於衛(wèi)東,潘碧瑩,邱玲玉,黃鎮(zhèn),周泰,葉林,唐斌,王世貴
兩個(gè)褐飛虱海藻糖轉(zhuǎn)運(yùn)蛋白基因的結(jié)構(gòu)及調(diào)控海藻糖代謝功能
於衛(wèi)東1,2,潘碧瑩1,邱玲玉1,黃鎮(zhèn)2,周泰2,葉林2,唐斌1,王世貴1
(1杭州師范大學(xué)生命與環(huán)境科學(xué)學(xué)院,杭州 310036;2浙江鼎益生物科技有限公司,浙江衢州 324100)
【】海藻糖是昆蟲(chóng)中的主要血糖物質(zhì),在昆蟲(chóng)的發(fā)育及生理活動(dòng)中發(fā)揮重要功能。其中,海藻糖轉(zhuǎn)運(yùn)蛋白(Tret)在將海藻糖從其生成組織(例如脂肪體)運(yùn)輸?shù)狡湎慕M織的過(guò)程中起著重要作用。本研究通過(guò)分析褐飛虱()兩條Tret1的序列結(jié)構(gòu),進(jìn)一步抑制的表達(dá),探討這兩個(gè)NlTret1在褐飛虱體內(nèi)的生物學(xué)功能?!尽恳院诛w虱兩條Tret1序列為研究對(duì)象,利用生物信息學(xué)技術(shù)分析其蛋白結(jié)構(gòu)以及與其他昆蟲(chóng)之間的同源性。采用RNAi(RNA interference)技術(shù)將合成的外源dsRNA(double-stranded RNA)注射到實(shí)驗(yàn)室飼養(yǎng)褐飛虱種群體內(nèi),抑制其體內(nèi)的表達(dá),分別在注射48 h后取材,抽取總RNA并用反轉(zhuǎn)錄試劑盒合成第一鏈cDNA,采用qRT-PCR(quantitative real-time PCR)技術(shù)檢測(cè)ds的干擾效果以及RNAi后褐飛虱體內(nèi)海藻糖代謝通路中相關(guān)基因的表達(dá),最后測(cè)定葡萄糖、海藻糖和糖原含量以及海藻糖酶活性?!尽可镄畔W(xué)分析表明,和的開(kāi)放閱讀框長(zhǎng)度分別為1920和1578 bp,分別編碼639和525個(gè)氨基酸,預(yù)測(cè)蛋白分子量分別為69.29和58.71 kD,等電點(diǎn)分別為8.32和8.36;NlTret1-like X1和NlTret1-2 X1的二級(jí)結(jié)構(gòu)主要包含螺旋和卷曲;保守結(jié)構(gòu)域分析顯示它們均屬于MFS家族。進(jìn)化分析結(jié)果顯示,不同昆蟲(chóng)的Tret1蛋白具有較高的同源性,且褐飛虱與其他半翅目昆蟲(chóng)具有較近的親緣關(guān)系;與注射ds組相比,注射靶標(biāo)基因的dsRNA后均能夠顯著沉默本基因的表達(dá);褐飛虱體內(nèi)糖原、葡萄糖在注射ds和ds后,其含量均無(wú)顯著變化,然而不同于注射ds組,在注射ds后褐飛虱體內(nèi)海藻糖含量極顯著升高;干擾48 h后褐飛虱體內(nèi)、、、和的表達(dá)均極顯著下調(diào);而干擾48 h后褐飛虱體內(nèi)、和的表達(dá)雖也極顯著下降,但和極顯著上調(diào);在注射ds后,試蟲(chóng)可溶性海藻糖酶和膜結(jié)合型海藻糖酶的活性均極顯著降低,而在注射ds后無(wú)顯著變化。褐飛虱的兩個(gè)Tret1在不同組織間發(fā)揮著不同的功能,其中NlTret1-like X1在特異性轉(zhuǎn)運(yùn)海藻糖參與能量供應(yīng)中起到更為顯著的作用。研究結(jié)果有助于探索Tret1在昆蟲(chóng)或無(wú)脊椎動(dòng)物中調(diào)控海藻糖代謝平衡的調(diào)節(jié)機(jī)制,可為將來(lái)通過(guò)調(diào)控血糖平衡來(lái)控制褐飛虱等害蟲(chóng)提供理論依據(jù)。
褐飛虱;海藻糖轉(zhuǎn)運(yùn)蛋白;結(jié)構(gòu);海藻糖代謝;RNA干擾
【研究意義】我國(guó)水稻()年種植面積為3 000萬(wàn)公頃,總產(chǎn)量約達(dá)2億噸以上[1]。作為一種被廣泛種植和食用的糧食作物,水稻生產(chǎn)的質(zhì)量與產(chǎn)量關(guān)系著國(guó)家糧食安全。然而其生產(chǎn)和儲(chǔ)存過(guò)程中常常受到各種害蟲(chóng)的威脅,其中褐飛虱()是對(duì)水稻生產(chǎn)危害最為嚴(yán)重的害蟲(chóng)[2-4]。20世紀(jì)70年代后,水稻種植密度提高、土壤肥力增加及品種交替頻繁等因素使褐飛虱的威脅日益加劇[5]。目前,生產(chǎn)中主要依靠化學(xué)殺蟲(chóng)劑來(lái)防治褐飛虱,但化學(xué)殺蟲(chóng)劑的過(guò)度使用對(duì)環(huán)境和天敵均造成一定影響,并誘發(fā)抗藥性[6-10]。因此,環(huán)保且高效的新型綠色防控方法的開(kāi)發(fā)迫在眉睫。【前人研究進(jìn)展】海藻糖被稱為“昆蟲(chóng)的血糖”,在昆蟲(chóng)的生長(zhǎng)發(fā)育和抗逆等方面具有重要作用[11-15]。