0.64%和0.85%,磷素(P2O5)平均含量分別為0.42%、0.27%和0.53%,鉀素(K2O)平均含量分別為2.31%、1.53%和1.59%,秸稈總養(yǎng)分含量(N+P2O5+K2O)表現(xiàn)為水稻>玉米>小麥。
表2 我國不同農(nóng)區(qū)主要糧食作物秸稈產(chǎn)量
表中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)差。下同 The data were mean ± standard deviation. The same as below
表3 我國主要糧食作物秸稈養(yǎng)分含量
依據(jù)上述秸稈養(yǎng)分平均含量對我國不同農(nóng)區(qū)主要糧食作物秸稈養(yǎng)分資源量的估算值見表4。2014—2018年,我國三大糧食作物秸稈養(yǎng)分年資源總量為509.8萬t(N)、284.7 萬t(P2O5)和1 183.0 萬t(K2O),其中水稻秸稈養(yǎng)分資源量占年資源總量的32.3%(N)、31.2%(P2O5)和41.3%(K2O),小麥秸稈養(yǎng)分資源量占年資源總量的18.6%(N)、14.1%(P2O5)和19.2%(K2O),玉米秸稈養(yǎng)分資源量占年資源總量的49.0%(N)、54.7%(P2O5)和39.5% (K2O)。三大糧食作物秸稈N、P2O5和K2O資源量在我國不同農(nóng)區(qū)的分布規(guī)律一致,總養(yǎng)分量表現(xiàn)為長江中下游(26.0%)>華北(25.4%)>東北(21.3%)>西北(11.1%)>西南(10.5%)>東南(5.6%),其中72.6%的養(yǎng)分資源量集中我國長江中下游、華北和東北農(nóng)區(qū)。玉米是東北和華北農(nóng)區(qū)養(yǎng)分資源主要來源,分別占70.0%和52.7%;水稻是長江中下游農(nóng)區(qū)秸稈養(yǎng)分資源主要來源,占73.1%。
作物秸稈覆蓋或翻壓還田后,秸稈腐解率和養(yǎng)分釋放率因秸稈物質(zhì)組成、土壤環(huán)境條件不同而具有一定差異性。通過文獻(xiàn)數(shù)據(jù)[19-24,96-128]分析表明(表5),我國水稻、小麥和玉米秸稈在下季作物生長過程中的腐解率統(tǒng)計值分別為58.6%、60.0%和57.9%,平均為58.8%;氮素當(dāng)季釋放率分別為54.9%、51.4%和61.9%,平均為56.1%;磷素當(dāng)季釋放率分別為60.9%、65.3%和73.0%,平均為66.4%;鉀素當(dāng)季釋放率分別為90.1%、93.3%和92.3%,平均為91.9%。
依據(jù)上述文獻(xiàn)統(tǒng)計的秸稈養(yǎng)分釋放率,對我國不同農(nóng)區(qū)秸稈養(yǎng)分當(dāng)季歸還量的估算值見表6。2014—2018年,我國三大糧食作物秸稈還田養(yǎng)分當(dāng)季歸還量(化肥可替代量)年均值為294.0萬t(N)、194.1萬t(P2O5)和1 083.9萬t(K2O),總量為1 572萬t,其中水稻秸稈養(yǎng)分當(dāng)季歸還量占當(dāng)季養(yǎng)分總歸還量的30.8%(N)、27.9%(P2O5)和40.6%(K2O),小麥秸稈養(yǎng)分當(dāng)季歸還量占當(dāng)季養(yǎng)分總歸還量的16.6%(N)、13.5%(P2O5)和19.5%(K2O),玉米秸稈養(yǎng)分當(dāng)季歸還量占當(dāng)季養(yǎng)分總歸還量的52.6%(N)、58.6%(P2O5)和39.9%(K2O)。
我國不同農(nóng)區(qū)三大糧食作物秸稈N、P2O5和K2O當(dāng)季歸還量分布規(guī)律一致,其中72.7%當(dāng)季歸還量集中在長江中下游、華北和東北地區(qū)。
表7是我國不同小麥種植制度下前茬作物秸稈全量還田當(dāng)季化肥投入替代量。本研究中小麥一年一作區(qū)單位面積秸稈產(chǎn)量是基于我國北方旱作小麥平均產(chǎn)量的計算值[129],另外以我國玉米和水稻單位面積秸稈產(chǎn)量分別作為小麥玉米輪作區(qū)和稻麥輪作區(qū)的前茬作物秸稈量,前茬作物秸稈量表現(xiàn)為玉米(7 482.2 kg·hm-2)>水稻(6 971.0 kg·hm-2)>小麥(4 448.3 kg·hm-2)。結(jié)合不同種植制度下小麥的推薦施肥量(表8)可知,在小麥一年一作區(qū),秸稈全量還田當(dāng)季可釋放14.6 kg N·hm-2、7.8 kg P2O5·hm-2和65.3 kg K2O·hm-2, 理論上可替代小麥生產(chǎn)中7.6%—48.7%(N)、8.9%—60.0%(P2O5)和58.8%—100%(K2O)的化肥投入量;小麥玉米輪作區(qū),玉米秸稈全量還田當(dāng)季可釋放39.4 kg N·hm-2、28.9 kg P2O5·hm-2和109.9 kg K2O·hm-2,理論上可替代小麥生產(chǎn)中21.4%—22.5%(N)、18.1%—57.8%(P2O5)和100%(K2O)的化肥投入量;稻麥輪作區(qū),水稻秸稈全量還田當(dāng)季可釋放29.9 kg N·hm-2、17.8 kg P2O5·hm-2和145.1 kg K2O·hm-2, 理論上可替代小麥生產(chǎn)中13.3%—19.9%(N)、12.7%—50.9%(P2O5)和100%(K2O)的化肥投入量。可見,由于我國不同地區(qū)土壤養(yǎng)分含量、水分狀況、小麥品種及其他氣候環(huán)境條件等不同,小麥產(chǎn)量水平和理論施肥量具有較大的區(qū)域差異性,對應(yīng)秸稈還田替代化肥比例差異較大。因此,在具體小麥生產(chǎn)過程中,化肥減施比例要結(jié)合實際秸稈還田量及施肥量確定。
表4 我國不同農(nóng)區(qū)主要糧食作物秸稈養(yǎng)分資源量
表5 我國主要糧食作物秸稈當(dāng)季養(yǎng)分釋放率
表6 我國不同農(nóng)區(qū)主要糧食作物秸稈養(yǎng)分當(dāng)季歸還量
表7 我國不同小麥種植制度下秸稈替代化肥養(yǎng)分量
秸稈作為糧食作物生產(chǎn)的副產(chǎn)品,區(qū)域范圍內(nèi)資源量并沒有準(zhǔn)確的統(tǒng)計數(shù)據(jù),國內(nèi)外研究通用方法是采用草谷比與作物產(chǎn)量進行估算。不同文獻(xiàn)中我國作物產(chǎn)量統(tǒng)計口徑主要依據(jù)《中國統(tǒng)計年鑒》或《中國農(nóng)業(yè)統(tǒng)計年鑒》,差異總體不大,但草谷比的取值是影響秸稈產(chǎn)量估算結(jié)果的關(guān)鍵因素。宋大利等[5]對我國2015年水稻、小麥和玉米秸稈資源量的估算結(jié)果為6.2億t;從宏斌等[134]統(tǒng)計表明,2017年我國水稻、小麥和玉米秸稈資源量為7.1億t;而柴如山等[15]對我國2013—2017年主要糧食作物秸稈產(chǎn)量統(tǒng)計結(jié)果表明,我國水稻、小麥和玉米秸稈年均產(chǎn)量分別為2.3、1.7和4.0億t,總量為8.0億t。上述研究秸稈估算量的差異與文獻(xiàn)中所選取草谷比具有很大關(guān)系。本研究中為了避免參考單一文獻(xiàn)草谷比值帶來的統(tǒng)計誤差,文中草谷比為前人大量樣本統(tǒng)計值的加權(quán)平均值,水稻、小麥和玉米的草谷比分別為1.01(n=247)、1.14(n=839)和1.25(n=341),大樣本統(tǒng)計結(jié)果更具有科學(xué)性和可信度。本研究結(jié)果表明2014—2018年我國水稻、小麥和玉米秸稈年均產(chǎn)量分別為2.1、1.5和2.9億t,總量為6.5億t。另外本研究發(fā)現(xiàn),2014—2018年期間我國玉米秸稈產(chǎn)量的變異系數(shù)較大,原因是近年來我國玉米種植面積在不斷加大,2018年全國玉米總產(chǎn)量較2014年增加了14%。
表8 我國不同種植制度下基于土壤養(yǎng)分含量的小麥推薦施肥量
一年一作小麥區(qū),土壤硝態(tài)氮是指小麥播種前1 m土體硝態(tài)氮貯量,土壤有效磷和土壤速效鉀是0—40 cm土層Olsen-P和速效鉀的含量;小麥玉米輪作區(qū)和稻麥輪作區(qū),土壤有效磷和土壤速效鉀是0—20 cm土層有效磷和速效鉀的含量
In wheat monoculture area, the value of soil nitrate nitrogen is the accumulation of NO3--N in 1 m soil before sowing, the value of soil available P and available K is the content of soil Olsen-P and NH4OAc-K in 0-40 cm soil layer; in wheat-maize rotation and rice-wheat rotation area, the value of soil available P and available K is the content of soil Olsen-P and NH4OAc-K in 0-20 cm soil layer
作物地上部對養(yǎng)分的吸收累積和轉(zhuǎn)運分配受基因和環(huán)境因素共同作用[135-136]。例如,磷高效作物品種對磷的吸收轉(zhuǎn)運能力相對較高[137];增加光照條件下,氮、磷和鉀等養(yǎng)分向籽粒分配的比例就會增加[138]。本研究發(fā)現(xiàn)不同文獻(xiàn)研究背景下我國三大糧食作物秸稈氮(N)、磷(P2O5)和(K2O)養(yǎng)分含量變異較大,除上述原因,一定程度上還與作物體內(nèi)氮、磷和鉀移動性和可再利用程度高有關(guān)。本研究中,三大糧食作物秸稈中養(yǎng)分含量均表現(xiàn)為K2O>N>P2O5,不同文獻(xiàn)背景下秸稈磷含量的變異系數(shù)最高,可能原因是秸稈中磷素含量最低,環(huán)境條件改變引起秸稈磷含量變幅可能會更大。另外,作物秸稈養(yǎng)分含量也存在區(qū)域性差異特征,黃寧等[139]研究表明黃淮南片麥區(qū),高產(chǎn)品種莖葉含磷量較低,含鉀量較高;而長江中下游麥區(qū),高產(chǎn)品種的含磷鉀量均相對較高。高偉[18]研究表明我國北方地區(qū)玉米秸稈中鉀含量表現(xiàn)為西北地區(qū)>華北地區(qū)>東北地區(qū)。不同生態(tài)條件下稻草中氮的含量也會出現(xiàn)顯著差異[140]。
本研究中我國水稻、小麥和玉米秸稈氮含量較1999年全國農(nóng)業(yè)技術(shù)推廣服務(wù)中心編制的《中國有機肥料養(yǎng)分志》降低了1.5%—14.3%,而磷和鉀含量則分別提高了41.1%—54.3%和1.0%—11.4%,秸稈磷鉀含量增加可能與近年來化肥施用量增加有關(guān),而秸稈中氮含量的降低則可能更大程度與近年我國科研對作物氮素利用效率關(guān)注度高有關(guān),氮高效利用品種選育及管理措施優(yōu)化研究和應(yīng)用進一步提高了作物秸稈氮素向籽粒的轉(zhuǎn)移。例如地膜覆蓋和適宜的氮肥用量協(xié)同作用促進了營養(yǎng)器官氮素向籽粒的轉(zhuǎn)移率,從而提高作物氮收獲指數(shù)[141-142]。
