• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of impact of supersonic molecular beam injection on edge localized modes

    2020-12-02 08:10:58YuanzhenWANG王元震TianyangXIA夏天陽andYueLIU劉悅
    Plasma Science and Technology 2020年12期

    Yuanzhen WANG (王元震) , Tianyang XIA (夏天陽) and Yue LIU (劉悅)

    1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education),School of Physics, Dalian University of Technology, Dalian 116024, People’s Republic of China

    2 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China

    Abstract

    Keywords: BOUT++ code, SMBI, P-B mode, ELM, ELM size

    1.Introduction

    The high confinement mode (H-mode) [1] is a promising operational regime for existing and future tokamaks including the International Thermonuclear Experimental Reactor (ITER) [2].During an H-mode discharge, a transport barrier with large pressure gradient close to the plasma edge is formed.As a result,a‘pedestal’is built in the outer region of the pressure profile [3].Turbulence and transport processes are suppressed in the pedestal, which may be due to theE×Bshear flow [4, 5].Because of magneto-hydrodynamic instabilities, the pedestal collapses periodically releasing particles and energy to the outside known as edge localized modes(ELMs)[6].In experiments,the eruption of filamentary structures from the plasma edge is observed during ELMs [7].In theoretical researches,ELMs are explained by the theory of peeling-ballooning (PB)mode[8].Some codes such as ELITE[9]and BOUT++[10] can simulate P-B modes.The ELITE code is mainly used for linear simulations.The three-field [11], five-field[12]and six-field[13]modules in the BOUT++framework can perform not only linear, but nonlinear simulations including the effects of diamagnetic drift,E×Bdrift,resistivity and hyper-resistivity [14].

    ELMs may cause unacceptable erosion of plasma-facing components (PFCs) [15].In order to ease the ELM erosion problem, methods have been developed to reduce the ELM size and mitigate the impact of ELMs,such as pellet injection[16, 17], lower hybrid current drive [18], resonant magnetic perturbation [19, 20], impurity injection [21, 22] and supersonic molecular beam injection(SMBI)[23].In this work,the impact of SMBI on ELMs is studied.SMBI is a fuel injection method of tokamaks [24].It is found that the ELM size decreases and the frequency of ELMs increases after the deposition of SMBI [23].Moreover, a recent research shows that seeding mixed gas is more efficient [25].The physics of the ELM mitigation phenomena by SMBI is poorly understood.Rhee et al used a cellular automata model to simulate the ELM mitigation by SMBI, and they believe that shallow SMBI deposition is sufficient for ELM mitigation [26].Huang et al added source terms to the five-field module of BOUT++ framework, and also did some simulation researches about this [27, 28].Their results show that adding particle sources at different locations of the pedestal has different impacts on ELMs.Experimental results show that SMBI reduces the ion temperature in the pedestal, while the ELM size is reduced[29].We think that the low-speed ions seeded by SMBI cool the ions in the pedestal by Coulomb collisions with them [30], so that the ELM size is reduced at the same time.Based on this thought,we built a model considering the Coulomb collisions between the ions seeded by SMBI and the thermal ions in the pedestal in the three-field module of the BOUT++ framework.

    In this paper, the impact of SMBI on ELMs is investigated using a model built in the three-field module of the BOUT++ framework.The remainder of this paper is organized as follows.Section 2 shows the model and equilibrium used for simulations.Section 3 displays the simulation results and corresponding analysis.Section 4 is the summary.

    2.Model

    2.1.The form of SMBI and its interaction with plasma

    Suppose that the molecule seeded by SMBI isD2.According to experimental results, after the deposition of SMBI at the pedestal, the plasma density increases and the plasma temperature decreases.Due to these effects of SMBI, ELMs are mitigated [23, 25, 29].Based on the physical images of experiment, and to establish a practical model, we only consider the physics after the ionization and deposition of the particles seeded by SMBI.The processes of propagation and ionization of the particles are ignored.The particles seeded by SMBI are ionized into electrons and low-speed deuterium ions.The electrons are ignored, and we only consider the effect of the low-speed deuterium ions.The low-speed deuterium ions are called cold ions in the following text.The density, mass, velocity and temperature of the cold ions are denoted byni′,m,Vi′andTi′respectively.The plasma considered in our model is a deuterium plasma composed of electrons and deuterium ions.The deuterium ions in the plasma are called thermal ions in the following text, whose velocity and temperature are denoted byVandTirespectively.In this work, we assume a cold ion is transformed into a thermal ion immediately after a Coulomb collision.That is,the density of the cold deuterium ions decreases and the temperature is equal to the thermal ions after Coulomb collisions.The electron density and ion density in the plasma are both set ton=1019m?3, which do not change in space-time across the simulation domain.The density of cold ions is set to about 1018m?3,which changes with time and space.The increase of plasma density due to SMBI is approximated to zero.Cold ions exert a force on the thermal ions by Coulomb collisions, which is denoted byFii′.Therefore,

    whereFincludes the other forces.According to the approximation of the Coulomb collision operator in fluid equations[31], we getwhereνii′is the Coulomb collision frequency [32].Sincewe let

    Energy transfer also occurs between the cold ions and thermal ions by Coulomb collisions,which can be represented by,

    In this work, the densitynof the plasma is a constant.Therefore, we can multiplynon both two sides of equation (2-3) to get,

    wherePis the plasma pressure.