昆蟲(chóng)體內(nèi)海藻糖合成途徑主要為TPS-TPP途徑,海藻糖的合成依賴于海藻糖合成酶(trehalose-6-phosphate synthase,TPS)的催化作用,而海藻糖分解代謝需要海藻糖酶(trehalase,TRE)的幫助,其中海藻糖酶又可分為兩種,可溶型(TRE1)和膜結(jié)合型(TRE2)[16]。目前對(duì)昆蟲(chóng)海藻糖代謝的研究主要集中于海藻糖的合成或分解途徑[15,17],對(duì)于昆蟲(chóng)血糖-海藻糖轉(zhuǎn)運(yùn)過(guò)程的研究卻非常少。眾所周知不管是海藻糖還是葡萄糖,它們都不能像水或者脂肪一樣直接穿過(guò)細(xì)胞膜,而需要在特殊的物質(zhì)——糖轉(zhuǎn)運(yùn)蛋白(sugar transporter,ST)的幫助下才能順利地進(jìn)出細(xì)胞,并發(fā)揮具體的功能。糖轉(zhuǎn)運(yùn)蛋白屬于MFS(major facilitator superfamily)超家族,是動(dòng)物中最豐富的小分子轉(zhuǎn)運(yùn)體[18],葡萄糖轉(zhuǎn)運(yùn)蛋白和海藻糖轉(zhuǎn)運(yùn)蛋白是其中的兩種。在醫(yī)學(xué)研究中,葡萄糖轉(zhuǎn)運(yùn)蛋白被報(bào)道與I型糖尿病有關(guān),也被視為癌癥的治療靶點(diǎn)[19]。在植物中,糖轉(zhuǎn)運(yùn)蛋白也被證實(shí)與果實(shí)的成熟等有關(guān)[20]。在昆蟲(chóng)中,海藻糖轉(zhuǎn)運(yùn)蛋白1(trehalose transporter1,Tret1)被發(fā)現(xiàn)可響應(yīng)細(xì)胞內(nèi)和細(xì)胞外梯度轉(zhuǎn)運(yùn)海藻糖[21]。此外,有研究表明褐飛虱不能直接利用所吸食的水稻中的蔗糖,但糖轉(zhuǎn)運(yùn)蛋白可以介導(dǎo)蔗糖進(jìn)入飛虱體內(nèi)[22-23]。目前,在褐飛虱中已經(jīng)鑒定出18個(gè)推定的糖轉(zhuǎn)運(yùn)蛋白,其中7個(gè)在腸道中高度表達(dá)[24]。進(jìn)一步的研究顯示,NlST1和NlST16是葡萄糖轉(zhuǎn)運(yùn)蛋白而NIST6是果糖轉(zhuǎn)運(yùn)蛋白[25]。【本研究切入點(diǎn)】褐飛虱其他糖轉(zhuǎn)運(yùn)蛋白尤其是海藻糖轉(zhuǎn)運(yùn)蛋白的功能并未有更深入的研究。此外,褐飛虱雖然是一種農(nóng)業(yè)害蟲(chóng),但是也非常適合作為基因功能研究的靶標(biāo)昆蟲(chóng)[26-27]?!緮M解決的關(guān)鍵問(wèn)題】通過(guò)對(duì)兩個(gè)NlTret1的結(jié)構(gòu)以及在調(diào)控海藻糖代謝中的潛在功能進(jìn)行探究,評(píng)估NlTret1作為新型殺蟲(chóng)劑靶點(diǎn)的可能性,為開(kāi)發(fā)綠色農(nóng)藥提供理論依據(jù)。
試驗(yàn)于2018年7月至2019年7月在杭州師范大學(xué)完成。
首先通過(guò)美國(guó)國(guó)家生物技術(shù)信息中心(NCBI)網(wǎng)站搜索獲得兩條基因序列,然后通過(guò)NCBI網(wǎng)站上的BLAST-N和BLAST-X工具,將的cDNA序列與GenBank中存在的其他海藻糖轉(zhuǎn)運(yùn)蛋白的基因序列進(jìn)行比較。使用多序列比對(duì)網(wǎng)站(http://bioinfo.genotoul.fr/multalin/multalin.html)上提供的工具和DNAMAN軟件對(duì)昆蟲(chóng)海藻糖轉(zhuǎn)運(yùn)蛋白氨基酸序列進(jìn)行多序列比對(duì)。使用ExPASy蛋白質(zhì)組預(yù)測(cè)工具網(wǎng)站(http://expasy.org/tools/dna.html)上的翻譯工具,從相應(yīng)的cDNA序列推導(dǎo)出本研究中使用的NlTret1蛋白序列和其他分析標(biāo)準(zhǔn),包括相對(duì)分子質(zhì)量(molecular weight,MW)、等電點(diǎn)(isoelectric point,pI)等。通過(guò)使用SMART(http://smart.embl-heidelberg. de)和TMHMM Server 2.0(http://www.cbs.dtu.dk/ services/TMHMM/)分別預(yù)測(cè)NlTret1功能域和跨膜域。選取已知NlTret1蛋白的氨基酸序列,使用MEGA 5.2軟件,采用鄰接法構(gòu)建系統(tǒng)發(fā)育樹(shù),同時(shí)進(jìn)行自舉分析,并使用1 000次重復(fù)驗(yàn)證每個(gè)群集的穩(wěn)健性。