另外,本研究表明我國三大糧食作物秸稈養(yǎng)分年均資源量為509.8萬t(N)、284.7萬t(P2O5)和1 183.0萬t(K2O),其中鉀素資源量和宋大利等[5]和柴如山等[6]估算值相近,氮素資源量估算值低于宋大利等[5]估算值(625.6萬t),磷素資源量高于宋大利等[5]估算值(197.9萬t),這與秸稈氮、磷含量取值有很大關(guān)系,但研究均表明我國秸稈養(yǎng)分資源量主要集中在長江中下游、華北和東北農(nóng)區(qū)。
秸稈直接還田后,秸稈養(yǎng)分伴隨著秸稈腐解過程逐步釋放,因此在研究秸稈還田替代化肥時應(yīng)考慮秸稈還田后養(yǎng)分的當(dāng)季有效性[12]。秸稈腐解過程受到秸稈碳氮比、土壤水肥條件、通氣性及溫度等環(huán)境因素影響[1]。目前秸稈腐解研究多采用尼龍網(wǎng)袋原位法,且大量研究表明,秸稈養(yǎng)分釋放表現(xiàn)為前期快、后期慢,大概在100—150 d達(dá)到穩(wěn)定停滯狀態(tài),養(yǎng)分釋放率一般表現(xiàn)為鉀>磷>氮[12,19-24,112,115]。本文對大量相關(guān)文獻(xiàn)統(tǒng)計分析表明,當(dāng)還田秸稈進入腐解停滯期,水稻、小麥和玉米秸稈氮的釋放率平均為54.9%、51.4%和61.9%,磷釋放率平均為60.9%、65.3%和73.0%,鉀釋放率平均為90.1%、93.3%和92.3%。秸稈中鉀主要以離子態(tài)存在,研究發(fā)現(xiàn)秸稈浸泡2 d后,90%的鉀就可釋放出來[20]。而秸稈中氮素主要為難降解的結(jié)構(gòu)性氮素,所以秸稈氮的釋放率最低[1]。腐解菌劑的添加可以進一步提高秸稈氮和磷的釋放率[1,47, 143]。
本研究表明,我國三大糧食作物秸稈還田養(yǎng)分當(dāng)季歸還量(化肥可替代量)年均值為294.0萬t(N)、194.1萬t(P2O5)和1 083.9萬t(K2O),總量為1 572萬t,其中72.7%當(dāng)季歸還量集中在長江中下游、華北和東北地區(qū),且三大糧食作物中以玉米秸稈養(yǎng)分(N+P2O5+K2O)當(dāng)季歸還量最高,占當(dāng)季養(yǎng)分總歸還量的44.6%。水稻、小麥和玉米秸稈全部還田,其養(yǎng)分當(dāng)季釋放量相當(dāng)于我國2018年農(nóng)用氮肥(N)施用量(2 065.4萬t)的14.2%,農(nóng)用磷肥施用量(728.9萬t)的26.6%,農(nóng)用鉀肥施用量為(590.3萬t)的1.8倍(2019年中國統(tǒng)計年鑒)。秸稈還田不僅可替代部分化肥用量,同時由于其養(yǎng)分逐步釋放特征,起到了緩釋肥的效果。
我國秸稈綜合利用主要包括肥料化、飼料化、燃料化、基料化、原料化利用。據(jù)統(tǒng)計,2015年我國秸稈利用量達(dá)到7.2億t,資源綜合利用率為80.1%,其中秸稈肥料化利用率為43.2%[4,144]。鑒于目前農(nóng)田土壤化肥減施有機替代的生態(tài)需求,秸稈作為成本最低的有機肥源,其肥料化利用逐漸被加以重視[145]。本研究中以小麥生產(chǎn)為例,在小麥一年一作區(qū)、小麥玉米輪作區(qū)和稻麥輪作區(qū),上季秸稈全量還田理論上可替代小麥生產(chǎn)季4.6—39.4 kg N·hm-2、7.8—28.9 kg P2O5·hm-2和65.3—145.1 kg K2O·hm-2的化肥投入量。以4元/kg N、7元/kg P2O5和8元/kg K2O肥料價格計算,可產(chǎn)生595—1 521元/hm2的肥料成本效應(yīng)。
秸稈還田在減施化肥基礎(chǔ)上,還可以改善土壤結(jié)構(gòu),提高土壤肥效[145]。YAN等[146]在華北地區(qū)基于10年水稻秸稈還田定位試驗研究表明,秸稈還田可以顯著提高土壤總有機碳和活性有機碳含量,并增加參與土壤碳循環(huán)微生物的相對豐度。趙士誠等[147]研究表明長期秸稈還田增加了土壤碳固持,并可增加酸解氨基酸態(tài)氮含量,降低銨態(tài)氮的晶格固定。但另一方面我們也必須意識到秸稈還田不當(dāng)會產(chǎn)生一些負(fù)面影響,秸稈不能及時腐解會影響根系生長,產(chǎn)生病蟲害以及與作物爭奪氮素的問題[145,148]。周延輝等[149]通過文獻(xiàn)數(shù)據(jù)對中國地區(qū)小麥產(chǎn)量與秸稈還田響應(yīng)關(guān)系分析表明,稻稈還田量小于5 000 kg·hm-2、玉米秸稈還田小于 6 000 kg·hm-2時,小麥增產(chǎn)效果比較好。
我國主要糧食作物秸稈資源豐富,2014—2018年三大糧食作物秸稈年均產(chǎn)量為65 386.6萬t,其中水稻、小麥和玉米秸稈分別占32.3%、22.7%和45.0%,秸稈資源量的73.3%分布在我國華北、長江中下游和東北農(nóng)區(qū)。我國三大糧食作物秸稈養(yǎng)分資源年均量為509.8萬t(N)、284.7萬t(P2O5)和1 183.0萬t(K2O),秸稈還田當(dāng)季養(yǎng)分釋放量為294.0萬t(N)、194.1萬t(P2O5)和1 083.9萬t(K2O)。在小麥生產(chǎn)區(qū),前茬作物秸稈全量還田理論上可替代小麥生產(chǎn)季4.6—39.4 kg N·hm-2、7.8—28.9 kg P2O5·hm-2和65.3—145.1 kg K2O·hm-2的化肥投入量。秸稈還田對于補充土壤養(yǎng)分,減少化肥用量,提高土壤肥力具有重要意義。但由于我國不同農(nóng)區(qū)氣候及土壤條件相差較大,秸稈還田腐解養(yǎng)分釋放效應(yīng)不同,因此合理的秸稈還田量及還田方式需進一步做區(qū)域尺度上的定量研究,以推進我國農(nóng)業(yè)綠色高效生產(chǎn)。
[1] 張經(jīng)廷, 張麗華, 呂麗華, 董志強, 姚艷榮, 金欣欣, 姚海坡, 賈秀領(lǐng). 還田作物秸稈腐解及其養(yǎng)分釋放特征概述. 核農(nóng)學(xué)報, 2018, 32(11): 2274-2280.
ZHANG J T, ZHANG L H, Lü L H, DONG Z Q, YAO Y R, JIN X X, YAO H P, JIA X L. Overview of the characteristics of crop straw decomposition and nutrients release of returned field crops., 2018, 32(11): 2274-2280. (in Chinese)
[2] YIN H J, ZHAO W Q, LI T, CHENG X Y, LIU Q. Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources., 2018, 81: 2695-2702.
[3] BU R Y, REN T, LEI M J, LIU B, LI X K, CONG R H, ZHANG Y Y, LU J W. Tillage and straw-returning practices effect on soil dissolved organic matter, aggregate fraction and bacteria community under rice-rice-rapeseed rotation system., 2020, 287: 106681.
[4] 霍麗麗, 趙立欣, 孟海波, 姚宗路. 中國農(nóng)作物秸稈綜合利用潛力研究. 農(nóng)業(yè)工程學(xué)報, 2019, 35(13): 218-224.
HUO L L, ZHAO L X, MENG H B, YAO Z L. Study on straw multi-use potential in China., 2019, 35(13): 218-224. (in Chinese)
[5] 宋大利, 侯勝鵬, 王秀斌, 梁國慶, 周衛(wèi). 中國秸稈養(yǎng)分資源數(shù)量及替代化肥潛力. 植物營養(yǎng)與肥料學(xué)報, 2018, 24(1): 1-21.
SONG D L, HOU S P, WANG X B, LIANG G Q, ZHOU W. Nutrient resource quantity of crop straw and its potential of substituting., 2018, 24(1): 1-21. (in Chinese)
[6] 柴如山, 安之冬, 馬超, 王擎運, 章力干, 郜紅建. 我國主要糧食作物秸稈鉀養(yǎng)分資源量及還田替代鉀肥潛力. 植物營養(yǎng)與肥料學(xué)報, 2020, 26(2): 201-211.
CHAI R S, AN Z D, MA C, WANG Q Y, ZHANG L G, GAO H J. Potassium resource quantity of main grain crop straw and potential for straw incorporation to substitute potassium fertilizer in China., 2020, 26(2): 201-211. (in Chinese)
[7] 蔡亞慶, 仇煥廣, 徐志剛. 中國各區(qū)域秸稈資源可能源化利用的潛力分析. 自然資源學(xué)報, 2011, 26(10): 1637-1646.
CAI Y Q, QIU H G, XU Z G. Evaluation on potentials of energy utilization of crop residual resources in different regions of China., 2011, 26(10): 1637-1646. (in Chinese)
[8] 左旭, 王紅彥, 王亞靜, 王磊, 景麗, 王道龍. 中國玉米秸稈資源量估算及其自然適宜性評價. 中國農(nóng)業(yè)資源與區(qū)劃, 2015, 36(6): 5-10, 29.
ZUO X, WANG H Y, WANG Y J, WANG L, JIN L, WANG D L. Estimation and suitability evaluation of corn straw resources in China., 2015, 36(6): 5-10, 29. (in Chinese)
[9] 謝光輝, 韓東倩, 王曉玉, 呂潤海. 中國禾谷類大田作物收獲指數(shù)和秸稈系數(shù). 中國農(nóng)業(yè)大學(xué)學(xué)報, 2011, 16(1): 1-8.
