• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A High-Accuracy Online Compensation Scheme for Star Sensors

    2020-12-03 00:56:02ZhaoYunanWangXinlongCaiYuanwenChenDingLiQunsheng
    航空兵器 2020年5期

    Zhao Yunan,Wang Xinlong*,Cai Yuanwen,Chen Ding,Li Qunsheng

    (1.School of Astronautics,Beihang University,Beijing 100191,China;2.Department of Graduate School,Space Engineering University,Beijing 101416,China;3.State Key Laboratory of Space-Ground Integrated Information Technology,Beijing 100086,China;4.School of Instrumentation Science and Opto-Electronics Engineering,Beihang University,Beijing 100191,China)

    Abstract:Temperature has a significant impact on measurement accuracy of star sensors.In order to improve the accuracy of star sensors in different temperature conditions,the temperature errors of star sensors are analyzed and modeled systematically,and a high-accuracy online temperature error compensation scheme is proposed in this paper.Firstly,by analyzing the temperature influences on the optical system of star sensors,the relationships between focal length drifts,optical distortion and temperature are obtained respectively,and then a systematic temperature error model of star sensors is established.Secondly,by analyzing the charge coupling device (CCD) noise characteristics,the fluctuation relationship between star positions and temperature is given,and a random temperature error model of star sensors is established.Then,according to the characteristics of systematic and random temperature errors of star sensors,a high-accuracy online temperature error compensation scheme is proposed.In the end,by the simulated CCD star sensor,it is indicated that the proposed temperature error compensation scheme can effectively restrain the shifts and fluctuation of star positions,and then can improve the measurement accuracy of star sensors in different temperature conditions.

    Key words:star sensor;temperature;systematic error;random error;online compensation

    0 Introduction

    The star sensor is one of the frequently-used attitude measuring devices for spacecrafts,which has advantages in autonomy and accuracy[1].However,spacecrafts work in the space with a wide temperature range from -160 ℃to 180 ℃[2],and optical systems,imaging sensors and other main components of star sensors are sensitive to temperature variations[3-4].As a result,temperature variations can directly influence the imaging quality of star sensors,and further significantly influence their accuracy.Researches show that the temperature errors are more than 50% of the total errors of star sensors[5].Therefore,how to reduce the temperature errors has become one of the key technologies for star sensors.

    At present,the methods of restraining star sensor temperature errors can be categorized into two major kinds:the hardware method and the software method.For hardware aspects[6-9],the athermalisation and thermal control methods are introduced to the system design of star sensors.However,these methods need high cost and long development time.For software aspects[5,10-14],temperature error models of star sensors are established so as to compensate the errors online.These methods have characteristics of low cost and good flexibility,which have attracted the attention of military field.In literature [5],according to the temperature-dependent parameters of optical systems,the temperature effects of focal length variations on star sensor imaging accuracy can be obtained.In literature [10-11],the image shifts of star sensors are deduced by means of the lens material properties and the matrix optics theories.In literature [12],considering refractive index variations of optical systems with temperature,the relationship between emergence angle variations of stars and temperature variations can be analyzed quantitatively.Then a thermal radial distortion model of star sensors based on starlight vector calibration is established.For imaging sensors,in literature [13-14],the relationship between temperature variations and the imaging performance is described by establishing the CCD noise models.

    As mentioned above,researches of temperature effects on star sensors are limited to lens distortion,image shifting and other sole and simple variation,and there is no systematic analysis and high-accuracy model of temperature errors.So these errors can not be accurately compensated online.As a result,in this paper,a comprehensive temperature error model of star sensors is established,and then a high-accuracy online compensation scheme is proposed.

    1 Temperature error analysis of star sensors

    CCD star sensors consist of optical systems,CCD chips,photoelectric conversion circuits,data processing circuits,baffles,etc[1].Among them,optical systems noise and CCD noise vary with temperature,which can affect star positions,as shown in Fig.1.

    Fig.1 Temperature error propagation diagram of star sensor

    Temperature-dependent optical systems and CCD chips have different impacts on extracted star positions.For the optical system,temperature variations will change the performance parameters and the relative positions of the lenses,and also bring about the thermal expansion of the lens barrel.As a result,it causes focal length drifts and optical distortion,leading to star position shifts in unison.The position shifts belong to systematic errors.For CCD chips,temperature variations will change the CCD noise characteristics.Consequently,it results in star position fluctuation,which belongs to random errors.

    2 Temperature error modeling of star sensors

    2.1 Systematic error modeling

    Temperature variations cause focal length drifts and optical distortion of the optical system.Invar steel is used in the lens barrel of the star sensor,which has a low expansion coefficient,so the thermal expansion of the lens barrel is not considered.According to the image-forming principle,the corresponding star position shifts can be obtained,and the systematic errors can be modeled.

