• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of impact of supersonic molecular beam injection on edge localized modes

    2020-12-02 08:10:58YuanzhenWANG王元震TianyangXIA夏天陽andYueLIU劉悅
    Plasma Science and Technology 2020年12期

    Yuanzhen WANG (王元震) , Tianyang XIA (夏天陽) and Yue LIU (劉悅)

    1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education),School of Physics, Dalian University of Technology, Dalian 116024, People’s Republic of China

    2 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China

    Abstract

    Keywords: BOUT++ code, SMBI, P-B mode, ELM, ELM size

    1.Introduction

    The high confinement mode (H-mode) [1] is a promising operational regime for existing and future tokamaks including the International Thermonuclear Experimental Reactor (ITER) [2].During an H-mode discharge, a transport barrier with large pressure gradient close to the plasma edge is formed.As a result,a‘pedestal’is built in the outer region of the pressure profile [3].Turbulence and transport processes are suppressed in the pedestal, which may be due to theE×Bshear flow [4, 5].Because of magneto-hydrodynamic instabilities, the pedestal collapses periodically releasing particles and energy to the outside known as edge localized modes(ELMs)[6].In experiments,the eruption of filamentary structures from the plasma edge is observed during ELMs [7].In theoretical researches,ELMs are explained by the theory of peeling-ballooning (PB)mode[8].Some codes such as ELITE[9]and BOUT++[10] can simulate P-B modes.The ELITE code is mainly used for linear simulations.The three-field [11], five-field[12]and six-field[13]modules in the BOUT++framework can perform not only linear, but nonlinear simulations including the effects of diamagnetic drift,E×Bdrift,resistivity and hyper-resistivity [14].

    ELMs may cause unacceptable erosion of plasma-facing components (PFCs) [15].In order to ease the ELM erosion problem, methods have been developed to reduce the ELM size and mitigate the impact of ELMs,such as pellet injection[16, 17], lower hybrid current drive [18], resonant magnetic perturbation [19, 20], impurity injection [21, 22] and supersonic molecular beam injection(SMBI)[23].In this work,the impact of SMBI on ELMs is studied.SMBI is a fuel injection method of tokamaks [24].It is found that the ELM size decreases and the frequency of ELMs increases after the deposition of SMBI [23].Moreover, a recent research shows that seeding mixed gas is more efficient [25].The physics of the ELM mitigation phenomena by SMBI is poorly understood.Rhee et al used a cellular automata model to simulate the ELM mitigation by SMBI, and they believe that shallow SMBI deposition is sufficient for ELM mitigation [26].Huang et al added source terms to the five-field module of BOUT++ framework, and also did some simulation researches about this [27, 28].Their results show that adding particle sources at different locations of the pedestal has different impacts on ELMs.Experimental results show that SMBI reduces the ion temperature in the pedestal, while the ELM size is reduced[29].We think that the low-speed ions seeded by SMBI cool the ions in the pedestal by Coulomb collisions with them [30], so that the ELM size is reduced at the same time.Based on this thought,we built a model considering the Coulomb collisions between the ions seeded by SMBI and the thermal ions in the pedestal in the three-field module of the BOUT++ framework.

    In this paper, the impact of SMBI on ELMs is investigated using a model built in the three-field module of the BOUT++ framework.The remainder of this paper is organized as follows.Section 2 shows the model and equilibrium used for simulations.Section 3 displays the simulation results and corresponding analysis.Section 4 is the summary.

    2.Model

    2.1.The form of SMBI and its interaction with plasma

    Suppose that the molecule seeded by SMBI isD2.According to experimental results, after the deposition of SMBI at the pedestal, the plasma density increases and the plasma temperature decreases.Due to these effects of SMBI, ELMs are mitigated [23, 25, 29].Based on the physical images of experiment, and to establish a practical model, we only consider the physics after the ionization and deposition of the particles seeded by SMBI.The processes of propagation and ionization of the particles are ignored.The particles seeded by SMBI are ionized into electrons and low-speed deuterium ions.The electrons are ignored, and we only consider the effect of the low-speed deuterium ions.The low-speed deuterium ions are called cold ions in the following text.The density, mass, velocity and temperature of the cold ions are denoted byni′,m,Vi′andTi′respectively.The plasma considered in our model is a deuterium plasma composed of electrons and deuterium ions.The deuterium ions in the plasma are called thermal ions in the following text, whose velocity and temperature are denoted byVandTirespectively.In this work, we assume a cold ion is transformed into a thermal ion immediately after a Coulomb collision.That is,the density of the cold deuterium ions decreases and the temperature is equal to the thermal ions after Coulomb collisions.The electron density and ion density in the plasma are both set ton=1019m?3, which do not change in space-time across the simulation domain.The density of cold ions is set to about 1018m?3,which changes with time and space.The increase of plasma density due to SMBI is approximated to zero.Cold ions exert a force on the thermal ions by Coulomb collisions, which is denoted byFii′.Therefore,

    whereFincludes the other forces.According to the approximation of the Coulomb collision operator in fluid equations[31], we getwhereνii′is the Coulomb collision frequency [32].Sincewe let

    Energy transfer also occurs between the cold ions and thermal ions by Coulomb collisions,which can be represented by,

    In this work, the densitynof the plasma is a constant.Therefore, we can multiplynon both two sides of equation (2-3) to get,

    wherePis the plasma pressure.