XIE G H, HAN D Q, WANG X Y, Lü R H. Harvest index and residue factor of cereal crops in China., 2011, 16(1): 1-8. (in Chinese)
[10] 姬興杰, 于永強, 張穩(wěn), 余衛(wèi)東. 近二十年中國冬小麥?zhǔn)斋@指數(shù)時空格局. 中國農(nóng)業(yè)科學(xué), 2010, 43(17): 3511-3519.
JI X J, YU Y Q, ZHANG W, YU W D. Spatial-temporal patterns of winter wheat harvest index in China in recent twenty years., 2010, 43(17): 3511-3519. (in Chinese)
[11] 畢于運, 高春雨, 王亞靜, 李寶玉. 中國秸稈資源數(shù)量估算. 農(nóng)業(yè)工程學(xué)報, 2009, 25(12): 211-217.
BI Y Y, GAO C Y, WANG Y J, LI B Y. Estimation of straw resources in China., 2009, 25(12): 211-217. (in Chinese)
[12] 劉曉永,李書田. 中國秸稈養(yǎng)分資源及還田的時空分布特征. 農(nóng)業(yè)工程學(xué)報, 2017, 33(21): 1-19.
LIU X Y, LI S T. Temporal and spatial distribution characteristics of crop straw nutrient resources and returning to farmland in China., 2017, 33(21): 1-19. (in Chinese)
[13] 張培棟, 楊艷麗, 李光全, 李新榮. 中國農(nóng)作物秸稈能源化潛力估算. 可再生能源, 2007(6): 80-83.
ZHANG P D, YANG Y L, LI G Q, LI X R. Energy potentiality of crop straw recourses in China., 2007(6): 80-83. (in Chinese)
[14] 高利偉, 馬林, 張衛(wèi)峰, 王方浩, 馬文奇, 張福鎖. 中國作物秸稈養(yǎng)分資源數(shù)量估算及其利用狀況. 農(nóng)業(yè)工程學(xué)報, 2009, 25(7): 173-179.
GAO L W, MA L, ZHANG W F, WANG F H, MA W Q, ZHANG F S. Estimation of nutrient resource quantity of crop straw and its utilization situation in China., 2009, 25(7): 173-179. (in Chinese)
[15] 柴如山, 王擎運, 葉新新, 江波, 趙強, 王強, 章力干, 郜紅建. 我國主要糧食作物秸稈還田替代化學(xué)氮肥潛力. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2019, 38(11): 2583-2593.
CHAI R S, WANG Q Y, YE X X, JIANG B, ZHAO Q, WANG Q, ZHANG L G, GAO H J. Nitrogen resource quantity of main grain crop straw in China and the potential of synthetic nitrogen substitution under straw returning., 2019, 38(11): 2583-2593. (in Chinese)
[16] 孫建飛, 鄭聚鋒, 程琨, 潘根興. 基于可收集的秸稈資源量估算及利用潛力分析. 植物營養(yǎng)與肥料學(xué)報, 2018, 24(2): 404-413.
SUN J F, ZHENG J F, CHENG K, PAN G X. Estimate of the quantity of collectable straw resources and competitive utilization potential., 2018, 24(2): 404-413. (in Chinese)
[17] 方放, 王飛, 石祖梁, 鄭向群, 邵宇航, 李想, 邱凌. 京津冀秸稈養(yǎng)分資源及秸稈焚燒氣體污染物排放定量估算. 農(nóng)業(yè)工程學(xué)報, 2017, 33(3):1-6.
FANG F, WANG F, SHI Z L, ZHENG X Q, SHAO Y H, LI X, QIU L. Quantitative estimation on straw nutrient resources and emission of pollutants from straw burning in Beijing-Tianjin-Hebei region., 2017, 33(3): 1-6. (in Chinese)
[18] 高偉. 我國北方不同地區(qū)玉米(L.)養(yǎng)分吸收與利用研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2008.
GAO W. Study on nutrient absorption and utilization of maize (L.) in different regions in north China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese)
[19] 龔振平, 鄧乃榛, 宋秋來, 李中韜. 基于長期定位試驗的松嫩平原還田玉米秸稈腐解特征研究. 農(nóng)業(yè)工程學(xué)報, 2018, 34(8): 139-145.
GONG Z P, DENG N Z, SONG Q L, LI Z D. Decomposing characteristics of maize straw returning in Songnen Plain in long-time located experiment., 2018, 34(8): 139-145. (in Chinese)
[20] 戴志剛, 魯劍巍, 李小坤, 魯明星, 楊文兵, 高祥照. 不同作物還田秸稈的養(yǎng)分釋放特征試驗. 農(nóng)業(yè)工程學(xué)報, 2010, 26(6): 272-276.
DAI Z G, LU J W, LI X K, LU M X, YANG W B, GAO X Z. Nutrient release characteristic of different crop straws manure., 2010, 26(6): 272-276. (in Chinese)
[21] 劉單卿, 李順義, 郭夏麗. 不同還田方式下小麥秸稈的腐解特征及養(yǎng)分釋放規(guī)律. 河南農(nóng)業(yè)科學(xué), 2018, 47(4): 49-53.
LIU D Q, LI S Y, GUO X L. Characteristics of decomposition and nutrients release of wheat straw under different returning methods., 2018, 47(4): 49-53. (in Chinese)
[22] 張曉雨. 秸稈還田腐解特征及其對土壤環(huán)境和小麥生長的影響[D]. 重慶: 西南大學(xué), 2014.
ZHANG X Y. Straw decomposition law and the influence of straw returning to soil environment and wheat growth [D]. Chongqing: SouthwestUniversity, 2014. (in Chinese)
[23] 張學(xué)林, 周亞男, 李曉立, 侯小畔, 安婷婷, 王群. 氮肥對室內(nèi)和大田條件下作物秸稈分解和養(yǎng)分釋放的影響. 中國農(nóng)業(yè)科學(xué), 2019, 52(10): 1746-1760.
ZHANG X L, ZHOU Y N, LI X L, HOU X P, AN T T, WANG Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubations., 2019, 52(10): 1746-1760. (in Chinese)
[24] 代文才, 高明, 蘭木羚, 黃容, 王金柱, 王子芳, 韓曉飛. 不同作物秸稈在旱地和水田中的腐解特性及養(yǎng)分釋放規(guī)律. 中國生態(tài)農(nóng)業(yè)學(xué)報, 2017, 25(2): 188-199.
DAI W C, GAO M, LAN M L, HUANG R, WANG J Z, WANG Z F, HAN X F. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields., 2017, 25(2): 188-199. (in Chinese)
[25] MENG F Q, DUNGAIT J A J, XU X L, BOL R, ZHANG X, WU W L. Coupled incorporation of maize (L.) straw with nitrogen fertilizer increased soil organic carbon in Fluvic Cambisol., 2017, 304: 19-27.
[26] Shaukat Ali Abro, 把余玲, 田霄鴻, 李萌, 游東海. 溫度與微生物制劑對小麥秸稈腐解及土壤碳氮的影響. 西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版), 2012, 40(1): 115-122.
SHAUKAT A A. BA Y L, TIAN X H, LI M, YOU D H. Effect of temperature and microbial agent on wheat straw decomposition and soil carbon or nitrogen., 2012, 40(1): 115-122. (in Chinese)
[27] 蔡立群, 牛怡, 羅珠珠, 武均, 岳丹, 周歡, 董博, 張仁陟. 秸稈促腐還田土壤養(yǎng)分及微生物量的動態(tài)變化. 中國生態(tài)農(nóng)業(yè)學(xué)報, 2014, 22(9): 1047-1056.
CAI L Q, NIU Y, LUO Z Z, WU J, YUE D, ZHOU H, DONG B, ZHANG R Z. Dynamic characteristics of soil nutrients and soil microbial biomass of field-returned straws at different decay accretion conditions., 2014, 22(9): 1047-1056. (in Chinese)
[28] 陳春梅, 謝祖彬, 朱建國, 竇森. CO2濃度升高對小麥秸稈性質(zhì)、數(shù)量及其分解的影響. 中國生態(tài)農(nóng)業(yè)學(xué)報, 2007(6): 1-5.
CHEN C M, XIE Z B, ZHU J G, DOU S. Effects of CO2-induced change on wheat straw quality, quantity and decomposition., 2007(6): 1-5. (in Chinese)
[29] 鄧歐平, 謝汀, 李燕, 鄧良基. 稻麥輪作下不同還田模式對土壤酶活性的影響研究. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2013, 32(10): 2027-2034.
DENG O P, XIE T, LI Y, DENG L J. Effect of different residue covering mode on soil enzyme activity under rice-wheat rotation ., 2013, 32(10): 2027-2034. (in Chinese)
[30] 杜加銀, 茹美, 倪吾鐘. 減氮控磷穩(wěn)鉀施肥對水稻產(chǎn)量及養(yǎng)分積累的影響. 植物營養(yǎng)與肥料學(xué)報, 2013, 19(3): 523-533.
DU J Y, RU M, NI W Z. Effects of fertilization with reducing nitrogen, controlling phosphorus and stabilizing potassium on rice yield and nutrient accumulation., 2013, 19(3): 523-533. (in Chinese)
[31] 樊昊. 施用不同有機物料對吉林省東部“坡改梯”農(nóng)田土壤肥力的影響[D]. 長春: 吉林大學(xué), 2018.
FAN H. Effects of different organic materials on the soil fertility of new terraced fields in the east of Jilin province[D]. Changchun: Jilin University, 2018. (in Chinese)
[32] 方日堯, 同延安, 耿增超, 梁東麗. 黃土高原區(qū)長期施用有機肥對土壤肥力及小麥產(chǎn)量的影響. 中國生態(tài)農(nóng)業(yè)學(xué)報, 2003(2): 53-55.
FANG R Y, TONG Y A, GENG Z C, LIANG D L. Effect of a long-term organic fertilization on wheat yield and soil fertility on Loess Plateau., 2003(2): 53-55. (in Chinese)
[33] 宮亮, 孫文濤, 王聰翔, 劉艷, 汪仁. 玉米秸稈還田對土壤肥力的影響. 玉米科學(xué), 2008(2): 122-124,130.
GONG L, SUN W T, WANG C X, LIU Y, WANG R. Effects of application maize straw on soil physical characteristics and yield., 2008(2): 122-124,130. (in Chinese)
[34] 韓瑋, 聶俊華, 李颯. 外源纖維素酶對秸稈降解速率及土壤速效養(yǎng)分的影響. 中國土壤與肥料, 2006(5): 28-32.
HAN W, NIE J H, LI S. Influences of outer cellulose on degradation rates of straws and available nutrients of soil., 2006(5): 28-32. (in Chinese)
[35] 杭玉浩, 王強盛, 許國春, 劉欣. 水分管理和秸稈還田對稻麥輪作系統(tǒng)溫室氣體排放的綜合效應(yīng). 生態(tài)環(huán)境學(xué)報, 2017, 26(11): 1844-1855.