    2.1.1 Errors of focal length drifts

    Temperature variations can change the lens curvature,refractive index and other parameters,which lead to focal length drifts.The overall temperature coefficient of focal length driftsαfcan be expressed as[10]

    (1)

    whereαfiis the temperature coefficient of focal length drifts ofith lens.So the focal length drifts can be denoted as

    Δf=αf·f·ΔT

    (2)

    According to the geometric relationship of similar triangles,the star position shifts caused by focal length drifts Δfcan be written as

    (3)

    where (x,y) represents the star position at calibration temperature.

    2.1.2 Errors of lens distortion

    Lens distortion mainly includes radial distortion and decentering distortion.Radial distortion results from the curvature and refractive index variations of the lenses.As shown in Fig.2,radial distortion varies the direction of the starlight vectorS,making the star position shift fromP(x,y) toP2(x2,y2).

    Fig.2 Effect schematic of radial distortion on star positions

    Radial distortion can be described by the following mathematical model[15]:

    (4)

    wherek1is the radial distortion coefficient,δris high-order items of radial distortion.

    The radial distortion coefficientk1varies with temperature.So we can fit the relation between temperature and the distortion coefficient with polynomials,and then obtaink1at different temperatures:

    k1=a0+a1(ΔT)+a2(ΔT)2+…+al(ΔT)l

    (5)

    wherea0~alare temperature coefficients ofk1,andlis the polynomial order.Substituting equation (5) into equation (4),we can obtain the errors of radial lens distortion(Δxr,Δyr).

    Decentering distortion is caused by non-collinear optical axes of the lenses in the optical system.As shown in Fig.3,decentering distortion varies the direction of the starlight vectorS,making the star position shift fromP(x,y) toP3(x3,y3).

    Fig.3 Effect schematic of decentering distortion on

    star positions

    Decentering distortion can be described by the following mathematical model[15]:

    (6)

    wherep1andp2are the decentering distortion coefficients,δdis high-order items.

    Similarly to radial distortion,the decentering distortion coefficientsp1andp2can be obtained by polynomial fitting:

    p1=b0+b1(ΔT)+b2(ΔT)2+…+bm(ΔT)m

    p2=c0+c1(ΔT)+c2(ΔT)2+…+cn(ΔT)n

    (7)

    whereb0~bmandc0~cnare temperature coefficients,mandnare the polynomial orders.Substituting equation (7) into equation (6),the position errors of decentering distortion (Δxd,Δyd) can be obtained.

    2.1.3 Systematic temperature error model

    Temperature variations can lead to focal length drifts and optical distortion.These two factors can result in star position shifts together,as shown in Fig.4.

    Fig.4 Effects of focal length drifts and lens distortion on star positions

    Based on the relationship between the temperature variations,focal length drifts and optical distortion,the systematic temperature errors can be derived by integrating equations (3)~(4) and equation(6):

    (8)

    where(xi,yi)is the star position at calibration temperature.

    Equation (8) describes the relationship between temperature variations ΔTand the star position shifts (Δxs,Δys),called the systematic error model.

    2.2 Random error modeling

    Temperature variations change the CCD noise characteristics,which will reduce the image quality of star maps and the star centroiding accuracy.CCD noises mainly include photon shot noise,photo response non-uniformity noise,dark current shot noise,dark signal non-uniformity noise and readout noise[13].Among them,dark current noise and readout noise are influenced by temperature remarkably.

    2.2.1 Temperature effects upon CCD noises

    (1) Dark current noise

    CCD dark current is generated by irregular thermal motion of semiconductor carriers,which is usually specified as the number of thermal electrons per second.Dark currentIis affected by temperature significantly and can be given as a function of absolute temperatureT[16]:

    (9)

    wherekis the Boltzmann’s constant,E(T) is the band-gap energy of silicon.

    Since the thermal motion of carriers is a random process,dark current varies in different time and different pixels.It forms dark current shot noise and dark signal non-uniformity noise.

    Dark current shot noise is equal to the square root of dark signal generated during the exposure timet[16].Combined with equation (9),dark current shot noiseσdcsnin electrons can be obtained:

    (10)

    whereNdsis dark signal in electrons,andcis a constant.According to equation (10),the higher the temperature is,the more obvious the dark current shot noiseσdcsnwill be.

    Due to the differences in the fabrication process of CCD chips,dark current is often not evenly distributed on each pixel[16].Dark signal non-uniformity noise shows the non-uniformity of dark signal in different pixels,which is a kind of spatial noise.

    The dark signal non-uniformity noise increases in the same proportion as the dark signal.The dark signal non-uniformity noiseσdsnuin electrons can be calculated by dark signal non-uniformity voltageUdsnu0at room temperatureT0:

    (11)

    whereSvis the CCD output stage sensitivity in volts/electrons,andUdsnu0is usually provided by the manufacturer.Similarly,dark signal non-uniformity noiseσdsnushows more obviously when temperature is higher.

    (2) Readout noise

    Readout noise consists of reset noise and output amplifier noise.Reset noiseσresetis mainly caused by the thermal noise of reset resistors in CCD output stage,which can be expressed as[13]

    (12)

    whereCrepresents the sense node capacitance,andqis the fundamental charge.It is easy to find that the reset noise increases with temperature increment.