    At present, the calculation of Coulomb collision frequency is based mostly on the supposition that particles have fully collided with each other to meet the Boltzmann distribution [30, 32].If particles B satisfy the Boltzmann distribution, their thermal speed isVB, their density isnBand the collision frequency among them isνBB.Then, according to previous derivation [30], we obtain,

    Figure 1.(a) Locations of x0 at the equilibrium pressure profile when SMBI is deposited at the top, middle and bottom of the pedestal.

    Here,we first estimate the Coulomb collision frequencyνiiamong the thermal ions satisfying the Boltzmann distribution.We letνeibe the Coulomb collision frequency between the electrons and thermal ions in the plasma satisfying the Boltzmann distribution,then[32].In tokamak edge plasma, the typical Lundquist numberwhereνeiis about 105s?1[14].Therefore,νiiis about 103s?1.Next, we estimate the Coulomb collision frequencyν′′iiamong the cold ions satisfying the Boltzmann distribution.It can be seen from equation (2-5) thatThe speed of the thermal ionsViis about 105m s?1,and the speed of the cold ions seeded by SMBI is about 103m s?1.So we get

    The cold ions and thermal ions obviously have not fully collided with each other.So the calculation ofν′iineeds to know the velocity distributions of the cold ions and thermal ions,respectively,and do a complex integral operation.In this work, we do not do direct calculation, but estimateν′iiin a more feasible way.According to equation (2-5), we assume the order of νii′is between the orders ofνiiandνi′i′,andνii′is proportional to ni′.That is to say, the order ofνii′is 103?108s?1,andνii′=kii′ni′,where kii′is a constant.According to the orders ofνii′and ni′,the order of kii′is 10?15?10?10m3s?1.Due to limited computing resources,and in order to see the impact of SMBI on an ELM in 100-200 Alfvén time τA(about 10?7s),the value ofνii′is set to about 105s?1,which changes with ni′.Correspondingly,kii′=10?13m3s?1,which is a fixed value.

    In experiment, the cold ion density has fluctuating distributions in the poloidal and toroidal directions.In order to make the model more practical, we make an approximation that the density of cold ions is uniform in the poloidal and toroidal directions,but is set to change with time and satisfy a spatial distribution in the radial direction [28].

    Figure 2.Radial equilibrium profiles of (a) pressure P0, parallel current density ‖J and (b) safety factor q.

    wherenfis the amplitude of the cold ion density andtis the duration of the simulations.Fromt=0 tot=200τA, the amplitude of cold ion density decreases from the maximumnfto 0.xgis the grid number in thexdirection (i.e.the radial direction),x0is used to determine the central radial location of the distribution andxwis used to determine the width of the distribution.The distribution of′niis used to represent the distribution of SMBI deposited at the pedestal.Its distribution in the radial direction is shown in figure 1.

    2.2.BOUT++ three-field equations with the impact of SMBI

    From equations (2-4) and (A5) in the appendix, we get three collision terms because of the impact of SMBI, which areWe call them momentum collision term,gradient collision term and energy collision term, respectively.The three-field equations [14]with these terms are,

    The equilibrium used in the simulations is the cbm18_dens8 shifted circular equilibrium [33], which is unstable to P-B modes.The profiles of its pressure, parallel current density and safety factor are shown in figure 2.Its major radiusR0is3.4 m,minor radiusais1.2 m,toroidal field on axisB0is2 T,edge safety factorqais3.03,normalized betaβNis 1.51 and normalized pedestal widthis0.049.

    The radial simulation range isis the normalizedψ.The inner radial boundary conditions are =U0,andThe outer radial boundary conditions areandφ= 0.In the simulations, a field-aligned (flux) coordinate system is used [34], whose coordinatesx,yandzare the radial-like,poloidal-like and toroidal-like coordinates.The simulation domain is periodic inyandz.The resolutions inxandyare 516 and 64, respectively.For efficiency, in the linear simulations,of the torus is simulated (nis the toroidal mode number),and the resolution inzis 16.In the nonlinear simulations,of the torus is simulated, and the resolution inzis 64.In a linear simulation fornmode, the given initial perturbation is a perturbation with only thenharmonic.In the nonlinear simulations,the given initial perturbation is a perturbation with only theharmonic.

    Figure 3.(a)Growth rates of the P-B modes with only the momentum collision term when nf is different.(b)Growth rates of the P-B modes with only the energy collision term when nf is different.(c) Growth rates of the P-B modes with both the momentum and energy collision terms when nf is different.(d) Growth rates of the P-B modes with both the momentum and energy collision terms when xw is different.

    3.Results and discussion

    3.1.Linear simulations

    The equations with and without the collision terms are used to simulate ELMs.In order to simulate P-B modes, we setn=15.When there is no collision term, the growth rateγis 0.2487ωA,whereωA=VA/R0is the Alfvén frequency andVAis the Alfvén velocity.When there is only the gradient collision term, the growth rate does not change.When there is the momentum collision term or the energy collision term,the growth rate decreases.In the simulations,nfis set to 1 × 1017m?3,5 × 1017m?3,1 × 1018m?3,1.5 × 1018m?3and 2 × 1018m?3,xwis set toa/13, 2a/13, 3a/13, 4a/13 and /a5 13, andx0is set to locate at the top, middle and bottom of the pedestal.The growth rates are shown in figure 3, which have been normalized to an Alfvén frequencyωA.