供試褐飛虱為杭州師范大學(xué)動(dòng)物適應(yīng)與進(jìn)化重點(diǎn)實(shí)驗(yàn)室飼養(yǎng)種群,其初始蟲(chóng)源來(lái)自中國(guó)水稻研究所杭州種群。飼養(yǎng)用水稻均為感蟲(chóng)品系TN1(Taichung Native 1)。褐飛虱飼養(yǎng)條件:溫度(25±1)℃,光周期16L﹕8D,相對(duì)濕度(70±5)%。待TN1水稻上的褐飛虱若蟲(chóng)長(zhǎng)至5齡后,用于后期RNAi顯微注射試驗(yàn)。
褐飛虱總RNA抽提采用Trizol法,抽提過(guò)程中使用的EP管等均需為RNase-free。提取得到的總RNA用1%的瓊脂糖凝膠電泳先檢測(cè)質(zhì)量,然后用NanoDrop 2000分光光度計(jì)測(cè)定提取RNA的濃度及純度。使用PrimeScript?RT reagent Kit With gDNA Eraser試劑盒配置體系,進(jìn)行第一鏈cDNA的合成,合成的cDNA保存于-20℃冰箱。
用Primer 5軟件設(shè)計(jì)兩個(gè)的dsRNA特異性片段并使用合成的特異性引物進(jìn)行PCR擴(kuò)增,產(chǎn)物進(jìn)行T克隆,具體引物序列見(jiàn)表1。隨后用帶T7啟動(dòng)子的引物進(jìn)行交叉PCR反應(yīng),根據(jù)T7 RiboMAXTMExpress RNAi System試劑盒的說(shuō)明進(jìn)行dsRNA合成,待dsRNA合成后,采用NanoDropTM2000測(cè)定合成的dsRNA濃度,同時(shí)以綠色熒光蛋白基因()作為對(duì)照組,采用同樣的方法合成的dsRNA。
用于顯微注射的材料為5齡第1天的褐飛虱。首先打開(kāi)顯微注射儀,調(diào)節(jié)氮?dú)鈮毫?,并在萊卡EZ4解剖鏡下通過(guò)注射標(biāo)準(zhǔn)毛細(xì)管確定每次注射的dsRNA的體積(0.1 μL)。將CO2麻醉后的褐飛虱蟲(chóng)體腹面朝上放置于提前制備好的瓊脂糖膠臺(tái)的凹槽中,在萊卡EZ4解剖鏡下于褐飛虱第二和第三對(duì)足間的腹基節(jié)連接處分別注射ds、ds和ds,注射量為50 ng/頭。最后將注射好的褐飛虱轉(zhuǎn)移至裝有新鮮水稻的玻璃管中,分別在48 h后收取依然存活的褐飛虱用于后續(xù)試驗(yàn)。每個(gè)處理取6個(gè)平行樣,其中3個(gè)平行樣用于基因表達(dá)情況檢測(cè),每個(gè)平行樣10頭褐飛虱;另外3個(gè)平行樣用于糖含量和酶活性測(cè)定,每個(gè)平行樣20頭褐飛虱。
將顯微注射48 h后不同組別的褐飛虱分裝于3個(gè)平行管中,抽提總RNA后反轉(zhuǎn)錄得到3管平行的cDNA,參照SYBR? Premix Ex TaqTM試劑盒的方法進(jìn)行qRT-PCR檢測(cè)。qRT-PCR反應(yīng)體系(20 μL):10 μL SYBR Premix Ex Taq;1 μL上游/下游引物;1 μL cDNA;7 μL滅菌水。選用褐飛虱18S核糖體核糖核苷酸基因(18S ribosomal RNA,18S)作為內(nèi)參基因[28],具體引物序列見(jiàn)表1。qRT-PCR程序:95℃預(yù)變性10 s,95℃解鏈5 s,59℃退火并延伸30 s,39個(gè)循環(huán)。每個(gè)處理3個(gè)生物學(xué)重復(fù),每個(gè)生物學(xué)重復(fù)含3個(gè)技術(shù)重復(fù)。檢測(cè)基因的相對(duì)拷貝數(shù)用2-ΔΔCT方法進(jìn)行分析[29]。
取試驗(yàn)組以及對(duì)照組材料,加入200 μL PBS,用研磨棒充分研磨后放入超聲破碎儀進(jìn)行超聲破碎,破碎后再加入800 μL PBS,4℃,1 000×離心20 min。取350 μL上清,4℃,20 800×超離心1 h,剩余上清用于總蛋白、總糖原和海藻糖含量的測(cè)定。超離心后的上清用于測(cè)定葡萄糖、蛋白質(zhì)含量以及可溶型海藻糖酶活性,沉淀懸浮于300 μL的PBS后用于測(cè)定葡萄糖、蛋白質(zhì)含量和膜結(jié)合型海藻糖酶活性。具體步驟參照Z(yǔ)hang等描述的方法[30]。
應(yīng)用Excel軟件整理、分析數(shù)據(jù),通過(guò)SigmaPlot 10.0和SPSS軟件進(jìn)行顯著性分析和作圖,采用One-Way ANOVA法進(jìn)行差異顯著性檢驗(yàn)(<0.05為差異顯著,用*表示;<0.01為差異極顯著,用**表示)。
表1 實(shí)時(shí)熒光定量PCR和dsNlTret1、dsGFP的引物序列
T7 sequence: GGATCCTAATACGACTCACTATAGG