HANG Y H, WANG Q S, XU G C, LIU X. Effects of water regimes and straw incorporation on greenhouse gas emissions in a rice-wheat cropping system., 2017, 26(11): 1844-1855. (in Chinese)
[36] 郝翔翔, 楊春葆, 苑亞茹, 韓曉增, 李祿軍, 江恒. 連續(xù)秸稈還田對黑土團聚體中有機碳含量及土壤肥力的影響. 中國農(nóng)學(xué)通報, 2013, 29(35): 263-269.
HAO X X, YANG C B, YUAN Y R, HAN X Z, LI L J, JIANG H. Effects of continuous straw returning on organic carbon content in aggregates and fertility of black soil., 2013, 29(35): 263-269. (in Chinese)
[37] 侯勝鵬. 中國主要有機養(yǎng)分資源利用潛力研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2017.
HOU S P. The utilization potential of the main organic nutrient resources in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[38] 侯淑艷, 竇森, 劉建新, 曲曉晶. 溫度對玉米秸稈腐解期間腐殖質(zhì)消長動態(tài)的影響. 西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版), 2016, 44(4): 87-92.
HOU S Y, DOU S, LIU J X, QU X J. Effects of temperature on dynamics of humus during corn stalk decomposition., 2016, 44(4): 87-92.(in Chinese)
[39] 侯賢清, 吳鵬年, 王艷麗, 李培富, 王西娜, 李榮. 秸稈還田配施氮肥對土壤水肥狀況和玉米產(chǎn)量的影響. 應(yīng)用生態(tài)學(xué)報, 2018, 29(6): 1928-1934.
HOU X Q, WU P N, WANG Y L, LI P F, WANG X N, LI R. Effects of returning straw with nitrogen application on soil water and nutrient status, and yield of maize., 2018, 29(6): 1928-1934. (in Chinese)
[40] 姜超強, 沈嘉, 王火焰, 李德成, 李田, 汪文杰, 祖朝龍. 煙桿還田對水稻產(chǎn)量和養(yǎng)分吸收的影響及其替代鉀肥的效果. 應(yīng)用生態(tài)學(xué)報, 2016, 27(12): 3969-3976.
JIANG C Q, SHEN J, WANG H Y, LI D C, LI T, WANG W J, ZU Z L. Effect of tobacco straw incorporation on rice yield and nutrient absorption and its substitute for potassium fertilizer., 2016, 27(12): 3969-3976. (in Chinese)
[41] 姜禹含. 豆科與禾本科秸稈配合還田對土壤碳固持的影響及調(diào)控機制[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2019.
JIANG Y H. Effects and regulation mechanisms of leguminous and gramineous straw returning on soil carbon sequestration[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[42] 匡恩俊, 遲鳳琴, 宿慶瑞, 張久明, 金梁. 不同還田方式下玉米秸稈腐解規(guī)律的研究. 玉米科學(xué), 2012, 20(2): 99-101,106.
KUANG E J,CHI F Q, SU Q R, ZHANG J M, JIN L. Decomposition characteristics of maize straws under different returning methods., 2012, 20(2): 99-101,106. (in Chinese)
[43] 蘭木羚, 高明. 不同秸稈翻埋還田對旱地和水田土壤微生物群落結(jié)構(gòu)的影響. 環(huán)境科學(xué), 2015, 36(11): 4252-4259.
LAN M L, GAO M. Influence of different straws returning with landfill on soil microbial community structure under dry and water farming., 2015, 36(11): 4252-4259. (in Chinese)
[44] 李純燕, 楊恒山, 薩如拉, 張瑞富, 曹倩, 張麗娟.不同耕作措施下秸稈還田對土壤速效養(yǎng)分和微生物量的影響. 水土保持學(xué)報, 2017, 31(1): 197-201,210.
LI C Y, YANG H S, SA R L, ZHANG R F, CAO Q, ZHANG L J. Effect of straw returning on soil available nutrients and microbe biomass under different tillage methods.2017, 31(1): 197-201,210. (in Chinese)
[45] 李帆, 王靜, 武際, 葉寅, 劉澤, 朱宏斌. 尿素硝酸銨調(diào)節(jié)碳氮比促進小麥秸稈堆肥腐熟. 植物營養(yǎng)與肥料學(xué)報, 2019, 25(5): 832-840.
LI F, WANG J, WU J, YE Y, LIU Z, ZHU H B. Fast production of wheat straw aerobic compost through regulating C/N ratio with urea ammonium nitrate solution., 2019, 25(5): 832-840. (in Chinese)
[46] 李昊昱. 秸稈還田模式對土壤質(zhì)量及冬小麥-夏玉米產(chǎn)量的影響[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2019.
LI H Y. Effect of straw incorporation mode on soil quality and grain yield in winter wheat-summer maize rotation system[D].Taian: Shandong Agricultural University, 2019. (in Chinese)
[47] 李繼福, 魯劍巍, 李小坤, 任濤, 叢日環(huán), 楊文兵, 魯明星, 劉克芝. 麥稈還田配施不同腐稈劑對水稻產(chǎn)量、秸稈腐解和土壤養(yǎng)分的影響. 中國農(nóng)學(xué)通報, 2013, 29(35): 270-276.
LI J F, LU J W, LI X K, REN T, CONG R H, YANG W B, LU M X, LIU K Z. Effect of wheat straw returning with different organic matter-decomposing inoculants (OMIs) on the yield of rice, the decomposition of straw and soil nutrients., 2013, 29(35): 270-276. (in Chinese)
[48] 李敏, 韓上, 武際, 陳峰, 桑亞松, 王慧, 唐杉. 農(nóng)作物秸稈炭化后養(yǎng)分變化及還田效應(yīng). 中國農(nóng)學(xué)通報, 2019, 35(16): 95-99.
LI M, HAN S, WU J, CHEN F, SANG Y S, WANG H, TANG S. Crop straw biochar: Nutrients change and field returning effects., 2019, 35(16): 95-99. (in Chinese)
[49] 李書田, 金繼運. 中國不同區(qū)域農(nóng)田養(yǎng)分輸入、輸出與平衡. 中國農(nóng)業(yè)科學(xué), 2011, 44(20): 4207-4229.
LI S T, JIN J Y. Characteristics of nutrient input/output and nutrient balance in different regions of China., 2011, 44(20): 4207-4229. (in Chinese)
[50] 李碩, 把余玲, 李有兵, 王淑娟, 田霄鴻, 師江瀾. 添加作物秸稈對土壤有機碳組分和酶活性的影響. 西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版), 2015, 43(6): 153-161.
LI S, BA Y L, LI Y B, WANG S J, TIAN X H, SHI J L. Effects of crop straws on soil organic carbon components and enzyme activities., 2015, 43(6): 153-161. (in Chinese)
[51] 李一, 王秋兵. 我國秸稈資源養(yǎng)分還田利用潛力及技術(shù)分析. 中國土壤與肥料, 2020(1): 119-126.
LI Y, WANG Q B. Study on potential of straw resource nutrient return to field and application technology in China., 2020(1): 119-126. (in Chinese)
[52] 李有兵, 李錦, 李碩, 田霄鴻. 秸稈還田下減量施氮對作物產(chǎn)量及養(yǎng)分吸收利用的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2015, 33(1): 79-84,152.
LI Y B, LI J, LI S, TIAN X H. Effects of reducing nitrogen application on crop yields, nutrients uptake and utilization with straw incorporation.s, 2015, 33(1): 79-84, 152. (in Chinese)
[53] 劉芳, 王明娣, 劉世亮, 介曉磊, 劉紅恩, 馮夢龍, 王代長. 玉米秸稈腐解對石灰性褐土酶活性和有機質(zhì)質(zhì)量分?jǐn)?shù)動態(tài)變化的影響. 西北農(nóng)業(yè)學(xué)報, 2012, 21(4): 149-153.
LIU F, WANG M D, LIU S L, JIE X L, LIU H E, FENG M L, WANG D C. Effect of maize straw decomposing on dynamic changes of soil enzyme activity and soil organic matter mass fraction in calcareous cinnamon soil., 2012, 21(4): 149-153. (in Chinese)
[54] 劉賽男, 高尚, 程效義, 鄂洋, 蘭宇, 劉遵奇, 孟軍. 玉米秸稈生物炭對秸稈腐熟進程、養(yǎng)分含量和CO2排放量的影響. 應(yīng)用生態(tài)學(xué)報, 2019, 30(4): 237-243.
LIU S N, GAO S, CHENG X Y, E Y, LAN Y, LIU Z Q, MENG J. Effects of corn straw biochar on process, nutrient content, and CO2emissions of corn straw decomposition., 2019, 30(4): 237-243. (in Chinese)
[55] 劉世平, 陳后慶, 陳文林, 戴其根, 霍中洋, 許軻, 張洪程. 稻麥兩熟制不同耕作方式與秸稈還田對小麥產(chǎn)量和品質(zhì)的影響.麥類作物學(xué)報, 2007(5): 859-863.
LIU S P, CHEN H Q, CHEN W L, DAI Q G, HUO Z X, XU K, ZHANG H C. Comprehensive evaluation of tillage and straw returning on wheat yield and quality in a wheat-rice double cropping system., 2007(5): 859-863. (in Chinese)
[56] 柳媛媛. 有機物料投入對旱地土壤碳氮的后效作用及其模擬[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2018.
LIU Y Y. Post-effects of organic materials input on soil carbon and nitrogen and its simulation in dryland[D]. Yangling: Northwest A&F University, 2018. (in Chinese)
[57] 馬想. 我國典型農(nóng)田土壤中有機物料的腐解特征及驅(qū)動因子[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2019.
MA X. Decomposition characteristics and driving factors of organic materials in typical cropland in China [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[58] 邵滿嬌, 竇森, 謝祖彬. 等碳量玉米秸稈及其腐解、炭化材料還田對黑土腐殖質(zhì)的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2018, 37(10): 2202-2209.
SHAO M J, DOU S, XIE Z B. Effects of corn straw and its humified and carbonized materials applying to the black soil with an equal mass of carbon on soil humus., 2018, 37(10): 2202-2209. (in Chinese)
[59] 舒洲. 秸稈還田配合施肥對旱地小麥產(chǎn)量及土壤生物學(xué)特性影響研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2016.
SHU Z. Impacts of straw returning with fertilizer on dryland wheat yield and soil biological properties[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[60] 宋蒙亞, 李忠佩, 劉明, 劉滿強. 不同有機物料組合對土壤養(yǎng)分和生化性狀的影響. 中國農(nóng)業(yè)科學(xué), 2013, 46(17): 3594-3603.
SONG M Y, LI Z P, LIU M, LIU M Q. Effects of mixtures of different organic materials on soil nutrient content and soil biochemical characteristics., 2013, 46(17): 3594-3603. (in Chinese)
[61] 湯咪咪. 水稻秸稈還田對土壤化學(xué)性質(zhì)及徑流中氮磷含量的影響[D]. 合肥: 安徽農(nóng)業(yè)大學(xué), 2018.