    Figure 4.With both the momentum and energy collision terms, (a) growth rates of n=5, n=10, n=15 and n=20 modes when nf is different, (b) growth rates of n=5, n=10, n=15 and n=20 modes when xw is different.

    As can be seen from figure 3, the momentum collision term or the energy collision term reduces the growth rate of P-B modes, and between them the energy collision term plays a leading role.The reduction amplitude of the growth rate is increased when the amplitude or width of SMBI is increased, and when SMBI is deposited at the top, bottom and middle of the pedestal,the reduction amplitude increases successively.

    By contrast,when SMBI is deposited at the middle of the pedestal with both the momentum and energy collision terms,the effects of the amplitude and width of SMBI on the growth rate of =n5, =n10 and =n20 modes are also simulated.These modes are also considered to be P-B modes [14].In figure 4(a), the width of SMBI is fixed at /a4 13, and the effect of different amplitudes is investigated.In figure 4(b),the amplitude of SMBI is fixed at 1 × 1018m?3,and the effect of different widths is investigated.When the amplitude of SMBI reaches 2 × 1018m?3or the width of SMBI reaches 5a/13,then=5 mode hardly grows,and we simply think its growth rate is 0 without calculation.From figure 4,we know that the effects of SMBI on the P-B modes around n=5-20 are similar to =n15 mode.

    From the linear simulation results, we conclude that increasing the amplitude or width of SMBI is helpful to suppress ELMs, and when SMBI is deposited at the top,bottom and middle of the pedestal, the impact of SMBI on P-B modes increases successively.These results are similar to that of Huang et al [27, 28].

    3.2.Nonlinear simulations

    In order to investigate the impact of SMBI on the ELM size,ELMs are simulated nonlinearly.The size of an ELM is defined as [11] the ratio of the energy loss (ΔWped) to the pedestal stored energy (Wped),

    whereRinandRoutare the radial positions of the internal simulation boundary and the maximum pressure gradient,respectively.According to the results of linear simulations,both the momentum term and energy collision term are added to the equations used for nonlinear simulations, but the gradient collision term is neglected.

    First,the impacts of the amplitude and deposited location of SMBI on the ELM size are simulated.The amplitudenfis set to 5 × 1017m?3,1 × 1018m?3,1.5 × 1018m?3and 2 × 1018m?3.The widthxwis set to 4a/13.The locationx0is set to locate at the top, middle and bottom of the pedestal.The corresponding ELM sizes are shown in figure 5.It can be seen that the SMBI reduces the ELM size.The largernfis,the smaller the ELM size is.When SMBI is deposited at the bottom, top and middle of the pedestal with the same amplitude and width, the ELM size decreases successively.

    Comparing the result when SMBI is deposited at the pedestal top with the result when it is deposited at the bottom,there is a conflict between the linear and nonlinear simulations.The ELM size is smaller when SMBI is deposited at the pedestal top, but the corresponding P-B mode is more unstable.This conflict comes from the calculation of the energy lossΔWpedfor the ELM size in equation (3-1).Because of the location ofRout,〈P〉zincludes more pressure introduced from SMBI when SMBI is deposited at the pedestal top,which reduces the size ofΔWped.So the ELM size is smaller when SMBI is deposited at the pedestal top, even though the corresponding P-B mode is more unstable.

    Figure 5.With different n f ,the evolution of ELM sizes when SMBI is deposited at the top (a), middle (b) and bottom (c) of the pedestal.

    In figure 5, the time of a black dot corresponds to the time when filamentary structures of the ELM erupt [33].The pressure profiles averaged over (equilibrium) flux surfaces att=0 and at the times indicated by the black dots are shown in figure 6.The vertical axis is the total pressure (the sum of equilibrium pressure and toroidal average value of perturbation pressure) normalized by magnetic pressure.The black curve is the pressure profile at the beginning of the simulationt=0, which is the equilibrium pressure profile.The other curves represent the collapsed profiles at different times indicated by the black dots.Compared with the equilibrium pressure, due to the eruption of ELM, the inner part of the pressure profiles falls while the outer part of the pressure profiles rises.The only different parameter of (a), (b) and (c)in figure 6 is the deposited location of SMBI.Compared with the pressure profile of no SMBInf=0,when SMBI is deposited at the pedestal top,the reduction of the inner part of the pressure profiles is less,so that SMBI reduces the inward collapse amplitude of the pressure profiles.When SMBI is deposited at the pedestal bottom,the increase of the outer part of the pressure profiles is less, so that SMBI reduces the outward collapse amplitude of the pressure profiles.When SMBI is deposited at the pedestal middle, it reduces the collapse amplitude on both sides.The largernfis, the bigger the effect is.