兩條(和)的開(kāi)放閱讀框長(zhǎng)度分別為1 920和1 578 bp,分別編碼639和525個(gè)氨基酸,預(yù)測(cè)蛋白分子量分別為69.29和58.71 kD,等電點(diǎn)分別為8.32和8.36(圖1-A)。蛋白質(zhì)疏水性預(yù)測(cè)顯示NlTret1-like X1和NlTret1-2 X1的GRAVY(grand average of hydropathicity)值分別為0.313和0.354,表明這兩個(gè)轉(zhuǎn)運(yùn)蛋白主要由疏水性氨基酸組成。二級(jí)和三級(jí)結(jié)構(gòu)顯示這兩個(gè)NlTret1的結(jié)構(gòu)均較為簡(jiǎn)單,主要為螺旋和卷曲(圖1-A、1-C)。SMART分析以及三級(jí)結(jié)構(gòu)預(yù)測(cè)發(fā)現(xiàn)NlTret1-like X1和NlTret1-2 X1分別包含12個(gè)和10個(gè)跨膜結(jié)構(gòu)域(圖1-B、1-C),表明它們均為跨膜蛋白。此外,保守結(jié)構(gòu)域分析結(jié)果顯示兩者均屬于MFS超家族(圖1-B)。
進(jìn)化分析結(jié)果顯示,NlTret1-like X1和NlTret1-2 X1分別與其他昆蟲(chóng)的Tret1-like X1和Tret1 X1聚在一支,其中NlTret1-like X1與黃蔗蚜()、高粱蚜()、棉蚜()、玉米縊管蚜()、桃蚜()及豌豆蚜()的Tret1聚在一支;NlTret1-2 X1則與臭蟲(chóng)()和茶翅蝽()聚在一支,表明褐飛虱的這兩個(gè)Tret1與其他昆蟲(chóng)的Tret1具有較高的同源性,并且與同為半翅目的上述昆蟲(chóng)親緣關(guān)系較近(圖2)。
GenBank登錄號(hào)為XP_022183984.1(NlTret1-like X1)和XP_022195528.1(NlTret1-2 X1)Initiation and termination GenBank accession numbers: XP_022183984.1 (NlTret1-like X1) and XP_022195528.1 (NlTret1-2 X1)。A:NlTret1二級(jí)結(jié)構(gòu)預(yù)測(cè)Prediction of the secondary structure of NlTret1s;B:NlTret1結(jié)構(gòu)域分析(藍(lán)色方塊表示跨膜結(jié)構(gòu),粉色方塊表示低復(fù)雜區(qū)域)Analysis of domain of NlTret1s (Blue blocks represent transmembrane region and pink blocks represent low complexity region);C:NlTret1三級(jí)結(jié)構(gòu)預(yù)測(cè)Prediction of the tertiary structure of NlTret1s
Tret1蛋白來(lái)源物種及其GenBank登錄號(hào) Source species of Tret1 proteins and their GenBank accession numbers。豌豆蚜Acyrthosiphon pisum:ApTret1 (XP_001943832.1)、ApTret1 X1 (XP_003247868.1);桃蚜Myzus persicae:MpTret1-like (XP_022175298.1)、MpTret1-like X1 (XP_022168826.1);高粱蚜Melanaphis sacchari:MsTret1-like (XP_025205275.1)、MsTret1-like X1 (XP_025193454.1);玉米縊管蚜Rhopalosiphum maidis:RmTret1-like (XP_026817841.1)、RmTret1-like X1 (XP_026807124.1);棉蚜Aphis gossypii:AgTret1-like (XP_027847026.1)、AgTret1-like X1 (XP_027852240.1);黑豆蚜Aphis craccivora:AcTret1-like (KAF0773727.1);黃蔗蚜Sipha flava:SfTret1-like (XP_025415984.1)、SfTret1-like X1 (XP_025419752.1);褐飛虱Nilaparvata lugens:NlTret1-2 X1 (XP_022195528.1)、NlTret1-like X1 (XP_022183984.1);臭蟲(chóng)Cimex lectularius:ClTret1-like (XP_014254493.1);茶翅蝽Halyomorpha halys:HhTret1-like (XP_014285740.1);濕木白蟻Zootermopsis nevadensis:ZnTret1-like (XP_021920751.1);第二隱白蟻Cryptotermes secundus:CsTret1 X1 (XP_023724429.1);埃及伊蚊Aedes aegypti:AaTret1 (XP_001654366.1);貓虱Ctenocephalides felis:CfTret1-like (XP_026477563.1);菜粉蝶Pieris