    At present, the calculation of Coulomb collision frequency is based mostly on the supposition that particles have fully collided with each other to meet the Boltzmann distribution [30, 32].If particles B satisfy the Boltzmann distribution, their thermal speed isVB, their density isnBand the collision frequency among them isνBB.Then, according to previous derivation [30], we obtain,

    Figure 1.(a) Locations of x0 at the equilibrium pressure profile when SMBI is deposited at the top, middle and bottom of the pedestal.

    Here,we first estimate the Coulomb collision frequencyνiiamong the thermal ions satisfying the Boltzmann distribution.We letνeibe the Coulomb collision frequency between the electrons and thermal ions in the plasma satisfying the Boltzmann distribution,then[32].In tokamak edge plasma, the typical Lundquist numberwhereνeiis about 105s?1[14].Therefore,νiiis about 103s?1.Next, we estimate the Coulomb collision frequencyν′′iiamong the cold ions satisfying the Boltzmann distribution.It can be seen from equation (2-5) thatThe speed of the thermal ionsViis about 105m s?1,and the speed of the cold ions seeded by SMBI is about 103m s?1.So we get

    The cold ions and thermal ions obviously have not fully collided with each other.So the calculation ofν′iineeds to know the velocity distributions of the cold ions and thermal ions,respectively,and do a complex integral operation.In this work, we do not do direct calculation, but estimateν′iiin a more feasible way.According to equation (2-5), we assume the order of νii′is between the orders ofνiiandνi′i′,andνii′is proportional to ni′.That is to say, the order ofνii′is 103?108s?1,andνii′=kii′ni′,where kii′is a constant.According to the orders ofνii′and ni′,the order of kii′is 10?15?10?10m3s?1.Due to limited computing resources,and in order to see the impact of SMBI on an ELM in 100-200 Alfvén time τA(about 10?7s),the value ofνii′is set to about 105s?1,which changes with ni′.Correspondingly,kii′=10?13m3s?1,which is a fixed value.

    In experiment, the cold ion density has fluctuating distributions in the poloidal and toroidal directions.In order to make the model more practical, we make an approximation that the density of cold ions is uniform in the poloidal and toroidal directions,but is set to change with time and satisfy a spatial distribution in the radial direction [28].

    Figure 2.Radial equilibrium profiles of (a) pressure P0, parallel current density ‖J and (b) safety factor q.

    wherenfis the amplitude of the cold ion density andtis the duration of the simulations.Fromt=0 tot=200τA, the amplitude of cold ion density decreases from the maximumnfto 0.xgis the grid number in thexdirection (i.e.the radial direction),x0is used to determine the central radial location of the distribution andxwis used to determine the width of the distribution.The distribution of′niis used to represent the distribution of SMBI deposited at the pedestal.Its distribution in the radial direction is shown in figure 1.

    2.2.BOUT++ three-field equations with the impact of SMBI

    From equations (2-4) and (A5) in the appendix, we get three collision terms because of the impact of SMBI, which areWe call them momentum collision term,gradient collision term and energy collision term, respectively.The three-field equations [14]with these terms are,

    The equilibrium used in the simulations is the cbm18_dens8 shifted circular equilibrium [33], which is unstable to P-B modes.The profiles of its pressure, parallel current density and safety factor are shown in figure 2.Its major radiusR0is3.4 m,minor radiusais1.2 m,toroidal field on axisB0is2 T,edge safety factorqais3.03,normalized betaβNis 1.51 and normalized pedestal widthis0.049.

    The radial simulation range isis the normalizedψ.The inner radial boundary conditions are =U0,andThe outer radial boundary conditions areandφ= 0.In the simulations, a field-aligned (flux) coordinate system is used [34], whose coordinatesx,yandzare the radial-like,poloidal-like and toroidal-like coordinates.The simulation domain is periodic inyandz.The resolutions inxandyare 516 and 64, respectively.For efficiency, in the linear simulations,of the torus is simulated (nis the toroidal mode number),and the resolution inzis 16.In the nonlinear simulations,of the torus is simulated, and the resolution inzis 64.In a linear simulation fornmode, the given initial perturbation is a perturbation with only thenharmonic.In the nonlinear simulations,the given initial perturbation is a perturbation with only theharmonic.

    Figure 3.(a)Growth rates of the P-B modes with only the momentum collision term when nf is different.(b)Growth rates of the P-B modes with only the energy collision term when nf is different.(c) Growth rates of the P-B modes with both the momentum and energy collision terms when nf is different.(d) Growth rates of the P-B modes with both the momentum and energy collision terms when xw is different.

    3.Results and discussion

    3.1.Linear simulations

    The equations with and without the collision terms are used to simulate ELMs.In order to simulate P-B modes, we setn=15.When there is no collision term, the growth rateγis 0.2487ωA,whereωA=VA/R0is the Alfvén frequency andVAis the Alfvén velocity.When there is only the gradient collision term, the growth rate does not change.When there is the momentum collision term or the energy collision term,the growth rate decreases.In the simulations,nfis set to 1 × 1017m?3,5 × 1017m?3,1 × 1018m?3,1.5 × 1018m?3and 2 × 1018m?3,xwis set toa/13, 2a/13, 3a/13, 4a/13 and /a5 13, andx0is set to locate at the top, middle and bottom of the pedestal.The growth rates are shown in figure 3, which have been normalized to an Alfvén frequencyωA.