    In figure 7,pressure perturbations at the times indicated by the black dots in figure 5 are shown, which are considered to be the filamentary structures of the ELMs.They are shown within the view of normalized poloidal flux(x-axis) and toroidal angle (y-axis) at the outer mid-plane.The data in each slice are normalized to its absolute maximum.(b), (c) and (d) in figure 7 show the filamentary structures when SMBI is deposited at different locations with an amplitude of 2 × 1018m?3and a width of 4a/13.Compared with the result without SMBI in figure 7(a), the SMBI reduces the radial extent of the filamentary structures,and the effects are different when it is deposited at different locations.When SMBI is deposited at the pedestal top, it reduces the inner extent of the filamentary structures.When SMBI is deposited at the pedestal bottom, it reduces the outer extent of the filamentary structures.When SMBI is deposited at the pedestal middle, it reduces both the inner and outer extents.

    Figure 6.Surface-averaged pressure profiles when SMBI is deposited at the top (a), middle (b) and bottom (c) of the pedestal.

    From figures 6 and 7, we conclude that when SMBI is deposited at the pedestal top, it reduces the inward collapse amplitude of the pressure profiles, which can improve the confinement efficiency during ELMs.When SMBI is deposited at the pedestal bottom, it reduces the outer extent of the filamentary structures, which can slow down the erosion of PFCs caused by ELMs.When SMBI is deposited at the middle of the pedestal,it has the above two effects at the same time.Therefore,to slow down the erosion of PFCs caused by ELMs,shallow deposition of SMBI such as at the middle and bottom of the pedestal is better.This can meet the needs of ELM mitigation.This conclusion is similar to that of Rhee et al [26].

    Finally, the impact of SMBI width on the ELM size is simulated.The amplitudenfis set to 1 × 1018m?3,the widthxwis set to /a2 13, /a3 13, /a4 13 and /a5 13,and the locationx0is set to locate at the top, middle and bottom of the pedestal.The corresponding ELM sizes are shown in figure 8.It can be seen that the SMBI reduces the ELM size.The largerxwis, the smaller the ELM size is.So when the width of SMBI is increased, its impact on the ELM size is increased.

    Figure 7.Pressure perturbations in the frame of normalized poloidal flux and toroidal angle when there is no SMBI(a), and when SMBI is deposited at the top (b), middle (c) and bottom (d) of the pedestal.

    4.Summary

    In this work,collision terms representing the impact of SMBI are added to the three-field equations in the BOUT++ code.The impact of SMBI on ELMs is investigated by linear and nonlinear simulations.The simulation results are analyzed and compared with others to find an optimal SMBI scenario.Linear simulation results show that the momentum collision term or the energy collision term reduces the growth rate of P-B modes, and between them the energy collision term plays a leading role.The reduction amplitude of the growth rate is increased when the amplitude or width of SMBI is increased, and when SMBI is deposited at the top,bottom and middle of the pedestal, the reduction amplitude increases successively.Thus, increasing the amplitude or width of SMBI is helpful to suppress ELMs,and when SMBI is deposited at the top,bottom and middle of the pedestal,the impact of SMBI on P-B modes increases successively.

    Nonlinear simulation results show that SMBI reduces the ELM size, and the reduction amplitude of the ELM size is increased when the amplitude or width of SMBI is increased.Moreover, when SMBI is deposited at the bottom, top and middle of the pedestal with the same amplitude and width,the reduction amplitude increases successively.Surface-averaged pressure profiles and filamentary structures are analyzed when the ELMs erupt.When SMBI is deposited at the top or middle of the pedestal, it reduces the inward collapse amplitude of the pressure profiles.This can improve the confinement efficiency during ELMs.When SMBI is deposited at the middle or bottom of the pedestal, it reduces the outer extent of the filamentary structures, which can slow down the erosion of PFCs caused by ELMs.Through the above results, we think that shallow deposition of SMBI such as at the middle and bottom of the pedestal with sufficient amplitude and width can meet the needs of ELM mitigation.

    Figure 8.With different x w ,the evolution of ELM sizes when SMBI is deposited at the top (a), middle (b) and bottom (c) of the pedestal.

    Acknowledgments

    The authors wish to thank X Q Xu and B D Dudson for their contributions to the BOUT++framework and R D Hazeltine for his contribution to plasma theory.This work was supported by the National Key R&D Program of China (Grant Nos.2018YFE0303102 and 2017YFE0301100).This work was also partially supported by National Natural Science Foundation of China (Grant No.11675217) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No.2017479).

    Appendix.Deducing the momentum equation into a vorticity equation

    LettingF= ??P+J×Bin equation (2-1), we get,

    If the left side of equation (A1) is denoted byfii′,the shear-Alfvén law is obtained [31]:

    The first term on the left side of equation (A2) is,

    It is equivalent to,

    In the direction perpendicular to the magnetic field, only the contribution ofE×Bdrift is included in the velocity[31].That is to say,so that