    In addition to reset circuits,the readout circuits contain output amplifier circuits,which can lead to flicker noise and white noise.Flicker noise is dependent on frequency instead of temperature.White noise has nothing to do with frequency but with temperature[13],which can be written as

    (13)

    whereBis the noise power bandwidth,Routis the output resistance.White noise in output amplifier circuits also increases with temperature increment.

    Therefore,temperature-dependent CCD noisesσTconsist of dark current shot noise,dark signal non-uniformity noise,reset noise and white noise of readout noise,which can be written as:

    (14)

    According to equations (9)~(14),it is easy to find that CCD noises are more and more conspicuous with the increase of temperature.

    2.2.2 Temperature effects upon CCD noises

    According to the temperature characteristics of CCD dark current noise,the star position fluctuation caused by temperature variations can be derived.The measurement signalUijof the star map is composed of the original signalSijand the noise signalNij.According to the star centroiding algorithm[17],the random error of the star position inxdirection can be derived by

    (15)

    wherexis the star position extracted from the star map,x0is the ideal star position.

    It is easy to see that sum of the noises is much smaller than sum of the signals.Considering the effects of temperature-dependent CCD noisesσTin chief,the variance of Δxucan be approximated as

    (16)

    wherex0obeys the uniform distribution within the pixel interval of [-0.5,0.5],n=(m-1)/2 andmis the pixel size of star spots.Similarly,the variance of the random errors inydirection can be procured.Equation (16) measures the relationship between temperature and the fluctuation range of the star positions,i.e.statistical characteristic of random errors.

    Equations (8) and (16) measure the star position shifts and fluctuation caused by temperature variations respectively,which are the systematic error model and random error model of star sensors.According to the position shifts and fluctuation range of multiple stars at different temperatures,the attitude at corresponding temperature can be calculated,and the attitude errors can be obtained compared with the ideal attitude information.

    3 A high-accuracy online temperature error compensation scheme for star sensors

    3.1 Design of temperature error compensation scheme for star sensors

    According to the characteristics of systematic error and random temperature error of star sensors,a high-accuracy online temperature error compensation scheme is designed,as shown in Fig.5.It includes two aspects:the calibration of temperature error models and the temperature error compensation.

    Fig.5 Block diagram of the online temperature error compensation scheme

    The calibration of temperature error models is the basis of online compensation.By using the ground test data of the star sensor,the CCD noise model can be established and the temperature coefficients of the systematic error model can be calibrated.

    The online temperature error compensation consists of two parts:random error compensation and systematic error compensation.Based on the CCD noise model,the star maps can be denoised so as to extract more accurate star positions.Then the star position shifts can be corrected with the systematic temperature error model.

    3.2 Compensation methods of temperature errors

    3.2.1 Compensation method of systematic errors

    (17)

    (2) CalculateXusing the iteration formula.

    The iteration formula is

    Y(k+1)=Y(k)-[F′(Y)]-1F(Y)

    (18)

    whereY(k)is the iteration star position at timek,andF′(Y)is the Jacobian matrices ofF(Y):

    Its elements are

    (3) If |Y(k+1)-Y(k)|<ε,the iteration is over andY(k+1) is the compensated star position.Otherwise,setY(k+1) as the iterative initial value and return to step (2).In this way,the compensated star position can be obtained from the star position at different temperatures.

    3.2.2 The compensation method of random errors

    In view of the uncertainty of random temperature errors,it is difficult to reduce them exactly.Consequently,they can be compensated indirectly by suppressing temperature-dependent CCD noises of star maps.

    (19)

    whereG(u,v),H(u,v) andP(u,v) denote the discrete Fourier transform (DFT) ofg(i,j),h(x,y) andp(x,y) respectively.h(x,y) is the point spread function (PSF) of the degradation model,p(x,y) is the second-order difference Laplacian operator.γcan be determined according to the characteristics of star map noises by iteration.

    In the temperature error compensation of star sensors,we use the constrained least squares filter to suppress the star map noise firstly,which can reduce the star position fluctuation.Afterwards,based on the calibrated systematic error model,we use the Newton iteration method to obtain the final compensation results.

    4 Simulation and verification

    4.1 Simulation conditions

    The performance of the simulated star sensor is shown in Table 1.The star maps taken by the simulated star sensor contain background noises with variance 8 gray values and temperature-dependent noises with variance 0.5×1.15ΔTgray values.The calibration temperature is 25 ℃,the temperature variations are from -20 ℃ to 20 ℃.

    Table 1 Performance parameters of the CCD star sensor

    When analyzing temperature errors of the star sensor,the optical axis direction (α0,β0) is set as (50°,30°).Four bright starsSa~Sdlocated in four quadrants of the field of view (FOV) are selected as illustrations shown in Fig.6.Their distances from the center of the FOV satisfyrb>ra>rd>rc.

    Fig.6 Distribution of the four stars selected as illustrations

    4.2 Comparison of star positions before and after the compensation

    The star positions ofSa~Sdcan be extracted from the star maps taken by the star sensor at different temperatures.Compensated star positions can be obtained by using the proposed compensation scheme.Fig.7~10 respectively show the star position errors ofSa~Sdinxandydirections before and after the compensation.