    Figure 4.With both the momentum and energy collision terms, (a) growth rates of n=5, n=10, n=15 and n=20 modes when nf is different, (b) growth rates of n=5, n=10, n=15 and n=20 modes when xw is different.

    As can be seen from figure 3, the momentum collision term or the energy collision term reduces the growth rate of P-B modes, and between them the energy collision term plays a leading role.The reduction amplitude of the growth rate is increased when the amplitude or width of SMBI is increased, and when SMBI is deposited at the top, bottom and middle of the pedestal,the reduction amplitude increases successively.

    By contrast,when SMBI is deposited at the middle of the pedestal with both the momentum and energy collision terms,the effects of the amplitude and width of SMBI on the growth rate of =n5, =n10 and =n20 modes are also simulated.These modes are also considered to be P-B modes [14].In figure 4(a), the width of SMBI is fixed at /a4 13, and the effect of different amplitudes is investigated.In figure 4(b),the amplitude of SMBI is fixed at 1 × 1018m?3,and the effect of different widths is investigated.When the amplitude of SMBI reaches 2 × 1018m?3or the width of SMBI reaches 5a/13,then=5 mode hardly grows,and we simply think its growth rate is 0 without calculation.From figure 4,we know that the effects of SMBI on the P-B modes around n=5-20 are similar to =n15 mode.

    From the linear simulation results, we conclude that increasing the amplitude or width of SMBI is helpful to suppress ELMs, and when SMBI is deposited at the top,bottom and middle of the pedestal, the impact of SMBI on P-B modes increases successively.These results are similar to that of Huang et al [27, 28].

    3.2.Nonlinear simulations

    In order to investigate the impact of SMBI on the ELM size,ELMs are simulated nonlinearly.The size of an ELM is defined as [11] the ratio of the energy loss (ΔWped) to the pedestal stored energy (Wped),

    whereRinandRoutare the radial positions of the internal simulation boundary and the maximum pressure gradient,respectively.According to the results of linear simulations,both the momentum term and energy collision term are added to the equations used for nonlinear simulations, but the gradient collision term is neglected.

    First,the impacts of the amplitude and deposited location of SMBI on the ELM size are simulated.The amplitudenfis set to 5 × 1017m?3,1 × 1018m?3,1.5 × 1018m?3and 2 × 1018m?3.The widthxwis set to 4a/13.The locationx0is set to locate at the top, middle and bottom of the pedestal.The corresponding ELM sizes are shown in figure 5.It can be seen that the SMBI reduces the ELM size.The largernfis,the smaller the ELM size is.When SMBI is deposited at the bottom, top and middle of the pedestal with the same amplitude and width, the ELM size decreases successively.

    Comparing the result when SMBI is deposited at the pedestal top with the result when it is deposited at the bottom,there is a conflict between the linear and nonlinear simulations.The ELM size is smaller when SMBI is deposited at the pedestal top, but the corresponding P-B mode is more unstable.This conflict comes from the calculation of the energy lossΔWpedfor the ELM size in equation (3-1).Because of the location ofRout,〈P〉zincludes more pressure introduced from SMBI when SMBI is deposited at the pedestal top,which reduces the size ofΔWped.So the ELM size is smaller when SMBI is deposited at the pedestal top, even though the corresponding P-B mode is more unstable.

    Figure 5.With different n f ,the evolution of ELM sizes when SMBI is deposited at the top (a), middle (b) and bottom (c) of the pedestal.

    In figure 5, the time of a black dot corresponds to the time when filamentary structures of the ELM erupt [33].The pressure profiles averaged over (equilibrium) flux surfaces att=0 and at the times indicated by the black dots are shown in figure 6.The vertical axis is the total pressure (the sum of equilibrium pressure and toroidal average value of perturbation pressure) normalized by magnetic pressure.The black curve is the pressure profile at the beginning of the simulationt=0, which is the equilibrium pressure profile.The other curves represent the collapsed profiles at different times indicated by the black dots.Compared with the equilibrium pressure, due to the eruption of ELM, the inner part of the pressure profiles falls while the outer part of the pressure profiles rises.The only different parameter of (a), (b) and (c)in figure 6 is the deposited location of SMBI.Compared with the pressure profile of no SMBInf=0,when SMBI is deposited at the pedestal top,the reduction of the inner part of the pressure profiles is less,so that SMBI reduces the inward collapse amplitude of the pressure profiles.When SMBI is deposited at the pedestal bottom,the increase of the outer part of the pressure profiles is less, so that SMBI reduces the outward collapse amplitude of the pressure profiles.When SMBI is deposited at the pedestal middle, it reduces the collapse amplitude on both sides.The largernfis, the bigger the effect is.