rapae:PrTret1-like (XP_022131116.1);麥莖蜂Cephus cinctus:CcTret1 X1 (XP_015587164.1);癭蜂Belonocnema treatae:BtTret1-like (XP_033208929.1);汗蜂Dufourea novaeangliae:DnTret1 (KZC12919.1);彩帶蜂Nomia melanderi:NmTret1-like X1 (XP_031847112.1);銀額果蠅Drosophila albomicans:DaTret1 X1 (XP_034103480.1);銅綠蠅Lucilia cuprina:LcTret1 X1 (XP_023292603.1);德國(guó)小蠊Blattella germanica:BgTret1 (PSN42188.1);柑橘木虱Diaphorina citri:DcTret1-like (XP_026682851.1)
與注射ds組相比,干擾或48 h后褐飛虱體內(nèi)靶標(biāo)基因的表達(dá)量均極顯著下降(<0.01)(圖3),ds或ds的干擾效率分別為66.38%和89.45%,表明靶標(biāo)基因的干擾有效。
與注射ds組相比,干擾48 h后褐飛虱體內(nèi)、、、和的表達(dá)量均極顯著下降;而在干擾48 h后褐飛虱體內(nèi)、和也極顯著低表達(dá),但和的相對(duì)表達(dá)量極顯著上升(<0.01)(圖4)。
與注射ds組相比,干擾48 h體內(nèi)海藻糖含量極顯著增加(<0.01),而其他糖類物質(zhì)含量變化均不顯著。干擾48 h后,褐飛虱體內(nèi)的海藻糖、葡萄糖和糖原含量均無(wú)顯著變化(圖5)。
圖3 注射48 h后NlTret1-like X1和NlTret1-2 X1的表達(dá)量
圖4 RNAi后褐飛虱海藻糖代謝通路相關(guān)基因的表達(dá)量
N.S.代表差異不顯著。下同
與注射ds組相比,褐飛虱體內(nèi)可溶性海藻糖酶和膜結(jié)合型海藻糖酶活性在干擾48 h后均極顯著下降(<0.01),而在干擾后未出現(xiàn)顯著變化(圖6)。
不同昆蟲(chóng)的Tret具有相似的氨基酸序列,且與葡萄糖轉(zhuǎn)運(yùn)蛋白超家族相似,因此有研究表明Tret1可能是葡萄糖轉(zhuǎn)運(yùn)蛋白超家族的新成員[31]。此外,也有研究證實(shí),嗜眠搖蚊()Tret1不僅可以轉(zhuǎn)運(yùn)海藻糖,還可以轉(zhuǎn)運(yùn)葡萄糖類似物[21]。在葡萄糖轉(zhuǎn)運(yùn)蛋白(glucose transporter,Glut)超家族的幾乎所有成員(包括Tret1)中都可以看到序列相似性,但它們的生化特性(例如底物選擇性和動(dòng)力學(xué))差異很大,如Glut1的底物是葡萄糖、半乳糖、甘露糖和葡萄糖胺,而Glut5和H+-肌醇協(xié)同轉(zhuǎn)運(yùn)蛋白(H+-myo-inositol cotransporter,HMIT)的特定底物分別是果糖和肌醇[32]。說(shuō)明除了保守區(qū)域中的氨基酸殘基外,其他氨基酸殘基也可能對(duì)每個(gè)轉(zhuǎn)運(yùn)蛋白的特異性產(chǎn)生影響。本研究通過(guò)生物信息學(xué)方法分析了褐飛虱的兩個(gè)Tret1序列,發(fā)現(xiàn)它們的二級(jí)結(jié)構(gòu)主要是螺旋及卷曲,且均屬于MFS超家族。但其二級(jí)結(jié)構(gòu)以及保守結(jié)構(gòu)域外的氨基酸殘基均存在差異,推測(cè)它們的海藻糖轉(zhuǎn)運(yùn)功能可能存在差異。此外,這兩個(gè)NlTret1同其他糖轉(zhuǎn)運(yùn)蛋白相似,擁有較多個(gè)跨膜區(qū)域,其中NlTret1-like X1有12個(gè)跨膜區(qū)域,NlTret1-2 X1有10個(gè)跨膜區(qū)域(圖1)。SAIER研究表明,MFS超家族成員蛋白的二級(jí)結(jié)構(gòu)預(yù)測(cè)顯示其大多都具有12次-螺旋跨膜結(jié)構(gòu)域,而其他一些具有14或24次-螺旋的可能是進(jìn)化過(guò)程中以12次跨膜-螺旋為基礎(chǔ)產(chǎn)生的[33]。NlTret1-2 X1只具有10個(gè)跨膜區(qū)域,可能是由于所得到的片段并不是全長(zhǎng)。
圖6 RNAi后褐飛虱體內(nèi)的海藻糖酶活性