    Fig.7 The star position errors of Sa varied with temperature

    Fig.8 The star position errors of Sb varied with temperature

    According to the solid lines in Fig.7~10,when thex-coordinate of the star is greater than 0(Sa andSd),Δxwill increase continuously with temperature increment.When thex-coordinate is less than 0(SbandSc),the law of Δxis opposite.Similarly,the law of they-coordinate is uniform with that of thex-coordinate.It can be seen clearly when the temperature variation is greater,the star position errors are more appreciable.Furthermore,if the temperature is higher than the calibration temperature,the star spots deviate from the center of the image plane.In addition,these figures also verify that identical temperature variation has different effects on different stars.Analyzing the relation between the star position errors and their distancer,if stars are farther away from the center of the FOV,their positions are affected by temperature more obviously.The direction deviation is larger depending on the star position on the image plane.

    Fig.9 The star position errors of Sc varied with temperature

    Fig.10 The star position errors of Sd varied with temperature

    According to the dotted lines in Fig.7~10,via the compensation of the systematic and random errors,the star position errors ofSa~Sdare stable within 0.2 pixels and independent of temperature.It indicates that the compensation scheme is applicable to all the stars in the FOV,and it can provide high-accuracy star positions for the follow-up star identification and attitude determination.

    4.3 Comparison of attitude estimates before and after the compensation

    In order to measure the temperature effects on attitude accuracy of star sensors,star maps are taken at each temperature by 100 Monte Carlo tests,and the star positions are obtained.After star identification,the optical axis direction (α0,β0)can be calculated.Then the star positions are corrected by the proposed compensation scheme,and the attitude after compensation can be obtained as well.Table 2 shows the root mean square error of the attitude before and after the temperature error compensation.

    Table 2 The comparison of attitude accuracy before and after compensation

    According to the left part of Table 2,it can be seen that at calibration temperature (when ΔTis 0 ℃),the attitude errors of the star sensor are within 0.001°.However,with the increase of the temperature variation ΔT,the attitude errors increase continuously.Especially,when the temperature variation ΔTreaches 15 ℃ or higher,the optical axis direction errors are above 0.1°,which cannot meet the actual accuracy requirements of star sensors obviously.According to the right part,it is clear that by compensating the temperature errors of star positions,the temperature effects on attitude accuracy can be suppressed.The attitude errors are stabilized within 0.002°,which are reduced by 1~2 orders of magnitude compared with errors before compensation.It demonstrates that the proposed compensation scheme can improve the measurement accuracy of star sensors greatly.

    5 Conclusions

    Temperature variations can greatly reduce the measurement accuracy of star sensors.In this paper,by analyzing the temperature error characteristics of star sensors,a comprehensive temperature error model is established,and a high-accuracy online temperature error compensation scheme is proposed.The following conclusions are obtained.

    For the optical system of star sensors,temperature variations can change the refractive index,the radius of curvature and other parameters of the lenses,which generates focal length drifts and radial distortion.Temperature variations can also change the coaxiality of the lenses and can bring about thermal expansion of the lens barrel,which causes decentering distortion.These factors result in the star position shifts jointly,namely systematic errors.For CCD chips,CCD noises increase significantly with temperature increment.It causes variations of star map noises,resulting in star position fluctuation,namely random errors.

    The established temperature models of star sensors in this paper contain the effects of focal length drifts,optical distortion and CCD noises.The proposed online temperature error compensation scheme is simple to be implemented and suitable for online compensation.It can guarantee the measurement accuracy of star sensors at different temperatures.In future studies,performance of the proposed online temperature error compensation scheme for star sensors should be further verified by combining the measured data obtained by the star sensor in engineering applications.