    In figure 7,pressure perturbations at the times indicated by the black dots in figure 5 are shown, which are considered to be the filamentary structures of the ELMs.They are shown within the view of normalized poloidal flux(x-axis) and toroidal angle (y-axis) at the outer mid-plane.The data in each slice are normalized to its absolute maximum.(b), (c) and (d) in figure 7 show the filamentary structures when SMBI is deposited at different locations with an amplitude of 2 × 1018m?3and a width of 4a/13.Compared with the result without SMBI in figure 7(a), the SMBI reduces the radial extent of the filamentary structures,and the effects are different when it is deposited at different locations.When SMBI is deposited at the pedestal top, it reduces the inner extent of the filamentary structures.When SMBI is deposited at the pedestal bottom, it reduces the outer extent of the filamentary structures.When SMBI is deposited at the pedestal middle, it reduces both the inner and outer extents.

    Figure 6.Surface-averaged pressure profiles when SMBI is deposited at the top (a), middle (b) and bottom (c) of the pedestal.

    From figures 6 and 7, we conclude that when SMBI is deposited at the pedestal top, it reduces the inward collapse amplitude of the pressure profiles, which can improve the confinement efficiency during ELMs.When SMBI is deposited at the pedestal bottom, it reduces the outer extent of the filamentary structures, which can slow down the erosion of PFCs caused by ELMs.When SMBI is deposited at the middle of the pedestal,it has the above two effects at the same time.Therefore,to slow down the erosion of PFCs caused by ELMs,shallow deposition of SMBI such as at the middle and bottom of the pedestal is better.This can meet the needs of ELM mitigation.This conclusion is similar to that of Rhee et al [26].

    Finally, the impact of SMBI width on the ELM size is simulated.The amplitudenfis set to 1 × 1018m?3,the widthxwis set to /a2 13, /a3 13, /a4 13 and /a5 13,and the locationx0is set to locate at the top, middle and bottom of the pedestal.The corresponding ELM sizes are shown in figure 8.It can be seen that the SMBI reduces the ELM size.The largerxwis, the smaller the ELM size is.So when the width of SMBI is increased, its impact on the ELM size is increased.

    Figure 7.Pressure perturbations in the frame of normalized poloidal flux and toroidal angle when there is no SMBI(a), and when SMBI is deposited at the top (b), middle (c) and bottom (d) of the pedestal.

    4.Summary

    In this work,collision terms representing the impact of SMBI are added to the three-field equations in the BOUT++ code.The impact of SMBI on ELMs is investigated by linear and nonlinear simulations.The simulation results are analyzed and compared with others to find an optimal SMBI scenario.Linear simulation results show that the momentum collision term or the energy collision term reduces the growth rate of P-B modes, and between them the energy collision term plays a leading role.The reduction amplitude of the growth rate is increased when the amplitude or width of SMBI is increased, and when SMBI is deposited at the top,bottom and middle of the pedestal, the reduction amplitude increases successively.Thus, increasing the amplitude or width of SMBI is helpful to suppress ELMs,and when SMBI is deposited at the top,bottom and middle of the pedestal,the impact of SMBI on P-B modes increases successively.

    Nonlinear simulation results show that SMBI reduces the ELM size, and the reduction amplitude of the ELM size is increased when the amplitude or width of SMBI is increased.Moreover, when SMBI is deposited at the bottom, top and middle of the pedestal with the same amplitude and width,the reduction amplitude increases successively.Surface-averaged pressure profiles and filamentary structures are analyzed when the ELMs erupt.When SMBI is deposited at the top or middle of the pedestal, it reduces the inward collapse amplitude of the pressure profiles.This can improve the confinement efficiency during ELMs.When SMBI is deposited at the middle or bottom of the pedestal, it reduces the outer extent of the filamentary structures, which can slow down the erosion of PFCs caused by ELMs.Through the above results, we think that shallow deposition of SMBI such as at the middle and bottom of the pedestal with sufficient amplitude and width can meet the needs of ELM mitigation.

    Figure 8.With different x w ,the evolution of ELM sizes when SMBI is deposited at the top (a), middle (b) and bottom (c) of the pedestal.

    Acknowledgments

    The authors wish to thank X Q Xu and B D Dudson for their contributions to the BOUT++framework and R D Hazeltine for his contribution to plasma theory.This work was supported by the National Key R&D Program of China (Grant Nos.2018YFE0303102 and 2017YFE0301100).This work was also partially supported by National Natural Science Foundation of China (Grant No.11675217) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No.2017479).

    Appendix.Deducing the momentum equation into a vorticity equation

    LettingF= ??P+J×Bin equation (2-1), we get,

    If the left side of equation (A1) is denoted byfii′,the shear-Alfvén law is obtained [31]:

    The first term on the left side of equation (A2) is,

    It is equivalent to,

    In the direction perpendicular to the magnetic field, only the contribution ofE×Bdrift is included in the velocity[31].That is to say,so that