    ORCID iDs

    Yuanzhen WANG (王元震) https://orcid.org/0000-0001-5943-301X

    欧美久久黑人一区二区| 巨乳人妻的诱惑在线观看| av视频免费观看在线观看| 女人久久www免费人成看片| 母亲3免费完整高清在线观看| 女人精品久久久久毛片| 精品高清国产在线一区| 极品少妇高潮喷水抽搐| 女性生殖器流出的白浆| 18禁黄网站禁片午夜丰满| 久久人人爽av亚洲精品天堂| 欧美日韩精品网址| h视频一区二区三区| 少妇裸体淫交视频免费看高清 | 91老司机精品| 妹子高潮喷水视频| 久久亚洲国产成人精品v| 欧美精品人与动牲交sv欧美| 欧美另类一区| 日韩一区二区三区影片| 亚洲男人天堂网一区| 国产福利在线免费观看视频| 欧美黄色淫秽网站| 国产成+人综合+亚洲专区| 中文字幕制服av| 亚洲成av片中文字幕在线观看| 亚洲黑人精品在线| 亚洲成国产人片在线观看| 久久国产亚洲av麻豆专区| 韩国高清视频一区二区三区| 99国产精品免费福利视频| 久久精品成人免费网站| 久久国产精品人妻蜜桃| 999精品在线视频| 国产一卡二卡三卡精品| 成年人黄色毛片网站| 正在播放国产对白刺激| 久久国产精品影院| 久久av网站| 这个男人来自地球电影免费观看| 欧美另类一区| 精品少妇一区二区三区视频日本电影| 三上悠亚av全集在线观看| 亚洲成人手机| 日本wwww免费看| 欧美精品一区二区免费开放| 如日韩欧美国产精品一区二区三区| 视频区图区小说| 成人国产av品久久久| 1024视频免费在线观看| 欧美日韩视频精品一区| 日韩制服骚丝袜av| 欧美另类亚洲清纯唯美| 欧美另类一区| 欧美日韩国产mv在线观看视频| 黄色 视频免费看| 欧美黑人精品巨大| 超色免费av| 国产高清videossex| 午夜激情av网站| av欧美777| 最近最新免费中文字幕在线| 亚洲情色 制服丝袜| 黄网站色视频无遮挡免费观看| 久久久欧美国产精品| 男女边摸边吃奶| 黑人猛操日本美女一级片| 97人妻天天添夜夜摸| 日韩视频在线欧美| 丝袜人妻中文字幕| 黄色怎么调成土黄色| 亚洲精品国产区一区二| 日本黄色日本黄色录像| 日韩一卡2卡3卡4卡2021年| 9191精品国产免费久久| 国产一区有黄有色的免费视频| 少妇裸体淫交视频免费看高清 | 精品福利永久在线观看| 亚洲七黄色美女视频| 久久久久国内视频| 国产成人av教育| 美女扒开内裤让男人捅视频| 两个人看的免费小视频| 我要看黄色一级片免费的| 老熟妇乱子伦视频在线观看 | 女性生殖器流出的白浆| 久久天躁狠狠躁夜夜2o2o| 精品国产乱码久久久久久小说| 男女国产视频网站| 欧美人与性动交α欧美软件| 韩国高清视频一区二区三区| 久久狼人影院| 亚洲久久久国产精品| 中文欧美无线码| 一级毛片精品| 国产精品久久久av美女十八| 亚洲激情五月婷婷啪啪| av在线播放精品| 久久久久久人人人人人| 狠狠婷婷综合久久久久久88av| 老司机午夜福利在线观看视频 | 啦啦啦啦在线视频资源| 91成年电影在线观看| 国产一区二区在线观看av| 我要看黄色一级片免费的| av欧美777| 18在线观看网站| 久久人人爽av亚洲精品天堂| 精品亚洲成a人片在线观看| 亚洲精品中文字幕一二三四区 | 久久久久国产精品人妻一区二区| 国产在线视频一区二区| 成年av动漫网址| 性高湖久久久久久久久免费观看| 国产精品免费大片| 久久久久久久大尺度免费视频| 亚洲中文av在线| 三级毛片av免费| 高清欧美精品videossex| 日本欧美视频一区| 纵有疾风起免费观看全集完整版| 人人澡人人妻人| 12—13女人毛片做爰片一| 女人久久www免费人成看片| 桃花免费在线播放| 少妇 在线观看| 国产欧美日韩一区二区三 | 日韩 亚洲 欧美在线| 国产一卡二卡三卡精品| 操美女的视频在线观看| 亚洲欧美精品综合一区二区三区| 啦啦啦 在线观看视频| 亚洲国产av新网站| 欧美人与性动交α欧美软件| 欧美黑人欧美精品刺激| 国产97色在线日韩免费| av免费在线观看网站| 国产欧美日韩精品亚洲av| 国产国语露脸激情在线看| 91九色精品人成在线观看| 国产成人系列免费观看| 国产精品偷伦视频观看了| 国产成人a∨麻豆精品| 国产深夜福利视频在线观看| 啪啪无遮挡十八禁网站| 日日摸夜夜添夜夜添小说| 午夜福利视频在线观看免费| 久久性视频一级片| 日韩免费高清中文字幕av| 国产淫语在线视频| 久久久国产成人免费| 