    色综合站精品国产| 色播亚洲综合网| 给我免费播放毛片高清在线观看| 国产高清videossex| 亚洲国产欧美网| 亚洲三区欧美一区| 他把我摸到了高潮在线观看| a在线观看视频网站| 熟女少妇亚洲综合色aaa.| 国产成人精品久久二区二区免费| 18禁观看日本| 露出奶头的视频| av福利片在线| 成人精品一区二区免费| 999久久久国产精品视频| 国产欧美日韩精品亚洲av| www.www免费av| 欧美日韩亚洲国产一区二区在线观看| 美女国产高潮福利片在线看| 亚洲国产精品sss在线观看| 一个人免费在线观看的高清视频| 国产97色在线日韩免费| 天天一区二区日本电影三级 | 国产色视频综合| 国产区一区二久久| 国产人伦9x9x在线观看| 国产精品免费视频内射| 伊人久久大香线蕉亚洲五| 亚洲国产精品999在线| 欧美日韩中文字幕国产精品一区二区三区 | 国产伦人伦偷精品视频| 叶爱在线成人免费视频播放| 日本a在线网址| 亚洲人成电影观看| 可以在线观看的亚洲视频| 性少妇av在线| 老司机福利观看| 91大片在线观看| 亚洲av成人一区二区三| 一本综合久久免费| 国产精品亚洲一级av第二区| 老汉色∧v一级毛片| 亚洲国产精品999在线| 黑丝袜美女国产一区| 日韩一卡2卡3卡4卡2021年| 真人做人爱边吃奶动态| 伊人久久大香线蕉亚洲五| 国产亚洲欧美在线一区二区| 无人区码免费观看不卡| 一区二区三区国产精品乱码| 久久国产乱子伦精品免费另类| av在线天堂中文字幕| 日本vs欧美在线观看视频| 精品卡一卡二卡四卡免费| 伊人久久大香线蕉亚洲五| 国产成人精品在线电影| 首页视频小说图片口味搜索| 亚洲一区中文字幕在线| 婷婷六月久久综合丁香| 国产亚洲av嫩草精品影院| 国产精品一区二区在线不卡| 亚洲欧美激情在线| 亚洲成人国产一区在线观看| 久久久国产成人免费| 中文字幕久久专区| 亚洲av成人不卡在线观看播放网| 男女之事视频高清在线观看| 91麻豆av在线| 免费无遮挡裸体视频| 在线观看一区二区三区| 久久亚洲真实| 夜夜躁狠狠躁天天躁| 国产午夜福利久久久久久| 欧美黄色片欧美黄色片| 国产成人av教育| 在线国产一区二区在线| 亚洲第一av免费看| 在线观看午夜福利视频| 一级毛片女人18水好多| 日韩欧美国产一区二区入口| 精品免费久久久久久久清纯| 黄色丝袜av网址大全| 少妇 在线观看| 他把我摸到了高潮在线观看| 国产亚洲av嫩草精品影院| 脱女人内裤的视频| 午夜福利18| 51午夜福利影视在线观看| 美女扒开内裤让男人捅视频| 精品不卡国产一区二区三区| 国产黄a三级三级三级人| 欧美成狂野欧美在线观看| 啦啦啦观看免费观看视频高清 | 两人在一起打扑克的视频| 国产亚洲精品一区二区www| 美女大奶头视频| 日日干狠狠操夜夜爽| 亚洲男人的天堂狠狠| 老司机在亚洲福利影院| 变态另类丝袜制服| 中文字幕色久视频| 黄网站色视频无遮挡免费观看| 日韩欧美三级三区| 国产成人一区二区三区免费视频网站| 久久久久国产精品人妻aⅴ院| 在线观看免费视频网站a站| a级毛片在线看网站| 国产人伦9x9x在线观看| 国产精品综合久久久久久久免费 | xxx96com| 日本五十路高清| 国产精品日韩av在线免费观看 | 日韩欧美一区二区三区在线观看| 午夜免费成人在线视频| 国产高清激情床上av| 国产一区二区三区综合在线观看| 亚洲av第一区精品v没综合| 别揉我奶头~嗯~啊~动态视频| 国产aⅴ精品一区二区三区波| 一本综合久久免费| 亚洲精品中文字幕在线视频| 午夜a级毛片| 久久精品人人爽人人爽视色| 一区二区三区精品91| 自拍欧美九色日韩亚洲蝌蚪91| 丁香六月欧美| 变态另类成人亚洲欧美熟女 | 午夜老司机福利片| 我的亚洲天堂| 欧美日韩精品网址| av有码第一页| 狂野欧美激情性xxxx| 国产精品一区二区精品视频观看| 国产精品二区激情视频| www国产在线视频色| 午夜激情av网站| 午夜福利,免费看| 女警被强在线播放| 岛国在线观看网站| 亚洲成人国产一区在线观看| 欧美黄色淫秽网站| 久久国产精品影院| 日韩视频一区二区在线观看| 久久午夜综合久久蜜桃| 好男人电影高清在线观看| 日本精品一区二区三区蜜桃| 老司机午夜福利在线观看视频| 国产乱人伦免费视频| 人人妻人人爽人人添夜夜欢视频| 一进一出抽搐动态| 美国免费a级毛片| 人人妻人人澡欧美一区二区 | 亚洲五月色婷婷综合| 欧美日韩精品网址| 午夜精品国产一区二区电影| 