TANG M M. Effect of rice straw retention on soil chemical properties and content of nitrogen and phosphorus in runoff [D]. Hefei: Anhui Agricultural University, 2018. (in Chinese)
[62] 汪軍, 王德建, 張剛, 王燦. 連續(xù)全量秸稈還田與氮肥用量對農(nóng)田土壤養(yǎng)分的影響. 水土保持學(xué)報, 2010, 24(5): 40-44, 62.
WANG J, WANG D J, ZHANG G, WANG C. Effects of different nitrogen fertilizer rate with continuous full amount of straw incorporated on paddy soil nutrients., 2010, 24(5): 40-44, 62. (in Chinese)
[63] 王景, 陳曦, 魏俊嶺. 水稻秸稈和玉米秸稈在好氣和厭氧條件下的腐解規(guī)律. 農(nóng)業(yè)資源與環(huán)境學(xué)報, 2017, 34(1): 59-65.
WANG J, CHEN X, WEI J L. Decomposition of rice straw and corn straw under aerobic and anaerobic conditions., 2017, 34(1): 59-65. (in Chinese)
[64] 王喜艷, 竇森, 張恒明, 馮樹成, 黃毅. 玉米秸稈持水深埋對遼西瘠薄耕地土壤養(yǎng)分及玉米產(chǎn)量的影響. 西北農(nóng)業(yè)學(xué)報, 2014, 23(5): 76-81.
WANG X Y, DOU S, ZHANG H M, FENG S C, HUANG Y. Effects of water logged maize stalk deep returning on soil nutrients and maize yields of barren farmland in west Liaoning province., 2014, 23(5): 76-81. (in Chinese)
[65] 王小彬, 蔡典雄, 張鏡清, 高緒科. 旱地玉米秸稈還田對土壤肥力的影響. 中國農(nóng)業(yè)科學(xué), 2000, 33(4): 54-61.
WANG X B, CAI D X, ZHANG J Q, GAO X K. Effects of corn stover incorporated in dry farmland on soil fertility., 2000, 33(4): 54-61. (in Chinese)
[66] 王曉斌. 安徽省農(nóng)作物秸稈養(yǎng)分資源及農(nóng)業(yè)利用方式的調(diào)查[D]. 合肥: 安徽農(nóng)業(yè)大學(xué), 2013.
WANG X B. The research on straw nutrient resource and utilization strategies of Anhui province [D]. Hefei: Anhui Agricultural University, 2013. (in Chinese)
[67] 王曉玥, 蔣瑀霽, 隋躍宇, 孫波. 田間條件下小麥和玉米秸稈腐解過程中微生物群落的變化—BIOLOG分析. 土壤學(xué)報, 2012, 49(5): 1003-1011.
WANG X Y, JIANG Y J, SUO Y Y, SUN B. Changes of microbial communities during decomposition of wheat and maize straw: Analysis by BIOLOG., 2012, 49(5): 1003-1011. (in Chinese)
[68] 王硯, 李念念, 朱端衛(wèi), 周文兵, 陳焰鑫, 伍玉鵬. 水稻秸稈預(yù)處理對豬糞高溫堆肥過程的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2018, 37(9): 2021-2028.
WANG Y, LI N N, ZHU D W, ZHOU W B, CHEN Y X, WU Y P. Influence of straw pretreatment on the thermophilic composting process with pig manure., 2018, 37(9): 2021-2028. (in Chinese)
[69] 王毅, 宋文靜, 吳元華, 高政緒, 劉祥, 劉躍東, 管恩森, 李文麗, 張本強, 王樹聲. 小麥秸稈還田對烤煙葉片發(fā)育及產(chǎn)質(zhì)量的影響. 中國煙草科學(xué), 2018, 39(2): 32-38.
WANG Y, SONG W J, WU Y H, GAO Z X, LIU X, LIU Y D, GUAN E S, LI W L, ZHANG B Q, WANG S S. Effects of returning wheat straw to soil on leaf development, yield and quality of tobacco., 2018, 39(2): 32-38. (in Chinese)
[70] 王忠江, 王澤宇, 司愛龍, 張正, 吳婧, 王麗麗. 秸稈與沼肥同步翻埋還田對秸稈腐解特性的影響. 農(nóng)業(yè)機械學(xué)報, 2017, 48(6): 271-277.
WANG Z J, WANG Z Y, SI A L, ZHANG Z, WU J, WANG L L. Effect of synchronously burying and returning straw and biogas slurry to soil on straw decomposition., 2017, 48(6): 271-277. (in Chinese)
[71] 吳艷萍, 王國棟, 趙明德. 接種鏈霉菌對小麥秸稈腐解過程的影響. 西北農(nóng)業(yè)學(xué)報, 2010, 19(1): 100-103.
WU Y P, WANG G D, ZHAO M D. Effects of streptomyces thermovulgaris inoculation on wheat straw composting process., 2010, 19(1): 100-103. (in Chinese)
[72] 武際. 水旱輪作條件下秸稈還田的培肥和增產(chǎn)效應(yīng)[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2012.
WU J. Effects of straw return on soil fertility and crop yields in paddy-upland rotation system[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese)
[73] 武志杰, 張海軍, 許廣山, 張玉華, 劉春萍. 玉米秸稈還田培肥土壤的效果. 應(yīng)用生態(tài)學(xué)報, 2002(5): 539-542.
WU Z J, ZHANG H J, XU G S, ZHANG Y H, LIU C P.Effect of returning corn straw into soil on soil fertility., 2002(5): 539-542. (in Chinese)
[74] 夏志敏, 周建斌, 梅沛沛, 王平, 桂林國, 李隆. 玉米與蠶豆秸稈配施對秸稈分解及土壤養(yǎng)分含量的影響. 應(yīng)用生態(tài)學(xué)報, 2012, 23(1): 103-108.
XIA Z M, ZHOU J B, MEI P P, WANG P, GUI L G, LI L.Effects of combined application of maize-and horsebean straws on the straws decomposition and soil nutrient contents., 2012, 23(1): 103-108. (in Chinese)
[75] 徐健程, 王曉維, 朱曉芳, 鄧曉東, 楊文亭. 不同綠肥種植模式下玉米秸稈腐解特征研究. 植物營養(yǎng)與肥料學(xué)報, 2016, 22(1): 48-58.
XU J C, WANG X W, ZHU X F, DENG X D, YANG W T.Study on decomposition of maize straw under different green manure cropping patterns., 2016, 22(1): 48-58. (in Chinese)
[76] 徐秋桐, 孔樟良, 章明奎. 不同有機廢棄物改良新復(fù)墾耕地的綜合效果評價. 應(yīng)用生態(tài)學(xué)報, 2016, 27(2): 567-576.
XU Q T, KONG Z L, ZHANG M K.Comprehensive evaluation of improving effects of different organic wastes on a newly reclaimed cultivated land., 2016, 27(2): 567-576. (in Chinese)
[77] 閆超. 水稻秸稈還田腐解規(guī)律及土壤養(yǎng)分特性的研究[D]. 哈爾濱: 東北農(nóng)業(yè)大學(xué), 2015.
YAN C.Studies on decomposition regularity of returning rice straw and soil nutrient properties[D]. Harbin: Northeast Agricultural University, 2015. (in Chinese)
[78] 楊思存, 霍琳, 王建成. 秸稈還田的生化他感效應(yīng)研究初報. 西北農(nóng)業(yè)學(xué)報, 2005(1): 52-56.
YANG S C, HUO L, WANG J C.Allelopathic effect of straw returning., 2005(1): 52-56. (in Chinese)
[79] 楊志敏, 陳玉成, 張赟, 彭莉, 陳慶華. 淹水條件下秸稈還田的面源污染物釋放特征. 生態(tài)學(xué)報, 2012, 32(6): 1854-1860.
YANG Z M, CHEN Y C, ZHANG B, PENG L, CHEN Q H.Releasing characteristics of nonpoint source pollutants from straws under submerging condition., 2012, 32(6): 1854-1860. (in Chinese)
[80] 袁嫚嫚, 鄔剛, 胡潤, 孫義祥. 秸稈還田配施化肥對稻油輪作土壤有機碳組分及產(chǎn)量影響. 植物營養(yǎng)與肥料學(xué)報, 2017, 23(1): 27-35.
YUAN M M, WU G, HU R, SUN Y X.Effects of straw returning plus fertilization on soil organic carbon components and crop yields in rice-rapeseed rotation system., 2017, 23(1): 27-35. (in Chinese)
[81] 翟修彩. 不同化學(xué)添加劑對秸稈腐解產(chǎn)物的影響及其應(yīng)用研究[D]. 南京:南京農(nóng)業(yè)大學(xué), 2012.
ZHAI X C.Studies of chemical additives on straw decomposition and the application in red soil[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
[82] 張彬, 何紅波, 趙曉霞, 解宏圖, 白震, 張旭東. 秸稈還田量對免耕黑土速效養(yǎng)分和玉米產(chǎn)量的影響. 玉米科學(xué), 2010, 18(2): 81-84.
ZHANG B, HE H B, ZHAO X X, XIE H T, BAI Z, ZHANG X D.Effects of crop-residue incorporation on no-tillage soil available nutrients and corn yield.2010, 18(2): 81-84. (in Chinese)
[83] 張洪熙, 趙步洪, 杜永林, 譚長樂, 戴正元, 季紅娟, 王寶和, 周長海. 小麥秸稈還田條件下輕簡栽培水稻的生長特性. 中國水稻科學(xué), 2008(6): 603-609.
ZHANG H X, ZHAO B H, DU Y L, TAN C L, DAI Z Y, JI H J, WANG B H, ZHOU C H.Growth characteristics of rice under simplified cultivation with wheat residue return., 2008(6): 603-609. (in Chinese)
[84] 張慧芳. 免耕與秸稈還田對水稻養(yǎng)分吸收及土壤磷素富集的影響[D]. 杭州:浙江大學(xué), 2018.
ZHANG H F. Effects of no-tillage and straw returning on rice nutrient uptake and soil phosphorus accumulation[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
[85] 張娟. 施用處理秸稈對土壤供氮特征及作物生長的影響[D]. 南京:南京農(nóng)業(yè)大學(xué), 2003.
ZHANG J. The effects of application of treated rice straw on soil nitrogen supply and crop growth[D]. Nanjing: Nanjing Agricultural University, 2003. (in Chinese)
[86] 張璐, 董達(dá), 平帆, 徐興坤, 易倩倩, 孫雪, 吳偉祥. 逐年全量秸稈炭化還田對水稻產(chǎn)量和土壤養(yǎng)分的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2018, 37(10): 2319-2326.