午夜91福利影院| 男人添女人高潮全过程视频| 汤姆久久久久久久影院中文字幕| 9191精品国产免费久久| 精品视频人人做人人爽| 免费人妻精品一区二区三区视频| 亚洲专区字幕在线| 国产精品二区激情视频| 可以免费在线观看a视频的电影网站| 国产精品1区2区在线观看. | 免费黄频网站在线观看国产| 91国产中文字幕| 亚洲av片天天在线观看| 日本欧美视频一区| 黄频高清免费视频| 在线观看www视频免费| 精品亚洲乱码少妇综合久久| 少妇裸体淫交视频免费看高清 | 999精品在线视频| 俄罗斯特黄特色一大片| 欧美久久黑人一区二区| 日韩视频在线欧美| 视频区图区小说| 男人爽女人下面视频在线观看| 黄片小视频在线播放| 女警被强在线播放| 99热全是精品| 精品国产一区二区三区久久久樱花| 欧美另类亚洲清纯唯美| 日韩欧美国产一区二区入口| 免费人妻精品一区二区三区视频| 91九色精品人成在线观看| 日韩欧美一区二区三区在线观看 | 精品少妇黑人巨大在线播放| 久久久久视频综合| 男人舔女人的私密视频| 亚洲一区二区三区欧美精品| 黑人操中国人逼视频| 男人添女人高潮全过程视频| 日本wwww免费看| 亚洲欧美精品综合一区二区三区| 国内毛片毛片毛片毛片毛片| 精品国产乱子伦一区二区三区 | 男女国产视频网站| 欧美av亚洲av综合av国产av| 久久香蕉激情| 99热全是精品| 久久99一区二区三区| 久久久久久久久免费视频了| 亚洲精品久久成人aⅴ小说| 亚洲天堂av无毛| 亚洲自偷自拍图片 自拍| 欧美午夜高清在线| 欧美成狂野欧美在线观看| 欧美久久黑人一区二区| 两性夫妻黄色片| 欧美成狂野欧美在线观看| 2018国产大陆天天弄谢| 女人爽到高潮嗷嗷叫在线视频| 久久久久久久国产电影| 亚洲国产日韩一区二区| 美女主播在线视频| 日日摸夜夜添夜夜添小说| 91字幕亚洲| 99精国产麻豆久久婷婷| 色婷婷av一区二区三区视频| 美女福利国产在线| 国产在线一区二区三区精| 精品国产一区二区三区久久久樱花| 十分钟在线观看高清视频www| 一区二区三区乱码不卡18| 免费黄频网站在线观看国产| 免费在线观看黄色视频的| 在线 av 中文字幕| 欧美日本中文国产一区发布| 久久久精品94久久精品| 天天躁狠狠躁夜夜躁狠狠躁| 黄色片一级片一级黄色片| 丝袜脚勾引网站| 色94色欧美一区二区| 国产精品欧美亚洲77777| 国产深夜福利视频在线观看| 亚洲天堂av无毛| 亚洲午夜精品一区,二区,三区| 啦啦啦 在线观看视频| 法律面前人人平等表现在哪些方面 | 欧美在线黄色| 亚洲国产av影院在线观看| 一级黄色大片毛片| 亚洲七黄色美女视频| 窝窝影院91人妻| 国产淫语在线视频| 少妇的丰满在线观看| 999精品在线视频| 啪啪无遮挡十八禁网站| 亚洲va日本ⅴa欧美va伊人久久 | 久久久久久久精品精品| 另类亚洲欧美激情| 亚洲综合色网址| 欧美+亚洲+日韩+国产| 丝袜人妻中文字幕| 十八禁高潮呻吟视频| 亚洲国产欧美一区二区综合| 亚洲中文日韩欧美视频| 蜜桃在线观看..| 十分钟在线观看高清视频www| 美女视频免费永久观看网站| 欧美xxⅹ黑人| 99九九在线精品视频| 99re6热这里在线精品视频| 亚洲avbb在线观看| tube8黄色片| 一进一出抽搐动态| 久久久久久人人人人人| 亚洲av国产av综合av卡| a级毛片黄视频| 欧美日韩中文字幕国产精品一区二区三区 | 久久久国产成人免费| 国产精品一区二区精品视频观看| 黄频高清免费视频| 国产免费视频播放在线视频| 在线天堂中文资源库| 黑人猛操日本美女一级片| 91成人精品电影| 亚洲天堂av无毛| 少妇 在线观看| 51午夜福利影视在线观看| 啦啦啦在线免费观看视频4| 欧美变态另类bdsm刘玥| 午夜激情久久久久久久| 巨乳人妻的诱惑在线观看| 国产成人一区二区三区免费视频网站| 中文字幕制服av| 亚洲人成电影观看| 亚洲欧美精品综合一区二区三区| 啪啪无遮挡十八禁网站| 亚洲午夜精品一区,二区,三区| 天天添夜夜摸| 男男h啪啪无遮挡| 中文字幕人妻丝袜一区二区| 久久午夜综合久久蜜桃| 两个人免费观看高清视频| e午夜精品久久久久久久| 纯流量卡能插随身wifi吗| 久久久久国内视频| 亚洲精品成人av观看孕妇| 亚洲一码二码三码区别大吗| 色婷婷久久久亚洲欧美| 亚洲九九香蕉| 国产在视频线精品| 精品国产乱码久久久久久男人| 少妇猛男粗大的猛烈进出视频| 99精品欧美一区二区三区四区| 亚洲国产中文字幕在线视频| 欧美在线黄色| 