午夜福利18| 国产精品九九99| 免费看十八禁软件| 成人三级做爰电影| 欧美日本视频| 少妇粗大呻吟视频| 亚洲第一青青草原| 免费人成视频x8x8入口观看| 亚洲免费av在线视频| 黄色毛片三级朝国网站| 精品国产超薄肉色丝袜足j| 国产一区在线观看成人免费| 亚洲人成77777在线视频| 别揉我奶头~嗯~啊~动态视频| 久久久久久久久免费视频了| 村上凉子中文字幕在线| 真人一进一出gif抽搐免费| 精品国产国语对白av| 一a级毛片在线观看| 亚洲成av人片免费观看| 亚洲专区字幕在线| 久久精品影院6| 欧美中文日本在线观看视频| 不卡一级毛片| 啪啪无遮挡十八禁网站| 久久精品国产综合久久久| 久热这里只有精品99| 欧美色视频一区免费| 国产亚洲精品一区二区www| 国产欧美日韩一区二区三| 男人操女人黄网站| 欧美日韩精品网址| 丝袜美腿诱惑在线| 亚洲在线自拍视频| 免费少妇av软件| 久久九九热精品免费| 久久精品国产综合久久久| 国产精品久久久人人做人人爽| 99香蕉大伊视频| 熟妇人妻久久中文字幕3abv| 黄片小视频在线播放| 一级作爱视频免费观看| 欧美一级毛片孕妇| 三级毛片av免费| 一区二区三区国产精品乱码| 搡老熟女国产l中国老女人| 一区二区三区激情视频| 欧美午夜高清在线| 香蕉国产在线看| 亚洲情色 制服丝袜| 丝袜在线中文字幕| 国产一区二区在线av高清观看| 精品无人区乱码1区二区| 精品国产国语对白av| 日本免费一区二区三区高清不卡 | 精品国产一区二区久久| 在线观看舔阴道视频| 午夜影院日韩av| 日本a在线网址| 欧洲精品卡2卡3卡4卡5卡区| 一边摸一边做爽爽视频免费| 亚洲熟妇熟女久久| 欧美色欧美亚洲另类二区 | 久久久国产精品麻豆| 女警被强在线播放| 色播在线永久视频| 波多野结衣高清无吗| 亚洲av美国av| 99riav亚洲国产免费| 中文字幕久久专区| 久久久久久人人人人人| 嫩草影院精品99| 亚洲成国产人片在线观看| 欧美精品啪啪一区二区三区| 男女下面进入的视频免费午夜 | 亚洲成人精品中文字幕电影| 久久中文字幕一级| 亚洲一区高清亚洲精品| 亚洲国产日韩欧美精品在线观看 | 午夜福利成人在线免费观看| 国产色视频综合| 欧洲精品卡2卡3卡4卡5卡区| 看黄色毛片网站| 悠悠久久av| 午夜福利,免费看| 青草久久国产| 亚洲人成伊人成综合网2020| 日本a在线网址| 精品日产1卡2卡| 麻豆一二三区av精品| 乱人伦中国视频| 国产精品av久久久久免费| 亚洲第一欧美日韩一区二区三区| 亚洲专区字幕在线| 大型黄色视频在线免费观看| 国产亚洲欧美在线一区二区| 美女 人体艺术 gogo| 热re99久久国产66热| 欧美日本亚洲视频在线播放| 国产高清有码在线观看视频 | 欧美日韩中文字幕国产精品一区二区三区 | 黑丝袜美女国产一区| 性欧美人与动物交配| 成人国产综合亚洲| 国产精品免费一区二区三区在线| 欧美日韩福利视频一区二区| 好看av亚洲va欧美ⅴa在| 在线观看免费视频网站a站| 成人手机av| 日日摸夜夜添夜夜添小说| 亚洲国产精品999在线| 日本 欧美在线| 国产人伦9x9x在线观看| 国产精品综合久久久久久久免费 | 久久午夜亚洲精品久久| 亚洲中文字幕日韩| 久久人人97超碰香蕉20202| 91麻豆精品激情在线观看国产| tocl精华| 咕卡用的链子| 日韩欧美一区视频在线观看| 最近最新免费中文字幕在线| 淫妇啪啪啪对白视频| 村上凉子中文字幕在线| 亚洲成av人片免费观看| 一级毛片精品| 中文字幕人成人乱码亚洲影| 欧美成人性av电影在线观看| 国产精品久久电影中文字幕| 在线观看免费视频日本深夜| 亚洲在线自拍视频| 亚洲自偷自拍图片 自拍| 97人妻精品一区二区三区麻豆 | 男女午夜视频在线观看| 国产成人精品久久二区二区91| 亚洲欧洲精品一区二区精品久久久| 麻豆久久精品国产亚洲av| 国产亚洲欧美在线一区二区| 午夜久久久在线观看| 国产精品综合久久久久久久免费 | 成人三级做爰电影| 国产精品亚洲一级av第二区| 一二三四社区在线视频社区8| x7x7x7水蜜桃| www日本在线高清视频| 国产免费av片在线观看野外av| 男人操女人黄网站| 中文字幕精品免费在线观看视频| 免费av毛片视频| 精品日产1卡2卡| 涩涩av久久男人的天堂| 欧美色欧美亚洲另类二区 | 99久久综合精品五月天人人| 亚洲欧美日韩无卡精品| 国产单亲对白刺激| 波多野结衣av一区二区av| 