ZHANG L, DONG D, PING F, XU X K, YI Q Q, SUN X, WU W X. The effects of successive whole-dose biochar application on rice yield and soil nutrient concentrations., 2018, 37(10): 2319-2326. (in Chinese)
[87] 張影, 劉星, 任秀娟, 李東方, 吳大付, 陳錫嶺. 秸稈及其生物炭對土壤碳庫管理指數(shù)及有機碳礦化的影響. 水土保持學(xué)報, 2019, 33(3): 153-159,165.
ZHANG Y, LIU X, REN X J, LI D F, WU D F, CHEN X L.Effects of straw and biochar on soil carbon pool management index and organic carbon mineralization., 2019, 33(3): 153-159,165. (in Chinese)
[88] 趙聰, 曹瑩菲, 劉克, 薛泉宏, 呂家瓏. 室內(nèi)模擬條件下玉米秸稈的分解特征及物質(zhì)組成變化. 干旱地區(qū)農(nóng)業(yè)研究, 2014, 32(4): 183-186.
ZHAO C, CAO Y F, LIU K, XUE Q H, Lü J L.Characteristics of decomposition and variation of material composition of corn straw in laboratory simulation experiment., 2014, 32(4): 183-186. (in Chinese)
[89] 趙金鳳, 陳靜文, 張迪, Ghosh Saikat. 玉米秸稈和小麥秸稈生物炭的熱穩(wěn)定性及化學(xué)穩(wěn)定性. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2019, 38(2): 458-465.
ZHAO J F, CHEN J W, ZHANG D, Ghosh S.Thermal stability and oxidation resistance of biochars derived from corn stalk and wheat stalk.2019, 38(2): 458-465. (in Chinese)
[90] 趙雅雯, 王金洲, 王士超, 武紅亮, 黃紹敏, 盧昌艾. 潮土區(qū)小麥、玉米殘體對土壤有機碳的貢獻(xiàn)—基于改進的RothC模型. 中國農(nóng)業(yè)科學(xué), 2016, 49(21): 4160-4168.
ZHAO Y W, WANG J Z, WANG S C, WU H L, HUANG S M, LU C Y. Contributions of wheat and corn residues to soil organic carbon under fluvo-aquic soil area-based on the modified RothC model., 2016, 49(21): 4160-4168. (in Chinese)
[91] 周懷平, 楊治平, 李紅梅, 關(guān)春林. 秸稈還田和秋施肥對旱地玉米生長發(fā)育及水肥效應(yīng)的影響. 應(yīng)用生態(tài)學(xué)報, 2004(7): 1231-1235.
ZHOU H P, YANG Z P, LI H M, GUAN C L.Effect of straw return to field and fertilization in autumn on dryland corn growth and on water and fertilizer efficiency., 2004(7): 1231-1235. (in Chinese)
[92] 朱文玲, 李秀雙, 田霄鴻, 陳娟, 王松. 小麥與秋豆秸稈配施對土壤有機碳固持的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2018, 37(9): 1952-1960.
ZHU W L, LI X S, TIAN X H, CHEN J, WANG S.Effects of the combined amendment of wheat and huai bean straws on soil organic carbon sequestration., 2018, 37(9): 1952-1960. (in Chinese)
[93] 朱雅琪. 稻稈腐解影響條件優(yōu)化及其對土壤養(yǎng)分和蔬菜生長的影響[D]. 長安: 長安大學(xué), 2019.
ZHU Y Q.Optimization of influencing conditions of rice straw decomposition and its effects on soil nutrients and vegetable growth[D].Chang’an: Chang’An University, 2019. (in Chinese)
[94] 朱遠(yuǎn)芃, 金夢燦, 馬超, 廣敏, 高敏, 郜紅建. 外源氮肥和腐熟劑對小麥秸稈腐解的影響. 生態(tài)環(huán)境學(xué)報, 2019, 28(3): 612-619.
ZHU Y P, JIN M C, MA C, GUANG M, GAO M, GAO H J.Impacts of exogenous nitrogen and effective microorganism on the decomposition of wheat straw residues., 2019, 28(3): 612-619. (in Chinese)
[95] 鄒文秀, 韓曉增, 陸欣春, 郝翔翔, 尤孟陽, 張一鶴. 施入不同土層的秸稈腐殖化特征及對玉米產(chǎn)量的影響. 應(yīng)用生態(tài)學(xué)報, 2017, 28(2): 563-570.
ZOU W X, HAN X Z, LU X C, HAO X X, YOU M Y, ZHANG Y H. Effects of straw incorporated to different locations in soil profile on straw humification coefficient and maize yield. C, 2017, 28(2): 563-570. (in Chinese)
[96] 曹瑩菲, 張紅, 趙聰, 劉克, 呂家瓏. 秸稈腐解過程中結(jié)構(gòu)的變化特征. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2016, 35(5): 976-984.
CAO Y F, ZHANG H, ZHAO C, LIU K, Lü J L.Changes of organic structures of crop residues during decomposition., 2016, 35(5): 976-984. (in Chinese)
[97] 戴志剛. 秸稈養(yǎng)分釋放規(guī)律及秸稈還田對作物產(chǎn)量和土壤肥力的影響[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2009.
DAI Z G. Study on nutrient release characteristics of crop residue and effect of crop residue returning on crop yield and soil fertility[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese)
[98] 侯小畔. 添加碳氮對作物秸稈腐解和土壤氮素轉(zhuǎn)化的影響[D]. 鄭州: 河南農(nóng)業(yè)大學(xué), 2017.
HOU X P. Effects of carbon and nitrogen fertilizer addition on crop residue decomposition and soil nitrogen transformation[D]. Zheng zhou: Henan Agricultural University, 2017. (in Chinese)
[99] 黃婷苗, 王朝輝, 侯仰毅, 顧熾明, 李曉, 鄭險峰. 施氮對關(guān)中還田玉米秸稈腐解和養(yǎng)分釋放特征的影響. 應(yīng)用生態(tài)學(xué)報, 2017, 28(7): 2261-2268.
HAUNG T M, WANG Z H, HOU Y Y, GU Z M, LI X, ZHENG X F. Effects of nitrogen application on decomposition and nutrient release of returned maize straw in Guanzhong Plain, Northwest China., 2017, 28(7): 2261-2268. (in Chinese)
[100] 李昌明, 王曉玥, 孫波. 不同氣候和土壤條件下秸稈腐解過程中養(yǎng)分的釋放特征及其影響因素. 土壤學(xué)報, 2017, 54(5): 1206-1217.
LI C M, WANG X Y, SUN B. Characteristics of nutrient release and its affecting factors during plant residue decomposition under different climate and soil conditions., 2017, 54(5): 1206-1217. (in Chinese)
[101] 李中韜. 寒地旱作秸稈還田腐解規(guī)律及土壤CO2排放的研究[D]. 哈爾濱: 東北農(nóng)業(yè)大學(xué), 2015.
LI Z T. Study on decomposition characteristics of straw return to soil and CO2emission of dry farmland soil[D]. Harbin: Northeast Agricultural University, 2015. (in Chinese)
[102] 劉平東. 水稻、油菜還田秸稈氮素釋放與吸附特征[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2018.
LIU P D. Characteristics of nitrogen release and absorption by rape and rice straw incorporation[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
[103] 牛怡. 兩種耕作方式下黃土高原旱作農(nóng)田還田玉米秸稈腐解特征與養(yǎng)分釋放研究[D]. 蘭州: 甘肅農(nóng)業(yè)大學(xué), 2014.
NIU Y. Study on return-field corn straw decomposition and nutrient release characteristics under two tillage methods of rainfed farmland in the Loess Plateau [D]. Lanzhou: Gansu Agricultural University, 2014. (in Chinese)
[104] 龐荔丹. 玉米秸稈還田腐解率及其對土壤養(yǎng)分影響[D]. 哈爾濱: 東北農(nóng)業(yè)大學(xué), 2017.
PANG L D. Decomposition rate of corn straw returning and its effects on soil nutrients[D]. Harbin: Northeast Agricultural University,2017. (in Chinese)
[105] 青格爾, 于曉芳, 高聚林, 王志剛, 鬧干朝魯, 王振, 胡樹平, 高琳, 胡海紅. 腐解菌劑對玉米秸稈降解效果的研究. 西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版), 2016, 44(12): 107-116.
BORJIGIN Q, YU X F, GAO J L, WANG Z G, BORJIGIN N, WANG Z, HU S P, GAO L, HU H H. Study on degradation of corn stalk by decomposing microbial inoculants.), 2016, 44(12): 107-116. (in Chinese)
[106] 田平, 姜英, 孫悅, 馬梓淇, 隋鵬祥, 梅楠, 齊華. 不同還田方式對玉米秸稈腐解及土壤養(yǎng)分含量的影響. 中國生態(tài)農(nóng)業(yè)學(xué)報(中英文), 2019, 27(1): 100-108.
TIAN P, JIANG Y, SUN Y, MA Z Q, SUI P X, MEI N, QI H. Effect of straw return methods on maize straw decomposition and soil nutrients contents.2019, 27(1): 100-108. (in Chinese)
[107] 武際, 郭熙盛, 魯劍巍, 萬水霞, 王允青, 許征宇, 張曉玲. 不同水稻栽培模式下小麥秸稈腐解特征及對土壤生物學(xué)特性和養(yǎng)分狀況的影響. 生態(tài)學(xué)報, 2013, 33(2): 565-575.
WU J, GUO X S, LU J W, WAN S X, WANG Y Q, XU Z Y, ZHANG X L. Decomposition characteristics of wheat straw and effects on soil biological properties and nutrient status under different rice cultivation., 2013, 33(2): 565-575. (in Chinese)
[108] 武際, 郭熙盛, 王允青, 許征宇, 魯劍巍. 不同水稻栽培模式和秸稈還田方式下的油菜、小麥秸稈腐解特征. 中國農(nóng)業(yè)科學(xué), 2011, 44(16): 3351-3360.
WU J, GUO X S, WANG Y Q, XU Z Y, LU J W. Decomposition characteristics of rapeseed and wheat straws under different rice cultivations and straw mulching models., 2011, 44(16): 3351-3360. (in Chinese)
[109] 席娟. 分層覆蓋下秸稈層演變規(guī)律及降解速率調(diào)控方法試驗研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2018.
XI J. The research on evolution mechanism of layered mulching straw and its decomposition rate regulation methods[D]. Yangling: Northwest A & F University, 2018. (in Chinese)
[110] 夏東. 不同有機物料還田的腐解特征及對黃壤養(yǎng)分的影響[D]. 貴州: 貴州大學(xué), 2019.
XIA D. Decomposition characteristics of different organic materials returning to field and their effects on nutrients in yellow soil[D]. Guizhou: Guizhou University, 2019. (in Chinese)
[111] 閆超. 水稻秸稈還田腐解規(guī)律及對土壤養(yǎng)分和酶活性的影響[D]. 哈爾濱: 東北農(nóng)業(yè)大學(xué), 2012.