最新在线观看一区二区三区| 国产亚洲精品第一综合不卡| 十分钟在线观看高清视频www| 伊人久久大香线蕉亚洲五| 国产av又大| 久久久久国产精品人妻一区二区| 麻豆av在线久日| 欧美人与性动交α欧美软件| 深夜精品福利| 中亚洲国语对白在线视频| 国产成人精品在线电影| 各种免费的搞黄视频| 亚洲欧美精品综合一区二区三区| 狠狠狠狠99中文字幕| 一区二区三区乱码不卡18| 久久久国产精品麻豆| 久久青草综合色| 欧美黄色片欧美黄色片| 国产日韩一区二区三区精品不卡| 久久av网站| 国产高清videossex| 精品一品国产午夜福利视频| 夫妻午夜视频| 国产真人三级小视频在线观看| 在线av久久热| 天天影视国产精品| 久久久久国产一级毛片高清牌| 国产野战对白在线观看| 爱豆传媒免费全集在线观看| 欧美av亚洲av综合av国产av| 91麻豆av在线| 亚洲精品久久成人aⅴ小说| 777米奇影视久久| 丁香六月天网| 久久久久国产一级毛片高清牌| 久久久国产欧美日韩av| 亚洲第一欧美日韩一区二区三区 | 精品人妻1区二区| 亚洲欧美成人综合另类久久久| 欧美日韩黄片免| 十八禁人妻一区二区| 九色亚洲精品在线播放| 亚洲国产欧美一区二区综合| 亚洲精品第二区| 伊人亚洲综合成人网| 国产精品久久久久久精品电影小说| 日韩欧美免费精品| 五月天丁香电影| 亚洲国产精品一区二区三区在线| 五月天丁香电影| 久久精品国产亚洲av高清一级| av不卡在线播放| 精品免费久久久久久久清纯 | 91精品伊人久久大香线蕉| 岛国毛片在线播放| 99久久99久久久精品蜜桃| 亚洲人成77777在线视频| 少妇猛男粗大的猛烈进出视频| 国产精品九九99| 国产成人免费无遮挡视频| 老汉色av国产亚洲站长工具| 看免费av毛片| 考比视频在线观看| 两人在一起打扑克的视频| 欧美另类亚洲清纯唯美| 亚洲第一欧美日韩一区二区三区 | 国产成人av教育| 狂野欧美激情性bbbbbb| 精品久久久久久久毛片微露脸 | 国产亚洲一区二区精品| 国产有黄有色有爽视频| 色视频在线一区二区三区| 搡老岳熟女国产| 国产熟女午夜一区二区三区| 老熟妇乱子伦视频在线观看 | 亚洲成国产人片在线观看| 老汉色∧v一级毛片| 伊人亚洲综合成人网| 国产免费一区二区三区四区乱码| 亚洲,欧美精品.| 中文精品一卡2卡3卡4更新| 无遮挡黄片免费观看| 亚洲第一欧美日韩一区二区三区 | 老汉色av国产亚洲站长工具| 男男h啪啪无遮挡| 老司机影院毛片| 9191精品国产免费久久| 亚洲精品中文字幕一二三四区 | 80岁老熟妇乱子伦牲交| 久久人人爽av亚洲精品天堂| 国产欧美亚洲国产| 在线观看舔阴道视频| 少妇裸体淫交视频免费看高清 | 成年美女黄网站色视频大全免费| 五月天丁香电影| 久久久久久久久久久久大奶| 一区二区三区激情视频| 日韩有码中文字幕| 精品亚洲成a人片在线观看| 亚洲成国产人片在线观看| 日韩视频在线欧美| 国产精品一区二区在线不卡| 日韩,欧美,国产一区二区三区| 亚洲 欧美一区二区三区| 亚洲精品粉嫩美女一区| 一区二区三区乱码不卡18| 天堂中文最新版在线下载| 下体分泌物呈黄色| 汤姆久久久久久久影院中文字幕| 欧美日韩亚洲高清精品| 久久这里只有精品19| 在线观看人妻少妇| 黄色视频在线播放观看不卡| 久久天躁狠狠躁夜夜2o2o| 一区二区三区激情视频| 99久久国产精品久久久| 在线观看一区二区三区激情| 夫妻午夜视频| 十八禁网站网址无遮挡| 国产成人精品久久二区二区免费| 精品国产乱码久久久久久男人| 岛国在线观看网站| 视频在线观看一区二区三区| 午夜视频精品福利| 日韩大片免费观看网站| 人妻 亚洲 视频| 黄片播放在线免费| 性高湖久久久久久久久免费观看| 超碰成人久久| 最新的欧美精品一区二区| 动漫黄色视频在线观看| 亚洲国产av新网站| 国产精品香港三级国产av潘金莲| 中文字幕最新亚洲高清| 五月开心婷婷网| 亚洲专区字幕在线| 亚洲精品日韩在线中文字幕| 性高湖久久久久久久久免费观看| 美国免费a级毛片| 男女免费视频国产| 秋霞在线观看毛片| 国产国语露脸激情在线看| 国产野战对白在线观看| 欧美少妇被猛烈插入视频| 欧美黑人欧美精品刺激| 9191精品国产免费久久| 老鸭窝网址在线观看| 亚洲欧美激情在线| 最近最新免费中文字幕在线| 国产老妇伦熟女老妇高清| 午夜福利,免费看| 久久久久精品人妻al黑| 中文精品一卡2卡3卡4更新| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区三区四区五区乱码| 