海藻糖是昆蟲(chóng)中的主要血淋巴糖,而海藻糖轉(zhuǎn)運(yùn)蛋白則負(fù)責(zé)海藻糖的運(yùn)輸并調(diào)節(jié)海藻糖在不同組織中的分布,在昆蟲(chóng)的營(yíng)養(yǎng)穩(wěn)態(tài)和脅迫耐受性中起著重要作用[11-15,24]。此外,自在秀麗隱桿線蟲(chóng)()的研究中首次發(fā)現(xiàn)RNAi現(xiàn)象之后,RNAi技術(shù)已成為昆蟲(chóng)基因功能研究、基因表達(dá)調(diào)控、害蟲(chóng)控制、新型農(nóng)藥開(kāi)發(fā)等方面的有力工具[34-36]。本研究在驗(yàn)證基因干擾有效的前提下(圖3),檢測(cè)了與海藻糖代謝相關(guān)的一些基因表達(dá)情況以及部分生化指標(biāo),發(fā)現(xiàn)干擾后,褐飛虱體內(nèi)所有的和均呈極顯著低表達(dá)(圖4),但的表達(dá)量高于的表達(dá)量,且可溶性海藻糖酶及膜結(jié)合型海藻糖酶的活性均極顯著下降(圖6),因此在干擾后,褐飛虱體內(nèi)的海藻糖被積累(圖5)。干擾后的表達(dá)量均顯著下降且和均極顯著高表達(dá)(圖4),但海藻糖酶活性無(wú)明顯變化(圖6),推測(cè)可能是褐飛虱體內(nèi)的糖原和葡萄糖在向海藻糖轉(zhuǎn)化,導(dǎo)致褐飛虱體內(nèi)的海藻糖含量無(wú)顯著變化(圖5)。在大猿葉蟲(chóng)()中發(fā)現(xiàn)了兩個(gè),其中在脂肪體中高表達(dá),且RNAi后會(huì)導(dǎo)致脂肪體中海藻糖含量升高;則在卵巢中高表達(dá),然而在干擾其表達(dá)后,卵巢內(nèi)的海藻糖含量卻呈極顯著下降趨勢(shì)[37]。表明不同的Tret1可能在不同的組織或不同的生理過(guò)程中起作用。但由于大猿葉蟲(chóng)的研究主要針對(duì)脂肪體和卵巢組織進(jìn)行,與本研究選取整個(gè)蟲(chóng)體存在差異,筆者推測(cè)褐飛虱的兩個(gè)Tret1可能也在不同組織間發(fā)揮著不同功能,可能在特異性轉(zhuǎn)運(yùn)海藻糖參與能量供應(yīng)中起到更為顯著的作用。
褐飛虱的兩個(gè)Tret1結(jié)構(gòu)均較為簡(jiǎn)單,主要為螺旋和卷曲;此外,它們均屬于MFS超家族,具有較多的跨膜結(jié)構(gòu)域;褐飛虱的Tret1與其他昆蟲(chóng)的Tret1具有較高的同源性,且與其他半翅目昆蟲(chóng)如黃蔗蚜等的親緣關(guān)系較近;注射ds和ds均能有效抑制本基因的表達(dá);ds和ds注射到褐飛虱體內(nèi),能夠打破體內(nèi)海藻糖代謝的平衡。推測(cè)褐飛虱的這兩個(gè)Tret1可能在不同組織間發(fā)揮著不同的功能,且NlTret1- like X1在特異性轉(zhuǎn)運(yùn)海藻糖參與能量供應(yīng)中起到更為顯著的作用。
[1] 徐春春, 紀(jì)龍, 陳中督, 方福平. 2017年我國(guó)水稻產(chǎn)業(yè)形勢(shì)分析及2018年展望. 中國(guó)稻米, 2018, 24(2): 1-3.
Xu C C, Ji L, Chen Z D, Fang F P. Analysis of China’s rice industry in 2017 and the outlook for 2018., 2018, 24(2): 1-3. (in Chinese)
[2] CHENG X Y, ZHU L L, HE G C. Towards understanding of molecular interactions between rice and the brown planthopper., 2013, 6(3): 621-634.
[3] LU G, ZHANG T, He Y, Zhou G. Virus altered rice attractiveness to planthoppers is mediated by volatiles and related to virus titre and expression of defense and volatile-biosynthesis genes., 2016, 6: 38581.
[4] BODDUPALLY D, TAMIRISA S, GUNDRA S R, VUDEM D R, KHAREEDU V R. Expression of hybrid fusion protein (Cry1Ac::ASAL) in transgenic rice plants imparts resistance against multiple insect pests., 2018, 8: 8458.
[5] 吳碧球, 黃所生, 黃鳳寬. 環(huán)境因素對(duì)水稻品種抗褐飛虱的影響研究概況. 植物保護(hù), 2015, 41(1): 1-6.
Wu B Q, Huang S S, Huang F K. A review on factors affecting resistance of rice varieties to the rice brown planthopper., 2015, 41(1): 1-6. (in Chinese)
[6] TANAKA K, ENDO S, KAZANO H. Toxicity of insecticides to predators of rice planthoppers: spiders, the mirid bug and the dryinid wasp., 2000, 35(1): 177-187.