    ORCID iDs

    Yuanzhen WANG (王元震) https://orcid.org/0000-0001-5943-301X

    国产精品嫩草影院av在线观看| 精品国产一区二区久久| 18禁动态无遮挡网站| 久久久久久久久免费视频了| av福利片在线| 考比视频在线观看| 黄网站色视频无遮挡免费观看| 久久久久人妻精品一区果冻| 亚洲天堂av无毛| 中文字幕人妻丝袜制服| 久久狼人影院| 人妻少妇偷人精品九色| 日本爱情动作片www.在线观看| 免费不卡的大黄色大毛片视频在线观看| 美女大奶头黄色视频| 99国产精品免费福利视频| 亚洲精品国产av蜜桃| 色婷婷久久久亚洲欧美| 夫妻午夜视频| 青草久久国产| 岛国毛片在线播放| 国产色婷婷99| 国产精品久久久久久精品古装| 国产精品久久久久久av不卡| 久久久久视频综合| 一级,二级,三级黄色视频| 午夜免费男女啪啪视频观看| 美女视频免费永久观看网站| 一区二区三区四区激情视频| 国产一区亚洲一区在线观看| 亚洲精品久久久久久婷婷小说| 人人妻人人澡人人爽人人夜夜| 青春草视频在线免费观看| 999久久久国产精品视频| 国产免费视频播放在线视频| 久久ye,这里只有精品| 日本免费在线观看一区| 日日啪夜夜爽| 国产精品99久久99久久久不卡 | 九草在线视频观看| 亚洲精品一区蜜桃| 一二三四在线观看免费中文在| 97在线视频观看| 免费人妻精品一区二区三区视频| 亚洲久久久国产精品| 如何舔出高潮| 麻豆精品久久久久久蜜桃| 久久久精品94久久精品| 少妇人妻精品综合一区二区| 校园人妻丝袜中文字幕| 爱豆传媒免费全集在线观看| 免费人妻精品一区二区三区视频| 亚洲经典国产精华液单| 久久精品国产亚洲av天美| av女优亚洲男人天堂| 国产1区2区3区精品| 国产激情久久老熟女| 国产精品偷伦视频观看了| 亚洲,欧美,日韩| 国产精品国产av在线观看| 一区二区三区激情视频| 在线观看免费高清a一片| 国产精品人妻久久久影院| 国产精品成人在线| 人体艺术视频欧美日本| 免费大片黄手机在线观看| 男人添女人高潮全过程视频| 久久久久久久国产电影| 精品少妇一区二区三区视频日本电影 | 欧美精品一区二区大全| 国产探花极品一区二区| 免费观看在线日韩| 久久久亚洲精品成人影院| 免费人妻精品一区二区三区视频| 菩萨蛮人人尽说江南好唐韦庄| 色哟哟·www| 亚洲精品国产色婷婷电影| 午夜福利视频精品| 毛片一级片免费看久久久久| 观看美女的网站| 午夜免费鲁丝| 午夜91福利影院| 亚洲欧美中文字幕日韩二区| 少妇 在线观看| 女人被躁到高潮嗷嗷叫费观| 久热这里只有精品99| 99国产精品免费福利视频| 99re6热这里在线精品视频| 国产精品.久久久| 国产探花极品一区二区| 高清视频免费观看一区二区| videos熟女内射| 男人舔女人的私密视频| 欧美成人精品欧美一级黄| 下体分泌物呈黄色| 午夜老司机福利剧场| 日本猛色少妇xxxxx猛交久久| 国产一区亚洲一区在线观看| 精品一区二区免费观看| 一区二区av电影网| 成人手机av| 母亲3免费完整高清在线观看 | 最近最新中文字幕大全免费视频 | 日本爱情动作片www.在线观看| 国产亚洲午夜精品一区二区久久| 有码 亚洲区| 一本—道久久a久久精品蜜桃钙片| 久久精品久久久久久噜噜老黄| 波多野结衣一区麻豆| 国产精品国产三级专区第一集| 欧美日韩综合久久久久久| 宅男免费午夜| 久久精品熟女亚洲av麻豆精品| 女的被弄到高潮叫床怎么办| 一边摸一边做爽爽视频免费| 国语对白做爰xxxⅹ性视频网站| 久久 成人 亚洲| 校园人妻丝袜中文字幕| 搡老乐熟女国产| 青春草亚洲视频在线观看| 欧美中文综合在线视频| 国产激情久久老熟女| 成年女人毛片免费观看观看9 | 欧美+日韩+精品| 日韩电影二区| 久久狼人影院| 国产精品一二三区在线看| 国产精品久久久久久av不卡| 在线 av 中文字幕| 亚洲精品国产av蜜桃| 中文字幕亚洲精品专区| 黄色 视频免费看| 亚洲av综合色区一区| 超碰97精品在线观看| 三级国产精品片| 免费黄色在线免费观看| 国产 精品1| 亚洲欧美精品综合一区二区三区 | 天天躁狠狠躁夜夜躁狠狠躁| 国产一区有黄有色的免费视频| 日本91视频免费播放| 国产xxxxx性猛交| 在线观看人妻少妇| 午夜福利一区二区在线看| 女人被躁到高潮嗷嗷叫费观| 欧美 亚洲 国产 日韩一| 在线观看免费高清a一片| 高清不卡的av网站| 亚洲精品久久午夜乱码| 午夜日韩欧美国产| 