免费在线观看视频国产中文字幕亚洲 | 人人妻人人澡人人爽人人夜夜| 午夜成年电影在线免费观看| 国产亚洲av片在线观看秒播厂| 久久久精品国产亚洲av高清涩受| 欧美精品亚洲一区二区| 国产精品av久久久久免费| 精品少妇久久久久久888优播| 国产精品久久久人人做人人爽| 久久久久视频综合| 丝瓜视频免费看黄片| tocl精华| 一级a爱视频在线免费观看| 免费观看人在逋| 中文字幕高清在线视频| 亚洲精品美女久久久久99蜜臀| 法律面前人人平等表现在哪些方面 | 久久国产精品大桥未久av| 久久青草综合色| 亚洲精品一二三| 色综合欧美亚洲国产小说| av天堂在线播放| 国产欧美日韩一区二区精品| 亚洲欧美日韩另类电影网站| 亚洲一码二码三码区别大吗| av不卡在线播放| 99国产综合亚洲精品| 真人做人爱边吃奶动态| 捣出白浆h1v1| 人人妻人人添人人爽欧美一区卜| 咕卡用的链子| 国产又爽黄色视频| 亚洲免费av在线视频| 婷婷色av中文字幕| 久久天躁狠狠躁夜夜2o2o| 亚洲一区中文字幕在线| 51午夜福利影视在线观看| 99九九在线精品视频| 美女高潮到喷水免费观看| 亚洲国产精品一区三区| 欧美变态另类bdsm刘玥| 欧美另类亚洲清纯唯美| 天天影视国产精品| 精品一区二区三区四区五区乱码| 12—13女人毛片做爰片一| 中文欧美无线码| 97人妻天天添夜夜摸| 天堂中文最新版在线下载| 女人爽到高潮嗷嗷叫在线视频| 日韩熟女老妇一区二区性免费视频| 久久99热这里只频精品6学生| 久久久久精品人妻al黑| av不卡在线播放| 中文欧美无线码| 无遮挡黄片免费观看| 亚洲国产精品一区三区| 久久人妻福利社区极品人妻图片| 黄网站色视频无遮挡免费观看| 少妇人妻久久综合中文| 日韩欧美一区二区三区在线观看 | 久久精品成人免费网站| 人人妻,人人澡人人爽秒播| 黑人猛操日本美女一级片| 女人久久www免费人成看片| 男人爽女人下面视频在线观看| 久久香蕉激情| 精品一品国产午夜福利视频| 免费一级毛片在线播放高清视频 | 亚洲avbb在线观看| 美女高潮到喷水免费观看| 欧美日韩av久久| 一进一出抽搐动态| 人妻 亚洲 视频| 丝袜美足系列| 1024视频免费在线观看| 亚洲精品中文字幕在线视频| av福利片在线| 精品亚洲乱码少妇综合久久| 90打野战视频偷拍视频| 菩萨蛮人人尽说江南好唐韦庄| 丝袜在线中文字幕| 波多野结衣一区麻豆| 每晚都被弄得嗷嗷叫到高潮| 国产色视频综合| 婷婷成人精品国产| 国产熟女午夜一区二区三区| 黄色 视频免费看| 别揉我奶头~嗯~啊~动态视频 | 99国产精品一区二区蜜桃av | 18禁黄网站禁片午夜丰满| 亚洲 国产 在线| 日本vs欧美在线观看视频| 日韩欧美国产一区二区入口| 免费不卡黄色视频| 新久久久久国产一级毛片| 国产成人一区二区三区免费视频网站| 99久久人妻综合| 桃花免费在线播放| 国产在线观看jvid| 亚洲国产中文字幕在线视频| 亚洲国产精品999| 免费在线观看视频国产中文字幕亚洲 | 老司机亚洲免费影院| 最黄视频免费看| 在线观看免费视频网站a站| 大片免费播放器 马上看| 亚洲一区二区三区欧美精品| 丁香六月天网| 国产99久久九九免费精品| 久久久久久久久久久久大奶| 亚洲精品一区蜜桃| 青青草视频在线视频观看| 大型av网站在线播放| 伊人久久大香线蕉亚洲五| av天堂久久9| 成年美女黄网站色视频大全免费| 欧美日韩亚洲高清精品| www.熟女人妻精品国产| 香蕉丝袜av| 欧美 日韩 精品 国产| 免费av中文字幕在线| 亚洲av电影在线进入| 性色av一级| 国产亚洲欧美精品永久| 精品久久久久久久毛片微露脸 | 久久免费观看电影| 国产在线一区二区三区精| 久久久久久久久免费视频了| 纵有疾风起免费观看全集完整版| 乱人伦中国视频| 人人澡人人妻人| 亚洲黑人精品在线| 男女午夜视频在线观看| 一级毛片女人18水好多| 男女边摸边吃奶| 天天躁狠狠躁夜夜躁狠狠躁| 日日摸夜夜添夜夜添小说| 丝袜人妻中文字幕| 巨乳人妻的诱惑在线观看| 国产成人a∨麻豆精品| 久久精品亚洲av国产电影网| 日韩电影二区| 欧美乱码精品一区二区三区| 久久久国产成人免费| 久久久欧美国产精品| 亚洲专区字幕在线| 99热国产这里只有精品6| 久久久欧美国产精品| 欧美精品啪啪一区二区三区 | 亚洲精品在线美女| www.精华液| 一个人免费在线观看的高清视频 | a级毛片在线看网站| 极品少妇高潮喷水抽搐|