YAN C. Decomposition regularity of rice straw returning to soil and its effect on soil nutrients and enzyme activity [D]. Harbin: Northeast Agricultural University, 2012. (in Chinese)
[112] 岳丹, 蔡立群, 齊鵬, 張仁陟, 武均, 高小龍. 小麥和玉米秸稈不同還田量下腐解特征及其養(yǎng)分釋放規(guī)律. 干旱區(qū)資源與環(huán)境, 2016, 30(3): 80-85.
YUE D, CAI L Q, QI P, ZHANG R Z, WU J, GAO X L. The decomposition characteristics and nutrient release laws of wheat and corn straws under different straw-returned amount., 2016, 30(3): 80-85. (in Chinese)
[113] 張珺穜, 王婧, 張莉, 逄煥成, 王飛. 理化預(yù)處理方式對玉米秸稈腐解與養(yǎng)分釋放特征的影響. 農(nóng)業(yè)工程學(xué)報, 2016(23): 226-232.
WANG J T, WANG J, ZHANG L, PANG H C, WANG F. Effect of physical and chemical pretreatment on decomposition and nutrient release characteristics of maize straw., 2016(23): 226-232. (in Chinese)
[114] 張亮. 關(guān)中麥玉輪作區(qū)施氮對秸稈還田小麥產(chǎn)量和秸稈養(yǎng)分釋放的影響[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2012.
ZHANG L. Effects of nitrogen fertilizer on yield of winter wheat and straw decomposition under maize straw returning in Guanzhong irrigation district[D]. Yangling: Northwest A & F University, 2012. (in Chinese)
[115] 鄭丹. 不同條件下作物秸稈養(yǎng)分釋放規(guī)律的研究[D]. 哈爾濱: 東北農(nóng)業(yè)大學(xué), 2012.
ZHENG D. The nutrient releasing regularity of crop stalks under different conditions[D]. Harbin: Northeast Agricultural University, 2012. (in Chinese)
[116] 陳建英, 羅超越, 邱慧珍, 鄧德雷, 張春紅, 郭亞軍, 張建斌. 不同施氮量對半干旱區(qū)還田玉米秸稈腐解及養(yǎng)分釋放特征的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2020(38):101-106.
CHEN J Y, LUO C Y, QIU H Z,DENG D L, ZHANG C H, GUO Y J, ZHANG J B. Effects of application of different nitrogen levels on decomposition characteristics and nutrient release of returning straw.,2020(38): 101-106. (in Chinese)
[117] 黃菲, 劉言, 李繼福, 歐陽玲, 龍鵬, 李新濤. 水旱輪作條件下還田秸稈腐解和養(yǎng)分釋放特征研究. 長江大學(xué)學(xué)報(自然科學(xué)版), 2017,14(18): 54-60, 50.
HUANG F, LIU Y, LI J F, OUYANG L, LONG P, LI X T. Characteristics of decomposing and nutrients releasing of crop straw under paddy-upland rotation.,2017, 14(18): 54-60, 50. (in Chinese)
[118] 李逢雨. 秸稈還田養(yǎng)分釋放規(guī)律及稻草化感作用研究[D]. 成都: 四川農(nóng)業(yè)大學(xué), 2007.
LI F Y. Patterns of nutrient release from straws returns to the field and the allelopathic effect of rice straw[D]. Chengdu: Sichuan Agricultural University, 2017. (in Chinese)
[119] 劉萌. 全量還田麥秸稈腐解特征及對土壤理化性質(zhì)和水稻產(chǎn)量形成的影響[D]. 揚州: 揚州大學(xué), 2012.
LIU M. Nutrient release characteristics of wheat straw and effect of entire wheat straw returning on rice yield and soil fertility [D]. Yangzhou: Yangzhou University, 2012. (in Chinese)
[120] 王景, 陳曦, 張雅潔, 郜紅建. 好氣和厭氧條件下小麥秸稈的腐解特征研究. 中國農(nóng)業(yè)大學(xué)學(xué)報, 2015, 20(3): 161-168.
WANG J, CHEN X, ZHANG Y J, GAO H J. Characteristic of wheat straw decomposition under aerobic and anaerobic condition in soil.,2015, 20(3): 161-168. (in Chinese)
[121] 王旭東, 陳鮮妮, 王彩霞, 田霄鴻, 吳發(fā)啟. 農(nóng)田不同肥力條件下玉米秸稈腐解效果. 農(nóng)業(yè)工程學(xué)報, 2009, 25(10): 252-257.
WANG X D, CHEN X N, WANG C X, TIAN X H, WU F Q. Decomposition of corn stalk in cropland with different fertility., 2009, 25(10): 252-257. (in Chinese)
[122] 王允青, 郭熙盛. 不同還田方式作物秸稈腐解特征研究. 中國生態(tài)農(nóng)業(yè)學(xué)報, 2008(3): 607-610.
WANG Y Q, GUO X S. Decomposition characteristics of crop-stalk under different incorporation methods., 2008(3): 607-610. (in Chinese)
[123] 夏東, 王小利, 冉曉追, 趙義國. 不同有機物料在黃壤旱地中的腐解特性及養(yǎng)分釋放特征. 山地農(nóng)業(yè)生物學(xué)報, 2019, 38(4):59-64.
XIA D, WANG X L, RAN X Z, ZHAO Y G. Nutrient release patterns and decomposition characteristics of different organic materials in yellow soil upland., 2019, 38(4): 59-64. (in Chinese)
[124] 徐健程, 王曉維, 朱曉芳, 鄧曉東, 楊文亭. 不同綠肥種植模式下玉米秸稈腐解特征研究. 植物營養(yǎng)與肥料學(xué)報, 2016, 22(1): 48-58.
XU J C, WANG X W, ZHU X F, DENG X D,YANG W T. Study on decomposition of maize straw under different green manure cropping patterns., 2016, 22(1): 48-58. (in Chinese)
[125] 于寒, 谷巖, 梁烜赫, 吳春勝. 玉米秸稈腐解規(guī)律及土壤微生物功能多樣性研究. 水土保持學(xué)報, 2015, 29(2): 305-309.
YU H, GU Y, LIANG X H, WU C S. Study on the decomposition characteristics of maize straw and soil microbial functional diversity., 2015, 29(2): 305-309. (in Chinese)
[126] 于宗波, 楊恒山, 薩如拉, 李媛媛, 羅方, 郭曉旭. 不同質(zhì)地土壤玉米秸稈還田配施腐熟劑效應(yīng)的研究. 水土保持學(xué)報, 2019, 33(4): 234-240.
YU Z B, YANG H S, SA R L,LI Y Y, LUO F, GUO X X. Effect of maize straw returning combined with maturation agent in different texture soils., 2019, 33(4): 234-240. (in Chinese)
[127] 張姍, 石祖梁, 楊四軍, 顧克軍, 戴廷波, 王飛, 李想, 孫仁華. 施氮和秸稈還田對晚播小麥養(yǎng)分平衡和產(chǎn)量的影響. 應(yīng)用生態(tài)學(xué)報, 2015, 26(9): 2714-2720.
ZHANG S, SHI Z L, YANG S J, GU K J, DAI T B, WANG F, LI X, SUN R H. Effects of nitrogen application rates and straw returning on nutrient balance and grain yield of late sowing wheat in rice-wheat rotation., 2015, 26(9): 2714-2720. (in Chinese)
[128] 周東興, 王廣棟, 鄔欣慧, 李晶, 金聰敏, 王恩澤. 不同還田量對秸稈養(yǎng)分釋放規(guī)律及微生物功能多樣性的影響. 土壤通報, 2018, 49(4): 848-855.
ZHOU D X, WANG G D, WU X H, LI J, JIN C M, WANG E Z. Microbial community diversity and nutrient release of straws under different straw returning amounts., 2018, 49(4): 848-855. (in Chinese)
[129] 孫東寶. 北方旱作區(qū)作物產(chǎn)量和水肥利用特征與提升途徑[D]. 北京: 中國農(nóng)業(yè)大學(xué), 2017.
SUN D B. Yield, water and nutrient use efficiency of dryland crops in northern China[D]. Beijing: China Agricultural University, 2017.(in Chinese)
[130] 曹寒冰, 王朝輝, 師淵超, 杜明葉, 雷小青, 張文忠, 張璐, 蒲岳建. 渭北旱地冬小麥監(jiān)控施氮技術(shù)的優(yōu)化. 中國農(nóng)業(yè)科學(xué), 2014, 47(19): 3826-3838.
CAO H B, WANG Z H, SHI Y C, DU M Y, LEI X Q, ZHANG W Z, ZHANG L, PU Y J. Optimization of nitrogen fertilizer recommendation technology based on soil test for winter wheat on Weibei Dryland., 2014, 47(19): 3826-3838. (in Chinese)
[131] 黃倩楠, 王朝輝, 黃婷苗, 侯賽賓, 張翔, 馬清霞, 張欣欣. 中國主要麥區(qū)農(nóng)戶小麥氮磷鉀養(yǎng)分需求與產(chǎn)量的關(guān)系. 中國農(nóng)業(yè)科學(xué), 2018, 51(14): 2722-2734.
HUANG Q N, WANG Z H, HUANG T M, HOU S B, ZHANG X, MA Q X, ZHANG X X.2018, 51(14): 2722-2734. (in Chinese)
[132] 張福鎖,陳新平,陳清.中國主要作物施肥指南[D]. 北京: 中國農(nóng)業(yè)大學(xué)出版社, 2009: 13-15, 29-32.
ZHANG F S, CHEN X P, CHEN Q. Fertilization guidelines of main crops in China[D]. Beijing:China Agricultural University Press, 2009: 13-15, 29-32. (in Chinese)
[133] 吳良泉. 基于“大配方、小調(diào)整”的中國三大糧食作物區(qū)域配肥技術(shù)研究[D]. 北京: 中國農(nóng)業(yè)大學(xué), 2014.
WU L Q. Fertilizer recommendations for three major cereal crops based on regional fertilizer formula and site specific adjustment in China[D]. Beijing: China Agricultural University, 2014.(in Chinese)
[134] 叢宏斌, 姚宗路, 趙立欣, 孟海波, 王久臣, 霍麗麗, 袁艷文, 賈吉秀, 謝騰, 吳雨濃. 中國農(nóng)作物秸稈資源分布及其產(chǎn)業(yè)體系與利用路徑. 農(nóng)業(yè)工程學(xué)報, 2019, 35(22): 132-140.
CONG H B, YAO Z L, ZHAO L X, MENG H B, WANG J C, HUO L L, YUAN Y W, JIA J X, XIE T, WU Y N. Distribution of crop straw resources and its industrial system and utilization path in China., 2019, 35(22): 132-140. (in Chinese)
[135] 王琳琳, 王平, 王振林, 孫愛清, 楊敏, 王春微, 尹燕枰. 基因型×環(huán)境互作下小麥氮代謝相關(guān)性狀的遺傳和相關(guān)性分析. 植物營養(yǎng)與肥料學(xué)報, 2015, 21(3): 549-560.