日本欧美国产在线视频| 热re99久久国产66热| 一区二区三区四区激情视频| 一区二区三区乱码不卡18| 高清欧美精品videossex| 久久久久精品性色| 香蕉精品网在线| 亚洲第一av免费看| 极品少妇高潮喷水抽搐| 十八禁高潮呻吟视频| 久久狼人影院| 精品少妇黑人巨大在线播放| 色94色欧美一区二区| 美女脱内裤让男人舔精品视频| 老司机影院毛片| 欧美日韩综合久久久久久| 中文字幕另类日韩欧美亚洲嫩草| 黄频高清免费视频| 天堂中文最新版在线下载| 久久99一区二区三区| 一级片免费观看大全| 大香蕉久久网| 免费在线观看完整版高清| 欧美激情极品国产一区二区三区| 国产女主播在线喷水免费视频网站| 亚洲精品视频女| 欧美日韩一级在线毛片| 精品国产一区二区久久| 色婷婷av一区二区三区视频| 久久久精品国产亚洲av高清涩受| 777米奇影视久久| 丰满迷人的少妇在线观看| 男男h啪啪无遮挡| 色婷婷久久久亚洲欧美| 少妇人妻精品综合一区二区| 日韩熟女老妇一区二区性免费视频| 欧美黄色片欧美黄色片| 成人亚洲精品一区在线观看| 国产成人精品在线电影| 女人久久www免费人成看片| 精品国产一区二区三区久久久樱花| 满18在线观看网站| 母亲3免费完整高清在线观看 | 免费观看a级毛片全部| 久久久久精品久久久久真实原创| 美女国产视频在线观看| 亚洲av.av天堂| 亚洲欧洲精品一区二区精品久久久 | 美女视频免费永久观看网站| 亚洲美女搞黄在线观看| 乱人伦中国视频| 国产日韩欧美亚洲二区| 九九爱精品视频在线观看| 精品亚洲成a人片在线观看| 在线观看免费视频网站a站| 人妻一区二区av| av网站免费在线观看视频| 国产精品一区二区在线观看99| 这个男人来自地球电影免费观看 | 天天躁夜夜躁狠狠久久av| 美女主播在线视频| 视频区图区小说| 亚洲内射少妇av| 久久久久人妻精品一区果冻| 丰满少妇做爰视频| 国产精品99久久99久久久不卡 | 婷婷色av中文字幕| 国产av一区二区精品久久| kizo精华| 交换朋友夫妻互换小说| 日本av免费视频播放| 精品久久蜜臀av无| 国产高清国产精品国产三级| 男女免费视频国产| 天天操日日干夜夜撸| 欧美精品一区二区免费开放| 亚洲av成人精品一二三区| 亚洲av.av天堂| 伦理电影免费视频| 色视频在线一区二区三区| 国产在视频线精品| 丰满饥渴人妻一区二区三| 国产亚洲精品第一综合不卡| 在线观看免费视频网站a站| 久久鲁丝午夜福利片| 美女大奶头黄色视频| 五月伊人婷婷丁香| 国产男人的电影天堂91| 久久久久久久精品精品| 精品久久久精品久久久| 一级黄片播放器| 精品亚洲乱码少妇综合久久| 男人添女人高潮全过程视频| 亚洲欧美成人精品一区二区| 大香蕉久久网| 肉色欧美久久久久久久蜜桃| 久久久亚洲精品成人影院| 最新中文字幕久久久久| 大码成人一级视频| 日本av手机在线免费观看| 不卡av一区二区三区| 亚洲av综合色区一区| 丝袜喷水一区| 人人妻人人爽人人添夜夜欢视频| 国产av码专区亚洲av| 亚洲美女黄色视频免费看| 日韩中文字幕视频在线看片| 日韩欧美精品免费久久| 亚洲精品中文字幕在线视频| 自线自在国产av| 国产午夜精品一二区理论片| 久久久国产精品麻豆| 亚洲精品日韩在线中文字幕| 性少妇av在线| 国产高清国产精品国产三级| 午夜福利影视在线免费观看| 国产精品国产三级国产专区5o| 国产在线一区二区三区精| 国产不卡av网站在线观看| 亚洲人成77777在线视频| 这个男人来自地球电影免费观看 | 欧美亚洲 丝袜 人妻 在线| 成人国产av品久久久| 免费黄网站久久成人精品| 欧美变态另类bdsm刘玥| 色网站视频免费| 国产精品无大码| 2018国产大陆天天弄谢| 精品少妇内射三级| 欧美成人午夜精品| tube8黄色片| 亚洲中文av在线| 婷婷色麻豆天堂久久| av免费在线看不卡| 校园人妻丝袜中文字幕| 下体分泌物呈黄色| av在线app专区| 久久精品国产亚洲av涩爱| 久久99一区二区三区| 亚洲国产av影院在线观看| av天堂久久9| 色婷婷久久久亚洲欧美| 国产在线一区二区三区精| 日本欧美视频一区| www.av在线官网国产| 男女啪啪激烈高潮av片| 国产精品亚洲av一区麻豆 | √禁漫天堂资源中文www| 久久午夜福利片| 美女视频免费永久观看网站| 欧美变态另类bdsm刘玥| 中文字幕人妻丝袜制服| 视频区图区小说| 午夜免费鲁丝| 秋霞在线观看毛片| 成年女人在线观看亚洲视频| 国产av码专区亚洲av| 