人人妻人人澡人人看| 不卡一级毛片| 一区在线观看完整版| 国产精品亚洲一级av第二区| 亚洲精华国产精华精| 女性被躁到高潮视频| 久久中文字幕一级| 久久精品亚洲精品国产色婷小说| 国内毛片毛片毛片毛片毛片| 咕卡用的链子| 91av网站免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美激情在线| 大香蕉久久成人网| 精品一区二区三区视频在线观看免费| 一本久久中文字幕| 黄网站色视频无遮挡免费观看| 色精品久久人妻99蜜桃| 亚洲五月色婷婷综合| 母亲3免费完整高清在线观看| 免费在线观看视频国产中文字幕亚洲| 国产一区二区三区在线臀色熟女| 精品国产国语对白av| 成人免费观看视频高清| 精品卡一卡二卡四卡免费| 久久久久久国产a免费观看| 国产成人av激情在线播放| 国产免费av片在线观看野外av| 亚洲精品国产一区二区精华液| 亚洲自拍偷在线| 性少妇av在线| 在线视频色国产色| 女人被狂操c到高潮| 男女午夜视频在线观看| 国产单亲对白刺激| 国产不卡一卡二| 成年女人毛片免费观看观看9| 国产av在哪里看| x7x7x7水蜜桃| 亚洲美女黄片视频| 亚洲欧美精品综合久久99| www.自偷自拍.com| av超薄肉色丝袜交足视频| 制服诱惑二区| 亚洲人成伊人成综合网2020| 激情在线观看视频在线高清| 久久久久久久午夜电影| 国产片内射在线| 国产成人系列免费观看| 国产成人一区二区三区免费视频网站| 久久精品91蜜桃| 欧美日韩亚洲综合一区二区三区_| 久久 成人 亚洲| 日韩欧美三级三区| 人妻久久中文字幕网| 亚洲精品在线观看二区| 亚洲av第一区精品v没综合| 日韩大尺度精品在线看网址 | 一本久久中文字幕| 国产亚洲精品综合一区在线观看 | 少妇的丰满在线观看| 精品久久蜜臀av无| 老司机在亚洲福利影院| 美女高潮到喷水免费观看| 人妻久久中文字幕网| 999精品在线视频| 搡老妇女老女人老熟妇| 黄色a级毛片大全视频| 亚洲国产毛片av蜜桃av| 后天国语完整版免费观看| 一边摸一边抽搐一进一出视频| 在线天堂中文资源库| 久久伊人香网站| 国产野战对白在线观看| 制服诱惑二区| 国产精品1区2区在线观看.| 亚洲狠狠婷婷综合久久图片| 91大片在线观看| 国产又爽黄色视频| 欧美日韩福利视频一区二区| 侵犯人妻中文字幕一二三四区| 亚洲欧美一区二区三区黑人| 久久国产亚洲av麻豆专区| 国产私拍福利视频在线观看| 精品日产1卡2卡| 波多野结衣高清无吗| 欧美日韩福利视频一区二区| av中文乱码字幕在线| 久久久国产成人精品二区| 亚洲国产毛片av蜜桃av| 欧洲精品卡2卡3卡4卡5卡区| 久久中文看片网| 亚洲欧美日韩高清在线视频| av有码第一页| 精品国产国语对白av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区中文字幕在线| 视频在线观看一区二区三区| 国产成人欧美| 免费在线观看亚洲国产| 国产xxxxx性猛交| 一卡2卡三卡四卡精品乱码亚洲| 99re在线观看精品视频| 欧美大码av| 免费高清视频大片| 91九色精品人成在线观看| 免费看美女性在线毛片视频| 天堂影院成人在线观看| 麻豆一二三区av精品| 妹子高潮喷水视频| 露出奶头的视频| 久久午夜综合久久蜜桃| 妹子高潮喷水视频| av在线天堂中文字幕| e午夜精品久久久久久久| 真人做人爱边吃奶动态| 欧美在线黄色| 97超级碰碰碰精品色视频在线观看| 又黄又爽又免费观看的视频| 亚洲人成77777在线视频| 国产99久久九九免费精品| 黄色女人牲交| 老司机福利观看| 天天躁夜夜躁狠狠躁躁| 青草久久国产| 国产精品免费视频内射| 日韩视频一区二区在线观看| 正在播放国产对白刺激| 精品一品国产午夜福利视频| av福利片在线| 国产视频一区二区在线看| 搡老妇女老女人老熟妇| 一区二区三区国产精品乱码| 午夜福利,免费看| 女人被狂操c到高潮| 国产精品98久久久久久宅男小说| 51午夜福利影视在线观看| 亚洲精品av麻豆狂野| 欧美激情 高清一区二区三区| 成年女人毛片免费观看观看9| 亚洲中文字幕一区二区三区有码在线看 | 国产午夜福利久久久久久| 老鸭窝网址在线观看| 91在线观看av| 午夜福利一区二区在线看| 很黄的视频免费| 侵犯人妻中文字幕一二三四区| 国产成年人精品一区二区| 亚洲av电影不卡..