WANG L L, WANG P, WANG Z L, SUN A Q, YANG M, WANG C W, YIN Y P. Inheritance and correl-ation analysis of genotype × environment interaction for nitrogen metabolism-related traits of wheat., 2015, 21(3): 549-560. (in Chinese)
[136] HUANG L H, LIU X, WANG Z C, LIANG Z W, WANG M M, LIU M, SUAREZ D L. Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (L.)., 2017, 194: 48-57.
[137] 史建國, 朱昆侖, 曹慧英, 董樹亭, 劉鵬, 趙斌, 張吉旺. 花粒期光照對夏玉米干物質(zhì)積累和養(yǎng)分吸收的影響. 應(yīng)用生態(tài)學(xué)報, 2015, 26(1): 46-52.
SHI J G, ZHU K L, CAO H Y, DONG S T, LIU P, ZHAO B, ZHANG J W. Effect of light from flowering to maturity stage on dry matter accumulation and nutrient absorption of summer maize, 2015, 26(1): 46-52. (in Chinese)
[138] IRFAN M, AZIZ T, MAQSOOD M A, BILAL H M, SIDDIQUE K H M, XU M G. Phosphorus (P) use efficiency in rice is linked to tissue-specific biomass and P allocation pattern., 2020: 4278.
[139] 黃寧, 王朝輝, 王麗, 馬清霞, 張悅悅, 張欣欣, 王瑞. 我國主要麥區(qū)主栽高產(chǎn)品種產(chǎn)量差異及其與產(chǎn)量構(gòu)成和氮磷鉀吸收利用的關(guān)系. 中國農(nóng)業(yè)科學(xué), 2020, 53(1): 81-93.
HUANG N, WANG C H, WANG L, MA Q X, ZHANG Y Y, ZHANG X X, WANG R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China., 2020, 53(1): 81-93. (in Chinese)
[140] 單雙呂. 不同生態(tài)條件下水稻產(chǎn)量形成及氮素吸收規(guī)律研究[D]. 長沙: 湖南農(nóng)業(yè)大學(xué), 2016.
SHAN S L. Yield formation and nutrient uptake characteristics of rice under different [D]. Changsha: Hunan Agricultural University, 2016. (in Chinese)
[141] 王澤林, 白炬, 李陽, 岳善超, 李世清. 氮肥施用和地膜覆蓋對旱作春玉米氮素吸收及分配的影響. 植物營養(yǎng)與肥料學(xué)報, 2019, 25(1): 74-84.
WANG Z L, BAI J, LI Y, YUE S C, LI S Q. Effects of nitrogen application and plastic film mulching on nitrogen uptake and allocation in dry-land spring maize., 2019, 25(1): 74-84. (in Chinese)
[142] 李廷亮, 謝英荷, 高志強, 洪堅平, 孟麗霞, 馬紅梅, 孟會生, 賈俊香. 黃土高原旱地小麥覆膜增產(chǎn)與氮肥增效分析. 中國農(nóng)業(yè)科學(xué), 2018, 51(14): 2735-2746.
LI T L, XIE Y H, GAO Z Q, HONG J P, MENG L X, MA H M, MENG H S, JIA J X. Analysis on yield increasing and nitrogen efficiency enhancing of winter wheat under film mulching cultivation in the Loess Plateau2018, 51(14): 2735-2746. (in Chinese)
[143] GUAN X K, WEI L, TURNER N C, MA S C, YANG M D, WANG T C. Improved straw management practices promote in situ straw decomposition and nutrient release, and increase crop production., 2020, 250: 119514.
[144] 畢于運, 高春雨, 王紅彥, 王萍, 王亞靜.我國農(nóng)作物秸稈離田多元化利用現(xiàn)狀與策略. 中國農(nóng)業(yè)資源與區(qū)劃, 2019, 40(9): 1-11.
BI Y Y, GAO C Y, WANG H Y, WANG P, WANG Y J. Research on the present situation and corresponding strategies of off-field straw collection and comprehensive utilization in China., 2019, 40(9): 1-11. (in Chinese)
[145] YIN H J, ZHAO W Q, LI T, CHENG X Y, LIU Q. Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources, 2018, 81: 2695-2702.
[146] YAN S S, SONG J M, FAN J S, YAN C, DONG S K, MA C M, GONG Z P. Changes in soil organic carbon fractions and microbial community under rice straw return in Northeast China., 2020, 22: e00962.
[147] 趙士誠, 曹彩云, 李科江, 仇少君, 周衛(wèi), 何萍. 長期秸稈還田對華北潮土肥力、氮庫組分及作物產(chǎn)量的影響. 植物營養(yǎng)與肥料學(xué)報, 2014, 20(6): 1441-1449.
ZHAO S C, CAO C Y, LI K J, QIU S J, ZHOU W, HE P. Effects of long-term straw return on soil fertility, nitrogen pool fractions and crop yields on a fluvo-aquic soil in North China., 2014, 20(6): 1441-1449. (in Chinese)
[148] 王如芳, 張吉旺, 董樹亭, 劉鵬. 我國玉米主產(chǎn)區(qū)秸稈資源利用現(xiàn)狀及其效果. 應(yīng)用生態(tài)學(xué)報, 2011, 22(6): 1504-1510.
WANG R F, ZHANG J W, DONG S T, LIU P. Present situation of maize straw resource utilization and its effect in main maize production regions of China., 2011, 22(6): 1504-1510. (in Chinese)
[149] 周延輝, 朱新開, 郭文善, 封超年. 中國地區(qū)小麥產(chǎn)量及產(chǎn)量要素對秸稈還田響應(yīng)的整合分析. 核農(nóng)學(xué)報, 2019, 33(1): 129-137.
ZHOU Y H, ZHU X K, GUO W S, FENG C N. Meta-analysis of the response of wheat yield and yield components to straw returning in China., 2019, 33(1): 129-137. (in Chinese)
Nutrient Resource Quantity from Main Grain Crop Straw Incorporation and Its Enlightenment on Chemical Fertilizer Reduction in Wheat Production in China
LI TingLiang1,2, WANG YuFeng1, WANG JiaHao1, LI Li1, XIE JunYu1, LI LiNa1, HUANG XiaoLei1, XIE YingHe1
(1College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, Shanxi;2National Demonstration Center for Agricultural Resources and Environment Experimental Teaching, Shanxi Agricultural University, Taigu 030801, Shanxi)
【】The objective of this study was to determine the quantity and distribution of crop straws from rice, wheat and maize production, and the contained nutrient resources in the main grain crops planting regions of China, so as to provide a scientific basis for straw fertilizer utilization and reasonable reduction of chemical fertilizer in agricultural production in China.【】Based on data/information fromand published literature, the amount of crop straws and the contained nutrient resources were estimated in rice, wheat and maize planting areas. The distribution of crop straws and the contained nutrient resources, the nutrient release of straw incorporation in next-stubble crops production, and chemical fertilizer proper reduction rate of wheat production were further analyzed in different agricultural regions of China.【】The results showed that the ratio of straw to grain of rice, wheat and maize in China was 1.01, 1.14 and 1.25 by estimation of literature data, respectively. The annual yield of straw of the three major grain crops in China was 653.866 million tons during 2014-2018, among which rice, wheat and maize accounted for 32.3%, 22.7% and 45.0%, respectively. The crop straws were mainly produced in North China, Middle and Lower Reaches of the Yangtze River and Northeast China, accounting for 73.3% of the total national crop straw yields. The rice straw (50.7%) was mainly distributed in Middle and Lower Reaches of Yangtze River, the wheat straw (59.0%) was mainly distributed in Northeast China, and the maize straw were mainly distributed in Northeast China (33.7%) and North China (30.4%). A large number of literature data statistics showed that the nitrogen (N) average content of rice, wheat and maize straw was 0.78%, 0.64% and 0.85%, the phosphorus (P2O5) average content was 0.42%, 0.27% and 0.53%, the potassium (K2O) average content was 2.31%, 1.53% and 1.59%, respectively, and the total nutrient content of straw (N+P2O5+K2O) was expressed as rice>maize>wheat. The nutrient resources of three major grain crops straw were 5.098 million tons of N, 2.847 million tons of P2O5, and 11.83 million tons of K2O. The distribution of total nutrient components in different agricultural areas was as follows: Middle and Lower Reaches of Yangtze River (26.0%)>North China (25.4%)>Northeast China (21.3%)>Northwest China (11.1%)>Southwest China (10.5%)>Southeast China (5.6%). The release rates of nitrogen from rice, wheat and maize straw returning to the field were 54.9%, 51.4% and 61.9%, that of phosphorus were 60.9%, 65.3% and 73.0%, and that of potassium were 90.1%, 93.3% and 92.3%, respectively, which showed as potassium>phosphorus>nitrogen. The annual amount of nutrient returned to field from three major grain crops straw (the amount of substitution of chemical fertilizer) contained 2.940 million tons of N, 1.941 million tons of P2O5and 10.839 million tons of K2O, with a total amount of 15.72 million tons. Among them, the nutrient (N+P2O5+K2O) release from maize straw return in the next crop growing period was the highest, accounting for 44.6% of the total amount of annual nutrient return. Straw incorporation had high potential of chemical fertilizer substitution for wheat production in China. In wheat monoculture area, the total wheat straw returning to the field could substitute chemical fertilizers input rate of 4.6 kg N·hm-2, 7.8 kg P2O5·hm-2and 65.3 kg K2O·hm-2theoretically. In the wheat-maize rotation area, the total amount of maize straw returned to the field could substitute chemical fertilizers input rate of 39.4 kg N·hm-2, 28.9 kg P2O5·hm-2and 109.9 kg K2O·hm-2in the wheat production season theoretically. In the rice-wheat rotation area, the total amount of rice straw returned to the field could substitute chemical fertilizers input rate of 29.9 kg N·hm-2, 17.8 kg P2O5·hm-2and 145.1 kg K2O·hm-2in the wheat production season theoretically.【】The annual yield of rice, wheat and maize straw in China was 211.415 million tons, 148.431 million tons and 294.020 million tons, respectively, with a total of 653.866 million tons. The straws of three major grain crops could provide 2.940 million tons of N, 1.941 million tons of P2O5and 10.839 million tons of K2O annually under straw returning. More than 70% of straw and nutrients resources were distributed in North China, Middle and Lower Reaches of the Yangtze River and Northeast China. In the wheat production area, the total amount of straw returned from the previous crop could substitute chemical fertilizers input rate of 4.6 to 39.4 kg N·hm-2, 7.8 to 28.9 kg P2O5·hm-2and 65.3 to145.1 kg K2O·hm-2in theory.
straw yield; the amount of nutrient resources; chemical fertilizer reduction; wheat production
10.3864/j.issn.0578-1752.2020.23.010
2020-05-20;
2020-07-21
國家重點研發(fā)計劃項目(2018YFD0200401)、山西省重點研發(fā)計劃項目(201803D221005-2)、山西省重點研發(fā)計劃重點項目(201703D211001)
李廷亮,E-mail:litingliang021@126.com。通信作者謝英荷,E-mail:xieyinghe@163.com
(責(zé)任編輯 李云霞)