免费在线观看黄色视频的| 黑人欧美特级aaaaaa片| 国产 精品1| 在线观看一区二区三区激情| 色94色欧美一区二区| 日本午夜av视频| 青春草亚洲视频在线观看| 曰老女人黄片| 国产精品久久久av美女十八| 色94色欧美一区二区| 亚洲熟女精品中文字幕| 国产精品 欧美亚洲| 在现免费观看毛片| 新久久久久国产一级毛片| 捣出白浆h1v1| 欧美日韩成人在线一区二区| 国产精品三级大全| 女性被躁到高潮视频| 国产亚洲精品第一综合不卡| 久久久久国产网址| 亚洲精品,欧美精品| 久久午夜综合久久蜜桃| 国产精品99久久99久久久不卡 | 18禁观看日本| 热99久久久久精品小说推荐| 91午夜精品亚洲一区二区三区| 亚洲综合色网址| 久久久久精品人妻al黑| 男女免费视频国产| 国产精品亚洲av一区麻豆 | 色视频在线一区二区三区| 在线观看www视频免费| 欧美老熟妇乱子伦牲交| 只有这里有精品99| 丰满乱子伦码专区| 在现免费观看毛片| 亚洲国产看品久久| 欧美精品一区二区大全| 国产精品三级大全| 97人妻天天添夜夜摸| 人妻 亚洲 视频| 视频在线观看一区二区三区| 国产精品 欧美亚洲| 人妻少妇偷人精品九色| 亚洲国产看品久久| av网站免费在线观看视频| 欧美另类一区| 亚洲五月色婷婷综合| 国产精品不卡视频一区二区| 香蕉国产在线看| 啦啦啦在线免费观看视频4| av线在线观看网站| 熟女电影av网| 色婷婷av一区二区三区视频| 热99国产精品久久久久久7| 日本欧美视频一区| 中文天堂在线官网| www.熟女人妻精品国产| 天堂俺去俺来也www色官网| 午夜福利,免费看| 制服诱惑二区| 一二三四中文在线观看免费高清| 18禁观看日本| 在线天堂最新版资源| 国产男女内射视频| 亚洲欧美日韩另类电影网站| 人妻一区二区av| 26uuu在线亚洲综合色| 亚洲国产最新在线播放| 久久久国产欧美日韩av| 亚洲第一区二区三区不卡| av网站在线播放免费| 国产一级毛片在线| 国产成人精品无人区| 成人影院久久| 女人被躁到高潮嗷嗷叫费观| 大陆偷拍与自拍| 一边亲一边摸免费视频| 国产乱来视频区| 国产探花极品一区二区| 国产麻豆69| 亚洲精品日本国产第一区| 久久av网站| 日韩一卡2卡3卡4卡2021年| 五月天丁香电影| 久久亚洲国产成人精品v| 婷婷色综合大香蕉| 欧美日韩国产mv在线观看视频| 久久精品熟女亚洲av麻豆精品| 大香蕉久久成人网| 国产免费视频播放在线视频| 国产亚洲av片在线观看秒播厂| 母亲3免费完整高清在线观看 | 欧美 亚洲 国产 日韩一| 午夜福利乱码中文字幕| 青草久久国产| 99久久综合免费| 日本欧美视频一区| 亚洲人成电影观看| 久久韩国三级中文字幕| 欧美精品高潮呻吟av久久| 天天躁夜夜躁狠狠久久av| 天堂8中文在线网| 十八禁高潮呻吟视频| 国产黄频视频在线观看| 咕卡用的链子| 亚洲欧美成人精品一区二区| 精品一区二区三区四区五区乱码 | 国产又色又爽无遮挡免| 精品国产乱码久久久久久小说| 中文字幕精品免费在线观看视频| 成年女人在线观看亚洲视频| 国产精品偷伦视频观看了| 精品卡一卡二卡四卡免费| 青春草视频在线免费观看| 日本av免费视频播放| 亚洲综合精品二区| 另类亚洲欧美激情| 免费在线观看黄色视频的| 色婷婷久久久亚洲欧美| 国产成人一区二区在线| 国产成人免费观看mmmm| 在线免费观看不下载黄p国产| 亚洲中文av在线| 国产激情久久老熟女| 女的被弄到高潮叫床怎么办| 久久99一区二区三区| 精品少妇久久久久久888优播| 高清在线视频一区二区三区| 亚洲一区二区三区欧美精品| 91精品伊人久久大香线蕉| 青春草视频在线免费观看| av免费观看日本| 国产片特级美女逼逼视频| 99re6热这里在线精品视频| 亚洲av男天堂| 丰满饥渴人妻一区二区三| 中文字幕人妻丝袜制服| 观看美女的网站| 男女无遮挡免费网站观看| 99香蕉大伊视频| 日韩 亚洲 欧美在线| 夫妻性生交免费视频一级片| 黑人猛操日本美女一级片| 午夜精品国产一区二区电影| 人成视频在线观看免费观看| 中文字幕av电影在线播放| 成年女人在线观看亚洲视频| 欧美日韩精品成人综合77777| 国产片特级美女逼逼视频| 大香蕉久久网| 国产激情久久老熟女| 在线亚洲精品国产二区图片欧美| 久久精品国产亚洲av高清一级| 日本av手机在线免费观看| 少妇精品久久久久久久| 超色免费av| 免费日韩欧美在线观看| 亚洲在久久综合| 国产亚洲欧美精品永久| 在线亚洲精品国产二区图片欧美| 