在线观看| 啪啪无遮挡十八禁网站| 久久精品亚洲精品国产色婷小说| 91成年电影在线观看| 可以在线观看毛片的网站| 国产成年人精品一区二区| 九色国产91popny在线| 国产欧美日韩一区二区三| www.精华液| 人人妻人人爽人人添夜夜欢视频| 国产成人免费无遮挡视频| 国内毛片毛片毛片毛片毛片| 又紧又爽又黄一区二区| 中文字幕人妻熟女乱码| 一级a爱片免费观看的视频| 国产人伦9x9x在线观看| 亚洲无线在线观看| 日韩精品中文字幕看吧| 国产av又大| 婷婷精品国产亚洲av在线| 亚洲av电影不卡..在线观看| 99国产精品免费福利视频| 国产成人免费无遮挡视频| 亚洲中文av在线| 久久久久国产一级毛片高清牌| svipshipincom国产片| 亚洲国产精品999在线| 国产极品粉嫩免费观看在线| 黄网站色视频无遮挡免费观看| 欧美日韩乱码在线| 亚洲午夜理论影院| videosex国产| 欧美最黄视频在线播放免费| 人人妻人人爽人人添夜夜欢视频| 久久草成人影院| 亚洲成人精品中文字幕电影| 91国产中文字幕| 国产亚洲av高清不卡| 两个人视频免费观看高清| 免费在线观看视频国产中文字幕亚洲| 中文字幕另类日韩欧美亚洲嫩草| 香蕉久久夜色| 欧美激情高清一区二区三区| 韩国av一区二区三区四区| 亚洲九九香蕉| 香蕉久久夜色| 制服丝袜大香蕉在线| 一本综合久久免费| 国产亚洲精品久久久久5区| 亚洲一区二区三区不卡视频| 免费看美女性在线毛片视频| 美国免费a级毛片| 黄频高清免费视频| 色婷婷久久久亚洲欧美| 亚洲七黄色美女视频| 色老头精品视频在线观看| 免费人成视频x8x8入口观看| 国产精品99久久99久久久不卡| 中亚洲国语对白在线视频| 又紧又爽又黄一区二区| 高清毛片免费观看视频网站| av天堂在线播放| 国产片内射在线| 国产成人精品在线电影| 又紧又爽又黄一区二区| 欧美色欧美亚洲另类二区 | 国内精品久久久久久久电影| 国产精品久久久久久精品电影 | av天堂在线播放| 亚洲欧美精品综合久久99| 丁香欧美五月| 中出人妻视频一区二区| 一级a爱片免费观看的视频| 午夜福利成人在线免费观看| av欧美777| 丰满人妻熟妇乱又伦精品不卡| 国产又色又爽无遮挡免费看| 国产成人欧美在线观看| 国产又爽黄色视频| 色综合欧美亚洲国产小说| 国产野战对白在线观看| 国产单亲对白刺激| 国产精品亚洲美女久久久| 亚洲成人精品中文字幕电影| aaaaa片日本免费| 亚洲精品在线观看二区| 性少妇av在线| 国产精品影院久久| 免费不卡黄色视频| 色在线成人网| 成人亚洲精品av一区二区| 久久精品国产亚洲av香蕉五月| 久久伊人香网站| 深夜精品福利| 日日摸夜夜添夜夜添小说| av在线天堂中文字幕| 欧美国产精品va在线观看不卡| 色播亚洲综合网| 黄色成人免费大全| 久久九九热精品免费| 亚洲 国产 在线| 少妇的丰满在线观看| 久久婷婷人人爽人人干人人爱 | 涩涩av久久男人的天堂| 老司机午夜福利在线观看视频| 亚洲精品久久成人aⅴ小说| av天堂久久9| 长腿黑丝高跟| 黑人操中国人逼视频| 国产高清有码在线观看视频 | 久久精品成人免费网站| 日本五十路高清| 九色国产91popny在线| 亚洲欧美一区二区三区黑人| 999久久久国产精品视频| 日本三级黄在线观看| 极品教师在线免费播放| 国产99白浆流出| 亚洲精品国产一区二区精华液| 久久久久久大精品| 成人特级黄色片久久久久久久| 老司机午夜福利在线观看视频| 欧美激情极品国产一区二区三区| 变态另类成人亚洲欧美熟女 | 国产91精品成人一区二区三区| 国产免费男女视频| 在线观看日韩欧美| 国产欧美日韩一区二区三| 国产免费男女视频| 国产精品美女特级片免费视频播放器 | bbb黄色大片| 精品国产美女av久久久久小说| 91九色精品人成在线观看| 如日韩欧美国产精品一区二区三区| 男女下面进入的视频免费午夜 | 一二三四在线观看免费中文在| 亚洲成a人片在线一区二区| 午夜福利,免费看| 激情在线观看视频在线高清| 性少妇av在线| 国产一区二区三区综合在线观看| 欧美日韩精品网址| 亚洲免费av在线视频| 亚洲成av人片免费观看| 99国产精品一区二区三区| 91国产中文字幕| 国产精品影院久久| 丰满人妻熟妇乱又伦精品不卡| 亚洲av日韩精品久久久久久密| 97人妻天天添夜夜摸| 欧美日韩福利视频一区二区| av在线播放免费不卡| 精品国产乱子伦一区二区三区| 欧美激情高清一区二区三区| 精品国产超薄肉色丝袜足j| 免费不卡黄色视频|