[7] ROLA A C, PINGALI P L.:. Manila, Philippines: International Rice Research Institute, 1993.
[8] NAUEN R, DENHOLM I. Resistance of insect pests to neonicotinoid insecticides: current status and future prospects., 2005, 58(4): 200-215.
[9] WANG H Y, YANG Y, SU J Y, SHEN J L, GAO C F, ZHU Y C. Assessment of the impact of insecticides on(PangWang) (Hymenoptera: Mymanidae), an egg parasitoid of the rice planthopper,(Hemiptera: Delphacidae)., 2008, 27(3/5): 514-522.
[10] BOTTRELL D G, SCHOENLY K G. Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to high-yielding rice production in tropical Asia.
, 2012, 15(1): 122-140.
[11] BECKER A, SCHL?DER P, STEELE J E, WEGENER G. The regulation of trehalose metabolism in insects., 1996, 52(5): 433-439.
[12] ELBEIN A D, PAN Y T, PASTUSZAK I, CARROLL D. New insights on trehalose: a multifunctional molecule., 2003, 13(4): 17R-27R.
[13] IORDACHESCU M, IMAI R. Trehalose biosynthesis in response to abiotic stresses., 2008, 50(10): 1223-1229.
[14] TANG B, CHEN J, YAO Q, PAN Z Q, XU W H, WANG S G, ZHANG W Q. Characterization of a trehalose-6-phosphate synthase gene fromand its function identification through RNA interference., 2010, 56(7): 813-821.
[15] SHUKLA E, THORAT L J, NATH B B, GAIKWAD S M. Insect trehalase: physiological significance and potential applications., 2015, 25(4): 357-367.
[16] AVONCE N, MENDOZA-VARGAS A, MORETT E, ITURRIAGA G. Insights on the evolution of trehalose biosynthesis., 2006, 6: 109.
[17] TANG B, WANG S, WANG S G, WANG H J, ZHANG J Y, CUI S Y. Invertebrate trehalose-6-phosphate synthase gene: genetic architecture, biochemistry, physiological function, and potential applications., 2018, 9: 30.
[18] 劉貽聰. 麗蚜小蜂取食糖分對(duì)寄生煙粉虱的影響及糖轉(zhuǎn)運(yùn)蛋白誘導(dǎo)表達(dá)分析[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2018.
LIU Y C. Effects of sugar diets on the parasitism ofonand analysis of induced expression of sugar transporter gene[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[19] 郭婧, 范宇鴻, 宋立猛. 葡萄糖轉(zhuǎn)運(yùn)蛋白-1在腫瘤中的表達(dá)及意義. 國(guó)際檢驗(yàn)醫(yī)學(xué)雜志, 2019, 40(16): 2009-2011, 2034.
GUO J, FAN Y H, SONG L M. Expression and significance of glucose transporter-1 in tumors., 2019, 40(16): 2009-2011, 2034. (in Chinese)
[20] 楊澤眾. Q煙粉虱與內(nèi)共生細(xì)菌互作機(jī)制及B煙粉虱糖轉(zhuǎn)運(yùn)蛋白超家族注釋與功能研究[D]. 長(zhǎng)沙: 湖南農(nóng)業(yè)大學(xué), 2017.
YANG Z Z. Symbiotic relationship betweenB and its endosymbionts and annotation and function research of sugar transporter superfamily ofB[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese)
[21] KIKAWADA T, SAITO A, KANAMORI Y, NAKAHARA Y, IWATA K, TANAKA D, WATANABE M, OKUDA T. Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells., 2007, 104(28): 11585-11590.
[22] KIKUTA S, NAKAMURA Y, HATTORI M, SATO R, KIKAWADA T, NODA H. Herbivory-induced glucose transporter gene expression in the brown planthopper,., 2015, 64: 60-67.
[23] PRICE D R, WILKINSON H S, GATEHOUSE J A. Functional expression and characterisation of a gut facilitative glucose transporter, NlHT1, from the phloem-feeding insect(rice brown planthopper)., 2007, 37(11): 1138-1148.
[24] KIKUTA S, KIKAWADA T, HAGIWARA-KOMODA Y, NAKASHIMA N, NODA H. Sugar transporter genes of the brown planthopper,: a facilitated glucose/fructose transporter., 2010, 40(11): 805-813.
[25] PRICE D R, KARLEY A J, ASHFORD D A, ISAACS H V, POWNALL M E, WILKINSON H S, GATEHOUSE J A, DOUGLAS A E. Molecular characterisation of a candidate gut sucrase in the pea aphid,., 2007, 37(4): 307-317.
[26] YOON J S, MOGILICHERLA K, GURUSAMY D, CHEN X, CHEREDDY S C, PALLI S R. Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects., 2018, 115(33): 8334-8339.
[27] XI Y, PAN P L, YE Y X, YU B, XU H J, ZHANG C X. Chitinase-like gene family in the brown planthopper,., 2015, 24(1): 29-40.
[28] ZHAO L N, YANG M M, SHEN Q D, SHI Z K, WANG S G, TANG B. Functional characterization of three trehalase genesregulating the chitin metabolism pathway in rice brown planthopper using RNA interference., 2016, 6: 27841.