一级片免费观看大全| 亚洲成人手机| 欧美激情 高清一区二区三区| 女人精品久久久久毛片| 日韩中文字幕欧美一区二区 | 在现免费观看毛片| 久久久久国产网址| 天美传媒精品一区二区| 久久久国产欧美日韩av| av片东京热男人的天堂| 国产精品久久久久久精品古装| 免费少妇av软件| 色94色欧美一区二区| 久久久精品94久久精品| 少妇精品久久久久久久| 欧美bdsm另类| 少妇熟女欧美另类| 久久女婷五月综合色啪小说| 啦啦啦视频在线资源免费观看| 国产又色又爽无遮挡免| 色婷婷av一区二区三区视频| 久久久久久免费高清国产稀缺| 制服丝袜香蕉在线| 国精品久久久久久国模美| 亚洲精华国产精华液的使用体验| 成人国语在线视频| 精品99又大又爽又粗少妇毛片| 亚洲av国产av综合av卡| 又黄又粗又硬又大视频| 精品人妻熟女毛片av久久网站| 少妇的丰满在线观看| 中文字幕亚洲精品专区| 免费高清在线观看视频在线观看| 老司机影院成人| 亚洲成人av在线免费| 久久 成人 亚洲| 国产毛片在线视频| 精品久久蜜臀av无| 亚洲美女搞黄在线观看| 国产精品偷伦视频观看了| a级毛片黄视频| 欧美日韩综合久久久久久| 精品少妇久久久久久888优播| av视频免费观看在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 自线自在国产av| 亚洲美女黄色视频免费看| 亚洲av免费高清在线观看| 国产免费现黄频在线看| 久久青草综合色| 亚洲久久久国产精品| 国产亚洲最大av| 欧美变态另类bdsm刘玥| 亚洲综合色网址| 在线观看人妻少妇| 人人妻人人澡人人看| 免费看av在线观看网站| 久久免费观看电影| 国产精品99久久99久久久不卡 | 国产在线视频一区二区| 黑人欧美特级aaaaaa片| 午夜免费男女啪啪视频观看| 大片电影免费在线观看免费| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区免费观看| 狠狠精品人妻久久久久久综合| 欧美人与性动交α欧美精品济南到 | 亚洲欧美一区二区三区国产| 亚洲精品aⅴ在线观看| 午夜日韩欧美国产| 久久鲁丝午夜福利片| 成人18禁高潮啪啪吃奶动态图| h视频一区二区三区| 国产成人免费观看mmmm| 纯流量卡能插随身wifi吗| 超色免费av| 精品少妇一区二区三区视频日本电影 | 天堂8中文在线网| 久久精品aⅴ一区二区三区四区 | 美女福利国产在线| 欧美日本中文国产一区发布| 丰满迷人的少妇在线观看| 国产探花极品一区二区| 黄片播放在线免费| 热99久久久久精品小说推荐| 在线观看三级黄色| 午夜影院在线不卡| 十分钟在线观看高清视频www| 亚洲av在线观看美女高潮| 欧美日韩精品成人综合77777| 在线观看www视频免费| 2022亚洲国产成人精品| 下体分泌物呈黄色| 天堂中文最新版在线下载| 咕卡用的链子| 色网站视频免费| 精品国产国语对白av| 黄色一级大片看看| 国产免费视频播放在线视频| 欧美日本中文国产一区发布| 国产成人av激情在线播放| 熟女av电影| 久久久久人妻精品一区果冻| 赤兔流量卡办理| www.熟女人妻精品国产| h视频一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 国产av国产精品国产| 女性生殖器流出的白浆| 在线观看免费高清a一片| 国产白丝娇喘喷水9色精品| 国产1区2区3区精品| 欧美激情极品国产一区二区三区| 中文字幕av电影在线播放| 亚洲中文av在线| 王馨瑶露胸无遮挡在线观看| 大陆偷拍与自拍| 精品久久久精品久久久| 天堂中文最新版在线下载| 国产精品嫩草影院av在线观看| 最近最新中文字幕大全免费视频 | 精品酒店卫生间| 黄色怎么调成土黄色| 亚洲在久久综合| 亚洲色图综合在线观看| 在线天堂中文资源库| 久久精品久久精品一区二区三区| 亚洲久久久国产精品| 久久精品久久精品一区二区三区| 国产在线视频一区二区| 久久精品久久精品一区二区三区| 国产探花极品一区二区| 亚洲,一卡二卡三卡| 看免费成人av毛片| 最近中文字幕高清免费大全6| 国产一区二区三区综合在线观看| 最近中文字幕高清免费大全6| 久久久久精品人妻al黑| 久久精品久久精品一区二区三区| 欧美日本中文国产一区发布| av国产精品久久久久影院| 成年人免费黄色播放视频| 中文字幕av电影在线播放| 亚洲av电影在线进入| 午夜老司机福利剧场| 永久网站在线| 免费黄色在线免费观看|