[29] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod., 2001, 25(4): 402-408.
[30] ZHANG L, QIU L Y, YANG H L, WANG H J, ZHOU M, WANG S G, TANG B. Study on the effect of wing bud chitin metabolism and its developmental network genes in the brown planthopper,, by knockdown ofgene., 2017, 8: 750.
[31] KANAMORI Y, SAITO A, HAGIWARA-KOMODA Y, TANAKA D, MITSUMASU K, KIKUTA S, WATANABE M, CORNETTE R, KIKAWADA T, OKUDA T. The trehalose transporter 1 gene sequence is conserved in insects and encodes proteins with different kinetic properties involved in trehalose import into peripheral tissues., 2010, 40(1): 30-37.
[32] ULDRY M, THORENS B. The SLC2 family of facilitated hexose and polyol transporters., 2004, 447(5): 480-489.
[33] SAIER M H. Genome archeology leading to the characterization and classification of transport proteins., 1999, 2(5): 555-561.
[34] PRENTICE K, CHRISTIAENS O, PERTRY I, BAILEY A, NIBLETT C, GHISLAIN M, GHEYSEN G, SMAGGHE G. RNAi-based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil(Coleoptera: Brentidae)., 2017, 73(1): 44-52.
[35] LOU Y H, PAN P L, YE Y X, CHENG C, XU H J, ZHANG C X. Identification and functional analysis of a novel chorion protein essential for egg maturation in the brown planthopper., 2018, 27(3): 393-403.
[36] XI Y, PAN P L, ZHANG C X. The-n-acetylhexosaminidase gene family in the brown planthopper,., 2015, 24(6): 601-610.
[37] LI J X, CAO Z, GUO S, TIAN Z, LIU W, ZHU F, WANG X P. Molecular characterization and functional analysis of two trehalose transporter genes in the cabbage beetle,., 2020, 23(3): 627-633.
The Structure Characteristics and Biological Functions on Regulating Trehalose Metabolism of Twoin
YU WeiDong1,2, PAN BiYing1, QIU LingYu1, HUANG Zhen2, ZHOU Tai2, YE Lin2, TANG Bin1, WANG ShiGui1
(1College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036;2Zhejiang Dingyi Biotechnology Co., LTD, Quzhou 324100, Zhejiang)
【】Trehalose is the main blood sugar substance in insects and plays an important role in insect development and physiological activities. Among them, trehalose transporter (Tret) plays a key role in the transportation of trehalose from trehalose-producing tissues (such as fat body) to trehalose-consuming tissues. The objective of this study is to explore the biological functions of these two NlTret1s in brown planthopper () by analyzing the sequence structure of two NlTret1s and further suppressing the expression of.【】Taking these two NlTret1 sequences as the research object, the protein structure and homology with other insects were analyzed by bioinformatics technology. The RNA interference (RNAi) technology was used to inject the synthetic exogenous dsRNA (double-stranded RNA) into the laboratory feeding population of, to inhibit the expression of the. The total RNA was extracted to synthesize the first-strand cDNA using reverse transcription kit, qRT-PCR (quantitative real-time PCR) technology was used to detect the RNAi effect of dsand the expression of related genes in the trehalose metabolism pathway inafter RNAi, and finally glucose, trehalose and glycogen content as well as trehalase enzyme activity were determined.【】Bioinformatics analysis showed that the open reading frames ofandare 1920 and 1578 bp in length, encoding 639 and 525 amino acids, respectively. The predicted protein molecular weights are 69.29 and 58.71 kD, and the isoelectric points are 8.32 and 8.36, respectively. The secondary structure of NLTret1-like X1 and NLTret1-2 X1 is mainly composed of helix and coil. Conservative domain analysis showed that they all belong to the MFS family. The results of evolutionary analysis showed that Tret1 of different insects had high homology, andwas closely related to other hemiptera insects. Compared with the dsgroup, the target gene was inhibited significantly after injection with dsor ds. Furthermore, the content of glycogen and glucose indid not change significantly, but unlike the dsgroup, the trehalose content ofwas significantly increased with the injection of ds. Meanwhile, the expression of the,,,andwas significantly down-regulated after theknocked down for 48 h. The expression of,andalso decreased significantly after injection with dsfor 48 h, whileandshowed a very significant upward trend. Moreover, after injection of ds, the activities of soluble trehalase and membrane-bound trehalase were significantly reduced, but there was no significant change after injection with ds.【】These two Tret1s ofplay different functions in different tissues, among which NlTret1-like X1 plays a more significant role in the specific transport of trehalose involved in energy supply. The results are helpful to explore the regulatory mechanism of Tret1 regulating the balance of trehalose metabolism in insects or invertebrates, and provide a theoretical basis for the future control of pests by regulating blood sugar balance, such as.
brown planthopper (); trehalose transporter (Tret); structure; trehalose metabolism; RNAi
10.3864/j.issn.0578-1752.2020.23.007
2020-07-18;
2020-09-03
國(guó)家自然科學(xué)基金(31672081,31371996)
於衛(wèi)東,E-mail:hzyuweidong@hotmail.com。通信作者王世貴,E-mail:sgwang@hznu.edu.cn
(責(zé)任編輯 岳梅)